1 Zbiory przeliczalne i nieprzeliczalne



Podobne dokumenty
Wykªad 8. Pochodna kierunkowa.

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:

Rachunek caªkowy funkcji wielu zmiennych

1 Definicja całki podwójnej po prostokącie

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 1. Macierze i wyznaczniki Macierze podstawowe okre±lenia

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

Funkcje wielu zmiennych

G i m n a z j a l i s t ó w

PEWNIK DEDEKINDA i jego najprostsze konsekwencje

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

1 Definicja całki oznaczonej

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk

XVII Warmi«sko-Mazurskie Zawody Matematyczne

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

Rachunek różniczkowy i całkowy w przestrzeniach R n

Metody dowodzenia twierdze«

Elementy geometrii w przestrzeni R 3

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!

Całki podwójne i potrójne

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.

Wykªad 4. Funkcje wielu zmiennych.

Całka podwójna po prostokącie

Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b).

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

KLUCZ PUNKTOWANIA ODPOWIEDZI

Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Matematyka II dla studentów Technologii Chemicznej

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

r = x x2 2 + x2 3.

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

Analiza Matematyczna. Całka Riemanna

Rys.1. Rys.1. str.1. 19h 20h 21h 22h 23h 24h 0h 1h 2h 3h 4h 5h 6h. kopia. Nr1

Całka Riemanna Dolna i górna suma całkowa Darboux

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

Rozwiązania maj 2017r. Zadania zamknięte

Ekstremalnie fajne równania

Zastosowania całki oznaczonej

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Uniwersytet Warmińsko-Mazurski w Olsztynie

usuwa niewymierność z mianownika wyrażenia typu

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/ Sumy algebraiczne

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

Całki oznaczone. wykład z MATEMATYKI

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii

Ksztaªt orbity planety: I prawo Keplera

1 Bª dy i arytmetyka zmiennopozycyjna

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

CAŁKA OZNACZONA JAKO SUMA SZEREGU

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

XIII KONKURS MATEMATYCZNY

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Geometria. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2

Kurs wyrównawczy dla kandydatów i studentów UTP

ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

pobrano z (A1) Czas GRUDZIE

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02

NUMER IDENTYFIKATORA:

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Metodydowodzenia twierdzeń

Analiza matematyczna i algebra liniowa Całka oznaczona

Wektory w przestrzeni

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Analiza Matematyczna I.2

Informacje pomocnicze

Informacje pomocnicze:

1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

Kombinowanie o nieskończoności. 4. Jak zmierzyć?

punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

EGZAMIN MATURALNY Z MATEMATYKI

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Całki krzywoliniowe wiadomości wstępne

2. Funktory TTL cz.2

Matematyka stosowana i metody numeryczne

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Transkrypt:

1 Zbiory przelizlne i nieprzelizlne S ró»ne rodzje niesko«zono±i, mimo i» niesko«zono± oznz si jednym symbolem. Ale niesko«zono± niesko«zono±i nierówn. Uzsdnimy to zrz; le njsmpierw kilk deniji. ef. Mówimy,»e dw zbiory X, Y s równolizne, je±li istnieje bijekj α zbioru X n zbiór Y. rzykª. w zbiory sko«zone s równolizne wtedy i tylko wtedy, gdy mj t sm ilo± elementów. ef. Zbiór X nzywmy przelizlnym, je±li jest równolizny ze zbiorem lizb nturlnyh N. Obrzowo mówimy,»e X jest przelizlny, je±li wszystkie jego elementy mo»n ustwi w i g, lbo te», je±li wszystkie jego elementy mo»n ponumerow lizbmi nturlnymi. rzykª. Zbiór X = N {0} jest przelizlny. Štwo bowiem skonstruow bijekj α zbioru X n N: α(0) = 1, α(1) = 2, α(2) = 3,..., α(k) = k + 1,... RYS. Mo»n powy»sz bijekj zpis symboliznie jko 1 + = rzykª. Zbiór lizb przystyh N p = {2, 4, 6, 8,... } jest przelizlny. Bijekj α : N p N mo»n skonstruow tk: α(2) = 1, α(4) = 2; α(6) = 3;..., α(2k) = k,... RYS. Brdzo podobnie pokzuje si,»e zbiór lizb nieprzystyh te» jest przelizlny. Sytuj t mo»n zobrzow pisz + = rzykª. Zbiór lizb ªkowityh jest przelizlny. Bijekj α : Z N: α(0) = 1; α(1) = 2; α( 1) = 3; α(2) = 4; α( 2) = 5;..., α(k) = 2k, α( k) = 2k+1,... rzykª. Zbiór N 2 = N N jest przelizlny. Ustwmy bowiem jego elementy w i g: {(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3),... } RYS. Aby d upust pedntyzno±i, zpiszmy t bijekj wzorkiem (-mi): rze (, b) przyporz dkowujemy numer 1 2 [(+b)2 3b]+1. Troh jest gimnstyki przy sprwdzniu, le sprwdz si,»e odwzorownie N 2 N: (, b) 1 2 [( + b)2 3b] + 1 jest bijekj. Znów to symboliznie podsumowujemy pisz =. rzykª. Z powy»szego przykªdu ªtwo wynik,»e zbiór lizb wymiernyh (n rzie, powiedzmy, dodtnih) jest przelizlny. Bowiem k»d lizb wymiern p mo»n zkodow q 1

jko pr lizb nturlnyh (p, q), gdzie p i q s nieskrlne; zbiór tkih pr stnowi podzbiór N N. rzykª. Zbiór lizb rzezywistyh n odinku [0, 1] NIE jest przelizlny. W elu udowodnieni tego stwierdzeni posªu»my si ukªdem dwójkowym zpisu lizby, i zuw»my,»e k»d lizb rzezywist z przedziªu [0, 1] mo»n zpis jko pewien i g zer i jedynek (yfr po przeinku rozwini i dwójkowego lizby). rzypu± my, ze lizby rzezywiste z przedziªu [0, 1] s przelizlne, tzn. ddz si ustwi w pewien i g { 1, 2,... }. ok»emy,»e istnieje lizb rzezywist x, któr nie jest elementem powy»szego i gu. W tym elu zpiszmy rozwini i dziesi tne wszystkih lizb: 1 = ( 1 1, 1 2, 1 3,... ) 2 = ( 2 1, 2 2, 2 3,... ). k = ( k 1, k 2, k 3,... ). (tu i j jest j t yfr rozwini i dwójkowego lizby i ). Lizb x konstruujemy nst puj o: Je±li n pierwszym miejsu rozwini i dziesi tnego lizby 1 jest 0, to jko pierwsz yfr rozwini i dziesi tnego x bierzemy 1; i n odwrót. (tzn. je±li 1 1 = 0, to x 1 1 = 1; orz je±li 1 1 = 1, to x 1 1 = 0). Lizb x ztem nie jest równ 1. je±li 2 2 = 0, to x 2 2 = 1; orz je±li 2 2 = 1, to x 2 2 = 0). Lizb x ztem nie jest równ 1 ni 2. Itd.; ogólnie: je±li k k = 0, to x k k = 1; orz je±li k k = 1, to x k k = 0). Lizb x ztem nie jest równ 1, 2,... k. W ten sposób znle¹li±my lizb x, któr nie jest równ»dnemu wyrzowi i gu { 1, 2,... }, o ±widzy,»e i g ten nie zwier wszystkih lizb rzezywistyh z przedziªu [0, 1]. A ztem zbiór tyh lizb nie jest przelizlny. CBO 2 Cªk podwójn w prostok ie 2.1 rostok ty, ih podziªy, obj to± dwuwymirow Nieh f(x, y) b dzie ogrnizon funkj okre±lon n prostok ie domkni tym, gdzie jest dny nierówno±imi x b, y d. ef. Obj to±i (dwuwymirow ) prostok t nzywmy ilozyn jego boków: = (b )(d ) ef. Wn trzem prostok t nzywmy zbiór okre±lony nierówno±imi ostrymi: Int = {(x, y) : < x < b, < y < d} odzielmy prostok t n n dowolnyh prostok tów domkni tyh p 1, p 2,..., p n. Tzn. mmy: = n i=1p i, Int p i Int p j = dl i j. 2

ef. owy»sze rozbiie prostok t n mniejsze nzywmy podziªem π, tzn.. Zhodzi: π = {p 1, p 2,..., p n } (1) = p 1 + p 2 +... p n. Nieh π podziª orz π 1 = {q 1,..., q k } inny podziª. Mówimy,»e π 1 jest drobniejszy ni» π, je»eli p i = q i1 q i2... q im, i = 1, 2,..., n. Nieh prostok t p i m boki i, b i. eniujemy ±redni podziªu π (1 jko 2.2 Zbiory o zerowej obj to±i δ π = mx 1 i n { i, b i }. ef. Nieh X R 2. Mówimy,»e X m mir Lebesgue' równ zeru (lub,»e X jest miry zero), je»eli dl k»dego ɛ > 0 istnieje tki i g prostok tów 1, 2,..., n,...,»e rzykª. X i i orz 1. unkt x R 2 jest zbiorem miry zero. i < ɛ i 2. Sko«zony zbiór punktów w R 2 jest zbiorem miry zero. 3. Odinek o sko«zonej dªugo±i α jest zbiorem miry 0. (mo»n go zwrze w prostok ie o dªugo±i α i dowolnie mªej wysoko±i). 4. K»dy przelizlny zbiór punktów R 2 jest zbiorem miry zero. dow. onumerujmy elementy : = d 1 d 2..., nst pnie pokryjmy k»dy element d k kwdrikiem o bokh ɛ k ; sum pól powierzhni tyh kwdrików jest dn szeregiem geometryznym k ɛ 2k = ɛ2, jest wi sko«zon i mo»n j uzyni 1 ɛ 2 dowolnie mª. 5. We¹my R 1 ; zbiór lizb wymiernyh jest miry zero (jko»e jest przelizlny). 2.3 enij ªki Nieh M i m b d kresmi górnymi i dolnymi odpowiednio funkji f w prostok ie, z± M i orz m i kresmi górnymi i dolnymi funkji f w prostok ie p i. Nieh ξ 1 i, ξ 2 i b dzie dowolnym punktem prostok t p i. Zbiór wszystkih punktów {ξ 1 i, ξ 2 i }, i = 1,..., n nzwijmy wypunktowniem podziªu π i nzwijmy ξ. Utwórzmy nlogiznie jk w przypdku funkji jednej zmiennej trzy sumy: S(f, π) = m 1 p 1 + m 2 p 2 + + m n p n = n i=1 m i p i ; (2) 3

(sum doln), (sum wypunktown), orz σ(f, π, ξ) = n i=1 f(ξ 1 i, ξ 2 i ) (3) S(f, π) = M 1 p 1 + M 2 p 2 + + M n p n = n i=1 M i p i (4) (sum górn). Anlogiznie jk w przypdku funkji jednej zmiennej, speªnij one nierówno±i m S(f, π) σ(f, π, ξ) S(f, π) M. (5) Równie» nlogiznie, jk w przypdku funkji jednej zmiennej, deniujemy ªk górn orz doln : ef. Cªk górn z funkji f nzywmy inmum z S(f, π) po wszystkih mo»liwyh podziªh: f = inf π i nlogiznie ªk doln z funkji f nzywmy f = sup π S(f, π) S(f, π) i tko» podobnie, jk dl funkji jednej zmiennej, deniujemy funkje ªkowlne: ef. Mówimy,»e funkj f jest ªkowln w sensie Riemnn, je»eli ªki: górn i doln s równe: f = f. W tkim przypdku t wspóln grni oznzmy jko Mj miejse nst puj e twierdzeni (dowodzi si ih nlogiznie jk dl funkji jednej zmiennej): Tw. Nieh f funkj ogrnizon n prostok ie. Je»eli f jest ªkowln n w sensie Riemnn, to dl dowolnego i gu {π k } podziªów tkiego,»e δ k πk 0, i g wypunktownyh sum Riemnn jest zbie»ny do f. f niezle»nie od sposobu wypunktowni. Zhodzi te» twierdzenie (prwie) odwrotne: Tw. Nieh f funkj rzezywist n prostok ie. (Uwg. Nie zkªdmy,»e f musi by ogrnizon). Je»eli dl dowolnego i gu {π k } podziªów tkiego,»e δ k πk 0 i g wypunktownyh sum Riemnn jest zbie»ny do grniy niezle»nej od sposobu wypunktowni, to f jest ogrnizon i ªkowln w sensie Riemnn. Ozywiste jest 4

Tw. Je±li jest sum (mnogo±iow ) dwu prostok tów 1, 2 o rozª znyh wn trzh, f jest funkj ªkowln n, to f = f + f 1 2 odobnie jk w przypdku funkji jednej zmiennej, dowodzi si Tw. Nieh f, g funkje ªkowlne n orz λ R. Wtedy ªkowlne n s te» funkje f + g orz λf, przy zym zhodz równo±i (f + g) = f + g, (6) Zpytjmy terz: λf = λ 2.4 Jkie funkje n pewno s ªkowlne? f. (7) Anlogiznie jk w przypdku funkji jednej zmiennej, dowodzimy,»e s ªkowlne funkje i gªe: Tw. Je»eli f jest i gª n prostok ie, to jest ªkowln (tzn. istnieje f). Równie» niektóre niei gªe funkje s ªkowlne. okªdniej, m miejse Tw. Je»eli funkj f n prostok ie jest ogrnizon i posid zbiór punktów niei gªo±i miry 0, to jest ªkowln. ow. Nieh N b dzie zbiorem punktów niei gªo±i funkji f. We¹my i g rodzin {Π k } prostok tów pokrywj yh N. Zkªdmy,»e k»dy element rodziny (tzn. zbiór prostok tów) jest sko«zony. Oznzmy przez Π k,j j ty prostok t k tej rodziny orz przez ɛ k pole powierzhni zbioru prostok tów Π k, tzn. ɛ k = j Π k,j. Zkªdmy,»e lim ɛ k = 0, poniew» z zªo»eni N jest zbiorem miry zero. K»dy zbiór Π k uzupeªnimy k do podziªu π k prostok t tk, by byª speªniony wrunek lim δ πk = 0. k Nieh M = sup f, m = inf f. Zdeniujmy funkje f +, f f + : Je±li x Π k, to f + (x) = M, je±li x Π k, to f + (x) = f(x). Anlogiznie dl f : Je±li x Π k, to f (x) = M, je±li x Π k, to f (x) = f(x). Zuw»my,»e f + i f s ªkowlne. We¹my jkie± wypunktownie ξ k podziªu π k. Mmy: S(f, π k, ξ k ) S(f, π k, ξ k ) S(f +, π k, ξ k ); ró»ni pomi dzy dwom skrjnymi wyrzmi jest równ ɛ k (M m) i d»y do zer, gdy k, bo wtedy ɛ k 0. Ztem ob skrjne wyrzy d» do wspólnej wrto±i niezle»nej od podziªu ξ k. Tk wi grni wyrzu ±rodkowego istnieje i jest niezle»n od wypunktowni, zyli f jest ªkowln. 2.5 Interpretj geometryzn ªki CBO Wiele ªek posid wyrzisty sens geometryzny lub zyzny 1. Aby brdziej to spreyzow, wprowdzimy poj ie miry Jordn podzbiorów R n ; zznijmy od R 2. 1 Ni dziwnego, bo poj ie ªki byªo odpowiedzi n zpotrzebowni ze strony zyki b d¹ mtemtyki, w szzególno±i geometrii... 5

Nieh b dzie obszrem lub dowolnym zbiorem pªskim ogrnizonym. Zwrzyjmy go w pewnym kwdrie Q. We¹my jki± podziª π = {p 1, p 2,..., p n } prostok t Q. Oznzmy: 1. Nieh S π b dzie sum pól tyh prostok tów, które zwierj jki± punkt zbioru ; 2. Nieh s π b dzie sum pól tyh prostok tów, które s zwrte w zbiorze. Je±li tkih prostok tów nle» yh do podziªu nie m, to przyjmujemy s π = 0. RYS. Mmy ozywiste nierówno±i: 0 s π S π Q. Zbiór wszystkih sum S π, odpowidj yh ró»nym podziªom kwdrtu Q, m kres dolny (jko zb. ogrnizony z doªu). Ten kres dolny oznzmy S i nzywmy mir zewn trzn zbioru : S = sup S π π Anlogiznie zbiór wszystkih sum s π m kres dolny (jko zb. ogrnizony z góry), który oznzmy s i nzywmy mir wewn trzn zbioru : s = inf π Ozywi±ie zhodzi: s S. Je»eli zhodzi równo± : s π s = S, to zbiór nzywmy mierzlnym powierzhniowo w sensie Jordn, wspóln wrto± obu mir nzywmy mir pªsk Jordn (lub po prostu polem powierzhni) zbioru. Anlogiznie deniuje si mir Jordn w innyh wymirh (w jednym wymirze wpisuje si w zbiór i opisuje n nim odinki; w trzeh wymirh prostopdªo±iny itd.) Mir Jordn jest brdzo intuiyjnym poj iem, le m t wd,»e mo»e nie istnie ju» w przypdku nieo 'udziwnionyh' zbiorów; i tk np. nie istnieje mir Jordn zbioru lizb wymiernyh n odinku [0, 1] (mir wewn trzn jest tu 0, zewn trzn 1). Ale do elów ªkowni funkji, z którymi b dziemy mie do zynieni, poj ie miry Jordn nm wystrzy 2. B d uzbrojeni w poj ie miry Jordn, ªtwo zobzymy interpretj geometryzn ªki: Nieh f = equivf(x, y) b dzie funkj ªkowln i dodtni w prostok ie. Wówzs zbiór V R 3, okre±lony nierówno±imi: x b; y d; 0 z f(x, y) 2 o mierzeni tkih 'dziwniejszyh' zbiorów wprowdz si mir Lebesgue'. Jest on skutezniejsz ni» mir Jordn: Gdy zbiór jest mierzlny w sensie Jordn, to jest te» mierzlny wg Lebesgue' (np. mir Lebesgue' zb. lizb wymiernyh n [0, 1] jest 0). Mir Lebesgue' obejmuje znkomit wi kszo± przypdków, z którymi przyhodzi zetkn si w zye (zkolwiek s zbiory niemierzlne równie» w sensie Lebesgue'!) le wymg nieo zhrtowni w bstrkji. enije mo»n znle¹ np. w ksi»e F. Lei, 'Rhunek ró»nizkowy i ªkowy'. 6

m dobrze okre±lon obj to±, bo ªk górn równ jest mierze zewn trznej zbioru V, z± ªk doln mierze wewn trznej, poniew» f jest ªkowln, to miry te s równe. Oznzj obj to± (trójwymirow mir Jordn) zbioru V jko V, mmy wi V = f. (8) 2.6 Cªki iterowne Nieh f f(x, y) t dzie funkj okre±lon i ogrnizon w prostok ie, gdzie x b, y d. Nieh przy k»dym ustlonym x istnieje ªk pojedynz φ(x) d f(x, y)dy. (9) Cªk t jest funkj zmiennej x i jest okre±lon w przedzile x b; oznzmy j jko φ(x). Je»eli φ(x) jest ªkowln n [, b], to ªk b [ b ] d b d inne ozn. φ(x)dx f(x, y)dy dx = dx dy f(x, y) (10) nzywmy ªk iterown funkji f(x, y) (lizon w kolejno±i: njpierw po y potem po x). Anlogiznie okre±lmy ªk iterown, lizon w drugiej mo»liwej kolejno±i (njpierw po x potem po y): Okre±lmy funkj ψ(y) przez ψ(y) = b f(x, y)dx przy zªo»eniu,»e przy k»dym y [, d] t ªk istnieje, nst pnie d [ d ] b d b inne ozn. ψ(y)dy f(x, y)dx dy = dy dx f(x, y) (11) rzykª. 2.7 Zmin ªki podwójnej n iterown (tw. Fubiniego) Opróz oznzeni f n ªk z funkji f po prostok ie, z sto zhodzi potrzeb jwnego wypisni rgumentów funkji, i wtedy posªugujemy si równow»nym oznzeniem: f = f(x, y)dxdy. W poprzednim przykªdzie obie ªki iterowne okzªy si by równe. Ten fkt jest nieprzypdkowy. M bowiem miejse Tw. Je±li funkj f(x, y) jest i gª w prostok ie, to obie ªki iterowne (10) i (11) istniej i s równe ªe podwójnej: b d dx dy f(x, y) = f(x, y)dxdy = 7 d b dy dx f(x, y) (12)

ow. odzielmy prostok t n m n prostok tów, dziel przedziª [, b] (m + 1) punktmi = x 0 < x 1 < < x m = b n m przedziªów p x i = [x i 1, x i ] i nlogiznie, przedziª [, d] dzielimy (n + 1) punktmi = y 0 < y 1 < < y n = d n n przedziªów p y j = [x j 1, x j ], i rysuj odinki równolegªe do osi x, y przehodz e przez punkty podziªu. RYS.. rzez x i oznzmy dªugo± przedziªu p x i orz przez y k dªugo± przedziªu p y k. Zkªdmy przy tym,»e lim m (sup 1 i m x i ) 0 i nlogiznie lim n (sup 1 k n y k ) 0. l prostok t ik = [x i 1, x i ] [y k 1, y k ], nieh m ik (odpowiednio M ik ) oznzj kres dolny ( odp. górny) funkji f n ik. Nieh ξ i oznz dowolny punkt przedziªu x i, orz nieh φ(x) b dzie zdeniown przez (9). Nówzs mmy: φ(ξ i ) = d f(ξ i, y)dy = y1 f(ξ i, y)dy + y2 y 1 f(ξ i, y)dy + + d y n 1 f(ξ i, y)dy Mmy te»: m ik f(ξ i, y) M ik dl y [y k 1, y k ], o prowdzi do i gu nierówno±i: m i1 y 1 y1 y2 f(ξ i, y)dy M i1 y 1, m i2 y 2 f(ξ i, y)dy M i2 y 2, y 1... m in y n d y n 1 f(ξ i, y)dy M in y n. odj te nierówno±i stronmi, nst pnie mno» przez x i i sumuj po i, otrzymmy m n m m n m ik y k x i φ(ξ i ) x i i=1 k=1 i=1 i=1 k=1 M ik y k x i. (13) ierwsz (lew) z tyh sum jest sum doln, osttni (prw) sum górn dl funkji f w prostok ie ; ±rodkow z± jest sum wypunktown funkji φ(x) w przedzile [, b]. We¹my terz grni m, n ; wtedy njdªu»szy z odinków x i, y k d»y do zer, sumy skrjne z nierówno±i (13) d» do wspólnej grniy ªki podwójnej z funkji f. Sum ±rodkow d»y wi do tej smej grniy, przy zym t grni jest ªk iterown (10). W ten sposób pokzli±my pierwsz z równo±i (12). owód drugiej równo±i jest nlogizny. Uwgi. 1. W powy»szym dowodzie korzystli±my jedynie z zªo»e«,»e Istnieje ªk podwójn f(x, y)dxdy, orz istnieje ªk pojedynz φ(x) = d f(x, y)dy dl k»dego x [, b]; CBO dltego te» tez twierdzeni pozostje sªuszn równie» przy tyh sªbszyh zªo»enih je±li s one speªnione, to np. f nie musi by i gª. 8

2. Gdy f jest i gª, to powy»sze tw. mówi,»e wszystkie trzy ªki (podwójn i obie iterowne) s równe. Gdy f nie jest i gª, to mog si zdrzy ró»ne sytuje; np. jedn z ªek istnieje, inne nie; lbo gdy istniej, to nie s równe. rzykªdy s w III tomie Fihtenholz. Twierdzenie Fubiniego odgryw w»n rol przy efektywnym wylizniu ªek (nie tylko zreszt tm), poniew» sprowdz obliznie ªki podwójnej do oblizeni dwóh ªek pojedynzyh. rzypdek szzególny: Gdy f(x, y) jest ilozynem dwu funkji, z któryh k»d zle»y od jednej zmiennej: f(x, y) = u(x)v(y), to mmy ( ) ( b ) d f(x, y)dxdy = u(x) dx v(x) dy, (14) bo: [ b ] d [ b ] d f(x, y) dxdy = dx dy u(x)v(y) = dx u(x) dy v(y) to jest ilozyn ªek wyst puj y po prwej stronie równo±i (14). 2.8 Cªk podwójn w zbiorze dowolnym Nieh f b dzie funkj okre±lon i ogrnizon w pewnym zbiorze ogrnizonym R 2 (RYS.) Zwrzyjmy w pewnym prostok ie i funkj f, okre±lon n, rozszerzmy do funkji f 0 okre±lonej n ªym prostok ie w ten sposób,»e f 0 (x, y) = f(x, y) dl (x, y) ; f 0 (x, y) = 0 dl (x, y). (15) ef. Mówimy,»e f jest ªkowln n zbiorze, je±li istnieje ªk f 0 (x, y) dxdy. W tkim przypdku, ªk z funkji f n zbiorze oznzmy f(x, y) dxdy (16) i, zgodnie z powy»sz denij, mmy f(x, y) dxdy = f 0 (x, y) dxdy. (17) Štwo zobzy,»e okre±lenie to nie zle»y od wyboru prostok t. Nieh f(x, y) b dzie funkj nieujemn n zbiorze. Oznzmy przez V zbiór punktów (x, y, z) R 3 okre±lony nierówno±imi 0 z f(x, y) dl (x, y). (18) Sum górn dl ªki (17) jest sum obj to±i prostopdªo±inów zwierj yh zbiór V, z± sum doln sum obj to±i prostopdªo±inów zwrtyh w V. Je±li wi ªk (20) istnieje, to zbiór V jest mierzlny obj to±iowo i jego obj to± wyr» si ªk V = f(x, y) dxdy (19) 9

rzypdek szzególny: Zuw»my,»e obj to± prostopdªo±inu o wysoko±i 1 równ jest polu podstwy. Bior terz f(x, y) 1 w ªym zbiorze, widzimy,»e sum górn dl ªki (20) jest sum pól prostok tów zwierj yh zbiór, sum doln sumie pól prostok tów zwrtyh w. St d otrzymujemy Stw. Je±li f(x, y) 1, to ªk (20) istnieje wtedy i tylko wtedy, gdy zbiór pªski jest mierzlny powierzhniowo. ole obszru wyr» si wówzs ªk dxdy. (20) Wiemy,»e s zbiory niemierzlne; i w zwi zku z tym n pewno nie po k»dym obszrze b dziemy mogli ªkow. Nsuw si wobe tego pytnie, ªk po jkih obszrh b dzie istniª? Znkomit wi kszo± obszrów, z którymi mmy do zynieni w zye, s to obszry ogrnizone przez krzywe i gªe. B dziemy si zjmow krzywymi, które mo»n zd równniem y = f(x), gdzie f jest funkj i gª. Njsmpierw pok»my: Stw. Krzyw o równniu y = f(x), gdzie f i gª orz x [, b], m dwuwymirow mir Jordn równ zeru. ow. Wiemy,»e funkj f(x) n odinku domkni tym jest tm jednostjnie i gª. Skoro tk, to przedziª mo»n podzieli n sko«zon ilo± odinków tkih,»e n k»- dym z nih whnie funkji (tzn. ró»ni mi dzy wrto±i njmniejsz i njwi ksz ) jest ɛ dowolnie mª; we¹my np., gdzie ɛ jest zdn dowolnie mª nieujemn lizb. Cª b krzyw n przedzile [, b] mo»n wi pokry prostok tmi o ª znej podstwie b i wysoko±i, wi o ª znym polu ɛ dowolnie mªym. RYS. CBO ɛ b Zdeniujmy jeszze: ef. Obszr regulrny to tki, który jest ogrnizony sko«zon ilo±i krzywyh o równniu y = f(x) lub x = g(y), gdzie f, g i gªe. Ze Stw. pokznego wy»ej wyi gmy wniosek: Wniosek Obszr regulrny jest mierzlny. ow. Je±li S n jest sum pól prostok tów pokrywj yh obszr, s n sum pól prostok - tów zwrtyh w, to S n s n jest sum pól prostok tów pokrywj yh brzeg obszru, tzn. krzyw ogrnizj obszr. Z dowodu poprzedniego stw. widzimy, z t ró»ni jest dowolnie mª tk wi obszr jest mierzlny. 2.9 Cªk podwójn w obszrze regulrnym CBO Z fktów pokznyh wy»ej ªtwo wynik Stw. Funkj f(x, y) ogrnizon i i gª w obszrze regulrnym jest ªkowln. ow. Zwrzyjmy obszr w jkim± prostok ie i rozszerzmy funkj f do funkji f 0 n w stndrdowy sposób dny przez (15). Wtedy f 0 jest niei gª o njwy»ej n brzegu obszru, tk wi w my±l tw. CO BYŠO 2 STRONY WCZESNIEJ jest ªkowln n, to znzy,»e f jest ªkowln n. CBO odzielmy obszr jk ± krzyw γ n dw obszry regulrne 1 i 2 ; mmy wi = 1 2 (RYS.). Nieh f(x, y) b dzie funkj ogrnizon i i gª n. Zwrzyjmy 10

w pewnym prostok ie i nieh: f 0 (x, y) = f(x, y) n, f 0 (x, y) = 0 n \ ; f 1 (x, y) = f(x, y) n 1, f 1 (x, y) = 0 n \ 1 ; f 2 (x, y) = f(x, y) n 2 \ γ, f 0 (x, y) = 0 n ( \ 2 ) γ. Wtedy: f 0 = f 1 +f 2 w ªym prostok ie, ztem z wzoru (6) dl obszrów prostok tnyh mmy f 0 = f 1 + o jest równow»ne bior pod uwg denije funkji f 1 i f 2 równo±i f = f + f. (21) 1 2 2.10 Obszr normlny i ªki iterowne tm»e ef. Obszr regulrny okre±lony nierówno±imi f 2 x b, φ(x) y ψ(x) (22) gdzie φ(x) i ψ(x) s funkjmi i gªymi w przedzile [, b] orz zhodzi: φ(x) < ψ(x) dl k»dego x [, b], nzywmy obszrem normlnym wzgl dem osi x. RYS. Ok»e si zrz,»e m miejse Stw. Cªk z funkji f(x, y) ogrnizonej i i gªej w obszrze normlnym (22) mo»n zmieni n ªk iterown wedªug wzoru b ψ(x) f(x, y)dxdy = f(x, y)dy (23) ow. Zwrzyjmy obszr w prostok ie, gdzie x b, y d. Rozszerzmy funkj f n do funkji (te» nzwijmy j f) n, kªd f(x, y) = 0 w punkth prostok t nie nle» yh do obszru. Cªk po lewej stronie wzoru (23) jest równ f(x, y)dxdy. o tej ªki mo»n stosow tw. Fubiniego dl obszrów prostok tnyh; mmy wi : f(x, y)dxdy = b φ(x) d dx dyf(x, y). (24) Cªk wewn trzn rozªó»my terz, przy jkim± ustlonym x, n trzy ªki: d f(x, y)dy = φ(x) f(x, y)dy + ψ(x) φ(x) f(x, y)dy + d ψ(x) f(x, y)dy ierwsz i trzei z powy»szyh ªek s równe zeru, bo dl y w przedziªh y [, φ(x)] orz y [ψ(x), d] funkj podªkow jest równ zeru. Uwzgl dnij to we wzorze (24), otrzymujemy to o mieli±my pokz, zyli wzór (23). CBO rzykª. Uwg. Je»eli obszr regulrny dje si podzieli n sko«zon ilo± obszrów normlnyh 1, 2,..., n, to ªk w obszrze równ si sumie ªek po poszzególnyh obszrh i (n moy wzoru (21). 11

2.11 Odwzorowni R 2 R 2 i przeksztªeni osiowe odrozdziª ten w istotny sposób korzyst z deniji i twierdze«dotyz yh odwzorow«, wi dl Czytelnik wygodne b dzie przypomnienie sobie tre±i rozdziªu temu po±wi onego. Tu w wolnej hwili zostn przytozone twierdzeni, z któryh b dzie korzystne.??? Gdzie± tu: ef. obszru n wym. jko domkni i zbioru otwrtego; i brzeg skªd si ze sko«zonej sumy wykresów funkji n 1 zm.; mo»e to gdzie± przy ªkowniu po obszrh nieprostok tnyh??? ef. Odwzorownie Φ : R 2 (u, v) (x, y) R 2, okre±lone wzorem: { x = φ(u, v) y = v (25) gdzie φ jest ró»nizkowln w sposób i gªy, nzywmy przeksztªeniem osiowym. Uwg. Z bezpo±redniego rhunku wynik,»e pohodn (mierz Jobiego) odwzorowni Φ jest: [ ] φu φ Φ = v 0 1 jkobin, zyli wyznznik tej»e mierzy, jest Φ = φ u (26) l tyh, o znj denij permutji: ef. Ogólniej, przeksztªeniem osiowym obszru n wymirowego nzywmy dwzorownie Φ : R n (u 1, u 2,..., u n ) (x 1, x 2,..., x n ) R n, nzywmy odwzorownie okre±lone tk: x i = φ(u 1, u 2,..., u n ) dl pewnego i {1, 2,..., n} (tu φ(u 1,..., u n ) jest funkj n zmiennyh klsy C 1 ), dl pozostªyh zmiennyh x 1,..., x n (opróz x i ) odwzorownie jest okre±lone przez: x j = u π(j), π pewn permutj zbioru (n 1) elementowego, z± j = 1, 2,..., n (opróz jednej lizby k {1, 2,..., n}). A i, o nie znj def. permutji, nieh poznj, je±li nie, to nieh si zdowol poni»szym przykªdem. rzykª. Odwzorowni Φ, Γ : R 3 (u, v, w) (x, y, z) R 3, okre±lone równnimi x = φ(u, v, w) Φ : y = v z = w x = w zy też : Γ : y = ψ(u, v, w) z = u (gdzie φ, ψ s funkjmi klsy C 1 ) s przeksztªenimi osiowymi. Wyk»emy terz Stw. Odwzorownie F : R 2 (u, v) (x, y) R 2, okre±lone jko: { x = φ(u, v) y = ψ(u, v) dje si w otozeniu k»dego punktu (u 0, v 0 ), gdzie F (u 0, v 0 ) 0, przedstwi jko zªo»enie dwu przeksztªe«osiowyh. ow. ohodn (tzn. mierz Jobiego) odwzorowni F jest równ [ ] φu φ F = v ψ u ψ v 12

wi by wyznznik F byª ró»ny od zer, musi by φ u 0 lub φ v 0. Zªó»my,»e wi φ u (u 0, v 0 ) 0. Skoro tk, to (z tw. o funkji uwikªnej) mo»n w otozeniu punktu (u 0, v 0 ) jednoznznie rozwi z równnie x = φ(u, v) wzgl dem u, tzn. wyrzi u jko funkj od x, v: u = g(x, v). Funkj g(x, v) speªni: g(φ(u, v), v) = u (27) Nieh terz odwzorowni T : (u, v) (ξ, η) orz S : (ξ, η) (x, y) (ob wi R 2 R 2 ) b d okre±lone nst puj o: T : { ξ = φ(u, v) η = v S : { x = ξ y = ψ(g(ξ, η), η) Ψ(ξ, η) (28) gdzie w odwzorowniu S funkj g jest okre±lon przez (27). Ob odwzorowni S i T s odwzorownimi osiowymi. Zhodzi te»: bowiem z bezpo±redniego rhunku wynik,»e: F = S T (29) x = ξ = φ(u, v); y = ψ(g(ξ, η), η) = ψ(g(φ(u, v), v), v) = ψ(u, v) (w osttniej równo±i skorzystli±my z wªsno±i (27) funkji g). Znle¹li±my wi szukne przedstwienie odwzorowni F jko zªo»eni dwu przeksztªe«osiowyh. CBO Uwg. Anlogizn sytuj m miejse w wy»szyh wymirh: Odwzorownie R n R n w otozeniu punktu, gdzie jego mierz Jobiego jest nieosobliw, dje si przedstwi jko zªo»enie n przeksztªe«osiowyh. Nszkiujemy sposób post powni dl n = 3. Zpiszmy G : R 3 R 3 w skªdowyh jko: x = φ(u, v, w) y = ψ(u, v, w) (30) z = χ(u, v, w) Zkªdmy,»e w punkie (u 0, v 0, w 0 ) mierz Jobiego G(u 0, v 0, w 0 ) jest nieosobliw. Skoro tk, to przynjmniej jedn z pohodnyh z stkowyh skªdowej φ jest ró»n od zer; przyjmijmy,»e φ u 0. Wobe tego mo»emy równnie x = φ(u, v, w) rozwi z wzgl dem u; oznzmy: u = g(x, v, w). Odwzorownie G mo»n wtedy zpis w posti zªo»eni dwóh przeksztªe«: ξ = φ(u, v, w) η = v ζ = w orz x = ξ y = ψ(g(ξ, η, ζ), η, ζ) z = χ(g(ξ, η, ζ), η, ζ) ierwsze z nih jest przeksztªeniem osiowym, drugie dje si znowu rozªo»y n ilozyn dwóh przeksztªe«osiowyh. Rozkªd dowolnego odwzorowni n ilozyn przeksztªe«osiowyh jest w»ne, bo tego rozkªdu u»yw si w dowodzie wzoru n zmin zmiennyh w ªkh wielokrotnyh. 13

2.12 Tw. o zminie zmiennyh w ªkh podwójnyh Nieh F : R 2 (u, v) (x, y) R 2 b dzie okre±lone wzorem: { x = φ(u, v) y = ψ(u, v) (31) gdzie orz s obszrmi regulrnymi. Nieh w obszrze b dzie okre±lon funkj f(x, y), ogrnizon i i gª. Zhodzi: Tw. Je»eli: 1. Odwzorownie F jest klsy C 1 w obszrze zwierj ym obszr i jego brzeg Γ; 2. F odwzorowuje n bijektywnie; 3. jkobin F wewn trz obszru jest ró»ny od zer, to zhodzi wzór f(x, y)dxdy = f(φ(u, v), η(u, v)) F dudv (32) gdzie (by wszystko mie pod r k ) F = [ φu φ v ψ u ψ v ] (x, y) (u, v) Uwg. Wzór ten jest odpowiednikiem wzoru n zmin zmiennyh w ªkh z funkji jednej zmiennej, które te» tu dl wygody przypomnimy: Nieh funkj ϕ klsy C 1 b dzie bijekj odink [, d] n [, b]; nieh x = ϕ(t), orz ϕ() = i ϕ(d) = b. Wtedy dl dowolnej funkji f i gªej n [, b] zhodzi: b d dϕ f(x) dx = f(ϕ(t)) dt dt (33) Wzór ten zrz b dziemy wykorzystyw, bo dowód wzoru (32) sprowdzimy, z pomo przeksztªe«osiowyh, do dwukrotnego u»yi wzoru (33). ow. Z tw. udowodnionego w poprzednim podrozdzile, odwzorownie F okre±lone przez (31) dje si rozªo»y n ilozyn dwu odwzorow«osiowyh; zªó»my, i» relizujemy to z pomo wzorów (28) i (29). Nieh T : G, z± S : G RYS.. Z tw. o wyznzniku ilozynu mierzy, orz z wzoru (26) n jkobin przeksztªeni osiowego, mmy wyr»enie n jkobin odwzorowni F : F = φ u Ψ η. Nieh 1, 2,..., n b d prostok tmi zwrtymi w, przeinj ymi si o njwy»ej n brzegh. Zªó»my,»e ró»ni pól n i=1 i jest mniejsz ni» ɛ dowolnie zdn lizb. Nieh prostok t i b dzie okre±lony nierówno±imi x b, y d. Oznzmy: b d f(x, y)dxdy, I i = dx dy f(x, y); mmy: I n i=1 I i < Mɛ, gdzie M = sup f(x, y). (x,y) 14

Zuw»my,»e przeksztªenie S odwzorowuje n prostok t i pewien obszr G i, ogrnizony prostymi ξ =, ξ = b orz krzywymi η = γ(ξ), η = δ(ξ), RYS. gdzie γ(ξ) i δ(ξ) s rozwi znimi równni Ψ(ξ, η) = orz Ψ(ξ, η) = d wzgl dem η dl ξ b. rzy tym zhodzi: γ(ξ) < δ(ξ), gdy Ψ η > 0, orz γ(ξ) > δ(ξ), gdy Ψ η < 0. Zstosujmy terz do ªki I i zmin zmiennyh okre±lon przez odwzorownie S. oniew», b d osiowym, jest ono identyzno±iowe w zmiennej x, otrzymujemy, u»ywj wzoru (33) n zmin zmiennyh w ªe z funkji jednej zmiennej: I i = b dξ δ(ξ) γ(ξ) f(ξ, Ψ)Ψ η dη = f(ξ, Ψ)Ψ η dξdη. Gdy m miejse sytuj Ψ η < 0, to przed osttni ªk nle»y dopis minus. Obie sytuje mo»n obj jednym wzorem: G i G i I i = f(ξ, Ψ) Ψ η dξdη. Gdy terz we¹miemy i g wypeªnie«prostok tmi obszru tk,»e n i=1 i, to zhodzi: n i=1 G i G orz n i=1 I i I; otrzymujemy st d: I = f(ξ, Ψ) Ψ η dξdη. (34) G A terz! o otrzymnej powy»ej ªki zstosujmy pierwsze przeksztªenie, tzn. T, przeksztªj e obszr n obszr G. ost pujemy w sposób nlogizny jk wy»ej, bo T te» jest przeksztªeniem osiowym; otrzymujemy: I = f(φ(u, v), ψ(u, v)) Ψ η φ u dudv. A poniew» Ψ η φ u jest ilozynem jkobinów obu przeksztªe«s i T, to mmy Ψ η φ u = F. Otrzymli±my wi wzór (32). CBO Uwg. W trzeh (i wi ej) wymirh post pujemy nlogiznie: Korzystmy z rozkªdu odwzorowni n ilozyn trzeh (n) przeksztªe«osiowyh, i post pujemy jk wy»ej tylko nie dw, trzy (n) rzy. rzykª. rzykª. dx. e x2 2.13 15

3 Cªki zdni 3.1 Cªki po obszrh prostok tnyh 1. Oblizy ªk z funkji f po prostok ie : () f(x, y) = 1 (x+y) 2, = [3, 4] [1, 2]. Odp. ln 25 24. (b) f(x, y) = 5x 2 y 2y 3, = [2, 5] [1, 3]. Odp. 660. () f(x, y) = x2, = [0, 1] [0, 1]. Odp. π. 1+y 2 12 y (d) f(x, y) =, = [0, 1] [0, 1]. Wsk. W jkiej kolejno±i wygodniej (1+x 2 +y 2 ) 3/2 ªkow? Odp. ln 2+ 2 1+. 3 (e) f(x, y) = e x+y, = [0, 1] [0, 1]. Odp. (f) f(x, y) = x sin(x + y), = [0, π] [0, π ]. Odp. 2 (g) f(x, y) = x 2 y e xy, = [0, 1] [0, 2]. Odp. 2. () Znle¹ obj to± bryªy ogrnizonej z doªu pªszzyzn xy, z boków pªszzyznmi x = 0, x =, y = 0, y = b, od góry prboloid eliptyzn : z = x2 2p + y2 2q (wszystkie prmetry, b,, d s dodtnie). Odp. b 6 ( 2 + ) b2 p q. (b) To smo dl bryªy ogrnizonej pªszzyzn xy, powierzhni x 2 + z 2 = R 2 dl z > 0 i pªszzyznmi y = 0 i y = H. Wsk. Brdziej nturlne jest lizenie w ukª. wsp. biegunowyh, le 'nie uprzedzjmy wypdków' i lizmy we wsp. krtezj«skih. Odp. (k»dy powinien wiedzie,»e) 1 2 πr2 H. () To smo dl bryªy ogrnizonej pªszzyznmi z = 0, x =, x = b, y =, y = d (b > > 0, d > > 0) i prboloid hiperbolizn Odp. V = (d2 2 )(b 2 2 ) 4m. 3. * okz,»e z = xy m (m > 0). 1 (xy) xy dxdy = x x dx. 0 Uwg. Funkj podªkow wprwdzie nie jest okre±lon w punkie (0, 0), le mo»- n j tm dookre±li deniuj f(0, 0) = 1. 4. okz nierówno± Cuhy'ego Bunikowskiego Shwrz: l dowolnyh i - gªyh n [, b] funkji f, g zhodzi nierówno± ( b 2 b b f(x)g(x)dx) f 2 (x)dx g 2 (x)dx Wsk. Sªkow funkj (f(x)g(y) g(x)f(y)) 2 po kwdrie [, b] [, b]. 16

5. Udowodni nierówno± b f(x)dx b dx f(x) (b )2. dl f i gªej n [, b]. Wsk. Skorzyst z nierówno±i C-B-Shwrz, b d ej tre±i poprzedniego zdni. 3.2 Cªki po obszrh niekonieznie prostok tnyh 1. Zmieni kolejno± ªkowni w ªkh: () (b) 1 0 1 1 dy dx y dx f(x, y) y 1 x 2 0 dy f(x, y) () (d) (e) r 0 2 1 2 0 dx 2x dx 2rx x 2 x x dy f(x, y) dy f(x, y) 6 x dx dy f(x, y) 2x 2. Rozstwi grnie ªkowni, tzn. znle¹ grnie ªkowni, zpisuj ªk po k»dym z poni»szyh obszrów w posti ªki iterownej: () trójk t ogrnizony prostymi x = 0, y = 0, x + 2y = 4. (b) obszr dny nierówno±imi: x 2 + y 2 4, x 0, y 0. () obszr dny nierówno±imi: x + y 2, x y 2, x 0. (d) obszr dny nierówno±imi:y x 2, y 9 x 2. (e) obszr dny nierówno±i : (x 3) 2 + (y 2) 2 9. (f) obszr ogrnizony krzywymi: y = x 3 i y = x. (g) obszr dny nierówno±imi: y 2 8x, y 2x, y + 4x 24 0 (h) obszr ogrnizony krzywymi y 2 x 2 = 1 i x 2 +y 2 = 9 i zwierj y punkt (0, 0). (i) zworok t o wierzhoªkh: (1, 1), (2, 3), (4, 3), (6, 1). 3. Oblizy ªki: () T r 2 y2 dxdy, gdzie T jest trójk tem o bokh y = 0, y = rx, x = 1, x2 17

(b) () T (6 x y)dxdy, gdzie T jest trójk tem o wierzhoªkh (0, 0), (2, 2), (1, 3) x dxdy, gdzie jest obszrem zdeniownym przez nierówno±i: 2 x y 4, 1 y x 2. x 2 (d) I = dxdy, gdzie jest obszrem ogrnizonym przez krzywe: x = y2 2, y = x, xy = 1. Odp. I = 9. Wsk. Któr kolejno± ªkowni b dzie 4 wygodniejsz? (e) I = (x+5y)dxdy, gdzie jest trójk tem ogrnizonym przez proste: y = x, y = 3x, x = 1. Odp. I = 22. 3 (f) I = 2x 2 y 2 dxdy, gdzie jest trójk tem ogrnizonym przez proste: y = 0, x = 1, y = x. Odp. I = 1 3 3.3 Cªki potrójne 1. Oblizy ªki: () (b) C V ( π 4 + 1 2 1 (1 + x + y + z) 3 dxdydz, gdzie C jest sze±inem [0, 1]3 ; ). z dxdydz, gdzie V jest ostrosªupem ogrnizonym pªszzyzn x+y+z = 2 i pªszzyznmi wspóªrz dnyh; 18

4 Zmin zm. w ªe podwójnej 1. Oblizy ªk z funkji f(x, y) = y 2 R 2 x 2 po kole o promieniu R i ±rodku w poz tku ukªdu wspóªrz dnyh. Odp. 32 45 R5. 2. Oblizy obj to± bryªy ogrnizonej pªszzyznmi x = 0, y = 0, z = 0, wlem x 2 + y 2 = R 2 i prboloid hiperbolizn z = xy; hodzi o bryª le» w pierwszej wirte. Odp. 1 8 R4. 3. Oblizy obj to± bryªy Viviniego, tzn. bryªy wyi tej wlem x 2 + y 2 = Rx z kuli x 2 + y 2 + z 2 = R 2. Odp. 6π 8 9 R 3. 4. Oblizy obj to± bryªy powstªej przez przei ie pod k tem prostym dwu niesko«- zenie dªugih wlów o jednkowej ±redniy 5. Oblizy pol powierzhni gur ogrnizonyh krzywymi o podnyh ni»ej równnih. Wylizeni poprzedzi rozpoznniem kszteªtu krzywyh. Wsk. Wspóªrz dne biegunowe. () (x 2 + y 2 ) 2 = 2 2 (x 2 y 2 ) (lemniskt Bernoulliego). Odp. 2 2. (b) (x 2 + y 2 ) 2 = 2x 3. Odp. 5 8 π2. () (x 2 + y 2 ) 3 = 2 (x 4 + y 4 ). Odp. 3 4 π2. 6. Oblizy pol powierzhni gur ogrnizonyh krzywymi o podnyh ni»ej równnih. Wylizeni poprzedzi rozpoznniem kszteªtu krzywyh. Wsk. Uogólnione wspóªrz dne biegunowe: x = r os φ, y = br sin φ. olizy jkobin! () ( ) x 2 2 + y2 2 b = xy. Odp. 2 b 2. 2 2 2 2 (b) ( ) x 2 2 + y2 2 b = x 2 + y 2. Odp. 1 2 2 πb(2 + b 2 ). () ( ) x 2 2 + y2 2 b = x 2. Odp. π3 b. 2 2 2 2 7. Znle¹ pole ogrnizone p tl krzywej o poni»szyh równnih. Wsk. Wprowdzi wspóªrz dne r, θ okre±lone przez: x = r os 2 θ; y = r sin 2 θ. () (x + y) 4 = x 2 y. Odp. 2 210. (b) (x + y) 3 = xy. Odp. 2 60. () (x + y) 5 = x 2 y 2. Odp. 2 1260. 8. Znle¹ pole powierzhni steroidy x 2 3 + y 2 3 = 2 3. Wsk. Równnie prmetryzne steroidy jest: x = os 3 t, y = sin 3 t, t [0, 2π]. Wprowdzi wspóªrz dne r, t okre±lone przez: x = r os 3 t, y = r sin 3 t. Ile wynosi jkobin? Odp. 3 8 π2. 9. Oblizy ªki: C xydxdy, gdzie C jest (krzywoliniowym) 'zworok tem' ogrnizonym krzywymi: () y = x 3, y = bx 3, y 2 = px, y 2 = qx. Wsk. Wprowdzi wspóªrz dne ξ, η zdeniowne przez: y = ξx 3, y 2 = ηx. 19

(b) y 3 = x 2, y 3 = bx 2, y = αx, y = βx. Wsk. Wprowdzi wspóªrz dne ξ, η zdeniowne przez: y 3 = ξx 2, y 2 = ηx. 4.1 10. Oblizy ªk 11. Oblizy ªk C C zdxdydz, gdzie C jest górn poªow elipsoidy x2 2 + y2 b 2 + z2 2 1. zdxdydz, gdzie C jest bryª ogrnizon przez tworz sto»k z 2 = h2 (x 2 + y 2 ) i pªszzyzn z = h. R 2 12. Oblizy ªk (x + y + z) 2 dxdydz, gdzie C jest wspóln z ±i prboloidy C x 2 + y 2 2z i kuli x 2 + y 2 + z 2 3 2. 13. Znle¹ ±rodek i»ko±i bryªy ogrnizonej powierzhnimi prboloidy x 2 + y 2 = 2z orz kuli x 2 + y 2 + z 2 = 3 2. 14. Znle¹ potenjª wl w ±rodku jego podstwy. 15. Oblizy potenjª grwityjny sto»k o jednorodnej g sto±i msy: () w wierzhoªku (b) w ±rodku podstwy. 16. Oblizy nt»enie pol grwityjnego sto»k o jednorodnej g sto±i msy: () w wierzhoªku (b) w ±rodku podstwy. Wsk. Mo»n wykorzyst poprzednie zdnie. 20