Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
|
|
- Eleonora Stankiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 Modele odpowiedzi do rkusz Prónej Mtury z OPERONEM Mtemtyk Poziom rozszerzony Listopd 009 W kluczu sà prezentowne przyk dowe prwid owe odpowiedzi. Nle y równie uznç odpowiedzi uczni, jeêli sà inczej sformu owne, le ich sens jest synonimiczny woec schemtu, orz inne odpowiedzi, nieprzewidzine w kluczu, le poprwne. zdni Etpy rozwiàzywni zdƒ Licz. Dokonnie niewielkiego post pu. Sprowdzenie uk du równƒ do równni z jednà niewidomà. - y x * 6- y + y - y + y- Oliczenie zmiennej y. y H 0 i - y+ y- lu y < 0 i y+ y- y y - Rozwiàznie zdni do koƒc w rozwiàzniu wyst pujà niewielkie usterki. Oliczenie zmiennej x. x - 0 lu x - - x 0 lu x lu x - x 0, y lu x, y - lu x -, y -. Dokonnie niewielkiego post pu. Wykorzystnie zle noêci mi dzy funkcjmi trygonometrycznymi tego smego kàt. sin x _ + ic cos x - tg xm sin x - _ ic cos sin x x m - Dokonnie istotnego post pu. Sprowdzenie równni do równni z jednà niewidomà. - cos sin x x - cos x cos x - cos x - Pokonne zsdniczych trudnoêci zdni. Uwzgl dnienie z o eƒ i oliczenie sin x. sin x sin x Oliczenie sin x+ cos x. sin x cos x
2 Mtemtyk. Poziom rozszerzony Prón Mtur z OPERONEM i Gzetà Wyorczà zdni Etpy rozwiàzywni zdƒ Licz OkreÊlenie znku liczy sin -. 06, > 0 Oliczenie d ugoêci promieni okr gu i wspó rz dnych punktu P. r _ - i + _ - 0i P _-0, i Zpisnie równni okr gu. ( x+ ) + y 4. Dokonnie niewielkiego post pu. Oliczenie log 00 i sprowdzenie logrytmów do tej smej podstwy. log x+ log H x log x log x log x + H log x Dokonnie odpowiedniego podstwieni i sprowdzenie nierównoêci do postci nierównoêci kwdrtowej. k log x k + H k k + H k, gdy k > 0 Wykorzystnie wzoru skróconego mno eni do przekszt ceni nierównoêci. _ k - i H 0 Zuw enie, e dl k dej liczy k spe nijàcej wrunki zdni licz _ k - nieujemn, ztem _ log x 0 - i H. NierównoÊç log x+ log jest ztem prwdziw. x H x+ cos x.. Dokonnie niewielkiego post pu. Zuw enie, e P (, x 0) i zpisnie odpowiednich równoêci. PD k $ PB PC k $ PA PC 74-x, 0Ai PD 76-x, A PA 7-x, 0Ai PB 7-x, A Dokonnie istotnego post pu. Zpisnie równoêci pozwljàcych n wyznczenie k orz x. k$ PA 7k( -x), 0A k$ PB 7k( -x), ka k( - x) 4-x i k( - x) 6-x Rozwiàznie uk du równƒ. k, x - i jest zwsze
3 Mtemtyk. Poziom rozszerzony Prón Mtur z OPERONEM i Gzetà Wyorczà zdni Etpy rozwiàzywni zdƒ Licz 5. Dokonnie istotnego post pu. Zpisnie d ugoêci spirli. L rr+ r... r r r Zuw enie, e wyrzy sumy tworzà ciàg geometryczny o ilorzie i pierwszym wyrzie r r. Oliczenie sumy ciàgu geometrycznego. 0 - c m - l rr$ r r r $ 04 0 r Dokonnie niewielkiego post pu. OkreÊlenie dzielników wyrzu wolnego: -,, -,, - 4, 4. Sprwdzenie, e jednym z pierwistków wielominu jest licz. Dokonnie istotnego post pu. Wykonnie dzieleni wielominu przez dwumin x iloczynu. Wx () ( x- )( x+ x-x-4) - i zpisnie wielominu w postci Roz o enie wyr eni x + x -x-4 n czynniki. x + x -x- 4 x ( x+ ) - ( x+ ) ( x+ )( x- )( x+ ) OkreÊlenie pierwistków wielominu:, -,, -. Oliczenie sumy odwrotnoêci pierwistków wielominu licz wymiern 7. Dokonnie niewielkiego post pu. Zpisnie odpowiedniej równoêci, wynikjàcej z fktu, e punkt A (, x y) odleg oêci od prostej i punktu P. y ( 0 x) y c - m 0+ le y w tej smej Podniesienie ou stron równni do kwdrtu i wykonnie redukcji wyrzów podonych. x - y 0 OkreÊlenie wzoru odpowiedniej krzywej. y x Zpisnie wzoru funkcji. fx () x
4 Mtemtyk. Poziom rozszerzony Prón Mtur z OPERONEM i Gzetà Wyorczà zdni Etpy rozwiàzywni zdƒ Licz 8. Dokonnie niewielkiego post pu. C A c Wykorzystnie wzoru cosinusów. s d ugoêç Êrodkowej s c c + - $ $ c $ cos m s 4 + c -ccos B Oliczenie cos. c + -ccos cos + c - c Dokonnie odpowiedniego podstwieni i oliczenie s. J N s c c c $ + - K c O L P s c s 05, c Dokonnie niewielkiego post pu. Zpisnie sumy cyfr liczy S Dokonnie istotnego post pu. Pogrupownie sk dników w odpowiedni sposó. S ( ) + 7( ) + 5A + 8_ i + 0B _ i + 45B + Oliczenie sumy cyfr z wykorzystniem wzoru n sum ciàgu rytmetycznego. S 70 + ( 0 + 5) + ( 0 + 0) ( ) A+ 0 $ 0 + ( ) $ 9 46 Oliczenie sumy cyfr liczy 46 i stwierdzenie, e jest to licz podzieln przez, le niepodzieln przez 9. JeÊli licz y y kwdrtem pewnej liczy, musi y dzieliç si przez 9. Licz dzieli si przez, nie dzieli si przez 9, nie jest wi c kwdrtem liczy nturlnej. 4
5 Mtemtyk. Poziom rozszerzony Prón Mtur z OPERONEM i Gzetà Wyorczà zdni Etpy rozwiàzywni zdƒ Licz 0. Dokonnie niewielkiego post pu. OkreÊlenie wrunków istnieni dwóch ró nych pierwistków dodtnich. Z ] Δ > 0 [ x + x > 0 ] x $ x > 0 \ Dokonnie istotnego post pu. OkreÊlenie, kiedy wyró nik jest wi kszy od zer Δ k - 9 ( k- )( k+ ) Δ > 0 dl k! (-,-), (, ) OkreÊlenie, kiedy sum i iloczyn pierwistków sà wi ksze od zer wykorzystnie wzorów Vi te. x + x > 0 + -( k+ )> 0 + k< - x $ x H 0 + 0, 5( k+ 5)> 0 + k> -5 Stàd k! (-5,-) OkreÊlenie iloczynu odpowiednich ziorów. k! [(-, -),(, )] + (-5, -) k! _-5, -i k! (-5,-). Dokonnie niewielkiego post pu. D C K E L A F B Uwzgl dnienie w snoêci czworokàt opisnego n okr gu. AD + CB AB + CD Dokonnie istotnego post pu. OkreÊlenie d ugoêci odcink LK. LK AB + DC AD + CB 8 Wykorzystnie zle noêci mi dzy polmi odpowiednich czworokàtów i okmi czworokàt. P P 5 05, `8 + DC j $ DE 05, `8+ AB j $ FE 5 DE EF z twierdzeni Tles AB + DC 6 & DC 6 - AB 5
6 Mtemtyk. Poziom rozszerzony Prón Mtur z OPERONEM i Gzetà Wyorczà zdni Rozwiàznie cz Êci zdni. Oliczenie d ugoêci jednej z podstw. 05, ( 8+ DC ) $ DE, ( AB ) FE 5 $ $ 6 AB DC AB ( AB ) AB Oliczenie d ugoêci drugiej podstwy. CD 6-4 AB, CD 4 Etpy rozwiàzywni zdƒ Licz 6
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do rkusz Prónej Mtury z OPERONEM Mtemtyk Poziom rozszerzony Listopd 009 W kluczu sà prezentowne przyk dowe prwid owe odpowiedzi. Nle y równie uznç odpowiedzi uczni, jeêli sà inczej sformu
Bardziej szczegółowoModele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Pobrno ze strony www.sqlmedi.pl Modele odpowiedzi do rkusz Próbnej Mtury z OPERONEM Mtemtyk Poziom rozszerzony Listopd 9 W kluczu sà prezentowne przyk dowe prwid owe odpowiedzi. Nle y równie uznç odpowiedzi
Bardziej szczegółowoModele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom podstawowy
Modele odpowiedzi do rkusz Próbnej Mtury z OPERONEM Zdni zmkni te Mtemtyk Poziom podstwowy Listopd 009 Numer zdni Poprwn odpowiedê Wskzówki do rozwiàzni Liczb punktów. D. - 6-6 -6-6 + 6 7 $ 9 = ( ) $ (
Bardziej szczegółowoModele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom podstawowy
Modele odpowiedzi do rkusz Próbnej Mtury z OPERONEM Zdni zmkni te Mtemtyk Poziom podstwowy Listopd 009 Numer zdni Poprwn odpowiedê Wskzówki do rozwiàzni Liczb punktów. D. - 6-6 -6-6 + 6 7 $ 9 = ( ) $ (
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania =
Vdemecum GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* Mtemtyk - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Prón Mtur z OPERONEM Operon 00% MATURA 07 VA D EMECUM
Bardziej szczegółowoMatematyka. Poziom podstawowy. 1. Zauwa enie, e x > 2 oraz ustalenie zale noêci mi dzy d ugoêciami boków.
Mtemtyk Poziom podstwowy Numer Opis oceninej Wynik Liczb zdni czynnoêci etpu punktów. Zuw enie, e x > orz ustlenie zle noêci mi dzy d ugoêcimi boków. x G x-< x- lub x- G x< x-. Zpisnie równni wynikjàcego
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur z OPERONEM Mtemtyk Poziom podstwowy Mrzec 7 Zdni zmknięte Z kżdą poprwną odpowiedź zdjący otrzymuje punkt. Poprwn odpowiedź Wskzówki do rozwiązni. B 5 5 6 5 = =
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania
Vdemecum i Testy GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi Mtemtyk KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur z OPERONEM Mtemtyk Poziom rozszerzony
Bardziej szczegółowoWzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b).
Wzory uproszczonego mno zeni: ( + b) = + b + b, ( b) = b + b, b = ( b) ( + b). Dzi ni n pot ¾egch: Dl ; y R orz ; b > 0 (dl pewnych wyk dników ; y z o zeni o ; b mog¾ być os bine w zle zności od sytucji)
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania
Vdemecum i Testy GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi Mtemtyk KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur z OPERONEM Mtemtyk Poziom rozszerzony
Bardziej szczegółowoModele odpowiedzi do arkusza próbnej matury z OPERONEM. Fizyka Poziom rozszerzony
Modele odowiedzi do rkuz rónej ury z OPEONEM Fizyk Pozio rozzerzony Grudzieƒ 007 zdni Prwid ow odowiedê Licz... z zinie wzoru n n enie ol grwicyjnego k GM z zinie wrunku k v GM c v, gdzie M lney, roieƒ
Bardziej szczegółowozestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy
Bardziej szczegółowoMatematyka. Poziom rozszerzony. Z a m. - m. i 1. _ i_. Matematyka. Poziom rozszerzony. Opis ocenianej czynnoêci. Liczba punktów.
Matematyka Poziom rozszerzony. Wyznaczenie liczby wszystkich wyników doêwiadczenia polegajàcego na jednoczesnym losowaniu dwóch spoêród + n kul. Wyznaczenie liczby wyników sprzyjajàcych zdarzeniu A wylosowane
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 11 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
Bardziej szczegółowoMatematyka. Poziom rozszerzony Próbna Matura z OPERONEM. Modelowe etapy rozwiązywania zadania
KRYTERIA OCENIANIA ODPOWIEDZI Mtemtyk Poziom rozszerzony Mrzec 09 Zdni zmknięte Z kżdą poprwną odpowiedź zdjący otrzymuje punkt. Poprwn odpowiedź Wskzówki do rozwiązni. C Obliczenie wrtości funkcji: f(
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 170 minut 1. Sprawdê, czy arkusz zawiera 15 stron. 2. W zadaniach
Bardziej szczegółowoWymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
Bardziej szczegółowoModele odpowiedzi do arkusza próbnej matury z OPERONEM. Fizyka Poziom rozszerzony
Modele odowiedzi do rkuz róbnej mtury z OPEONEM Fizyk Poziom rozzerzony Grudzieƒ 007 zdni Prwid ow odowiedê Liczb unktów... z zinie wzoru n nt enie ol grwitcyjnego kt GM z zinie wrunku kt m v GM m c, gdzie
Bardziej szczegółowoMATURA 2014 z WSiP. Zasady oceniania zadań
MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)
Bardziej szczegółowoKlasa druga: II TK1, II TK2 Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Funkcja kwadratowa
Kls drug: II TK1, II TK2 Poziom podstwowy 3 godz. 30 tyg.= 0 nr progrmu DKOS-5002-7/07 I. Funkcj kwdrtow Moduł - dził - L.p. temt Wykres 1 f()= 2 2 Zkres treści Pojęcie Rysownie wykresów Związek współczynnik
Bardziej szczegółowo2. Wyra enia algebraiczne
Dzi ni n wielominch ) Porównywnie wielominów: Dw wielominy sà równe wtedy i tylko wtedy, gdy sà tego smego stopni i mjà równe odpowiednie wspó czynniki przy odpowiednich pot gch zmiennej. Porównujàc dw
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 6 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
Bardziej szczegółowoSumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 10 minut 1. Sprawdê, czy arkusz zawiera 10 stron.. W zadaniach od 1. do 5. sà podane
Bardziej szczegółowoTemat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 13 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 1 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 1. sà podane
Bardziej szczegółowoFUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1
FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM ROZSZERZONY Czas pracy 180 minut 1. Sprawdê, czy arkusz egzaminacyjny zawiera 13
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 8 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do. sà podane
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
Bardziej szczegółowoKurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 8 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:
Bardziej szczegółowoKlucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini sierpień 0 Poziom Podstwowy Schemt ocenini sierpień Poziom podstwowy Klucz punktowni zdń zmkniętych Nr zdni 4 5 6 7 8 9 0 4 5 6 7 8 9 0 4 5 Odpowiedź
Bardziej szczegółowoKlucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0
Bardziej szczegółowoSumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
Bardziej szczegółowoPRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,
Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 7 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
Bardziej szczegółowoMATeMAtyka zakres podstawowy
MATeMAtyk zkres podstwowy Proponowny rozkłd mteriłu kl. I (100 h) Temt lekcji Liczb 1. Liczby rzeczywiste 15 1. Liczby nturlne 1 2. Liczby cłkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3
Bardziej szczegółowoOznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
Bardziej szczegółowoARKUSZ EGZAMINACYJNY Z MATEMATYKI
dysleksja Miejsce na naklejk z kodem szko y ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw 1 POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz zawiera 12 stron (zadania
Bardziej szczegółowoRozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Bardziej szczegółowoWymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
Bardziej szczegółowoKlucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 15 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 10 minut 1. Sprawdê, czy arkusz zawiera 10 stron.. W zadaniach od 1. do 5. sà podane
Bardziej szczegółowoZadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3
Zadania zamknięte ZADANIE 1 (1 PKT) Równanie x2 3x+2 = 0 ma: x 2 4 A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki ZADANIE 2 (1 PKT) Liczba b jest 3 razy większa od liczby a. Wtedy
Bardziej szczegółowoMateriały diagnostyczne z matematyki poziom podstawowy
Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymgni edukcyjne z mtemtyki LICEUM OGÓLNOKSZTAŁCĄCE Kls II Poniżej przedstwiony zostł podził wymgń edukcyjnych n poszczególne oceny. Wiedz i umiejętności konieczne do opnowni (K) to zgdnieni, które są
Bardziej szczegółowoSzczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy
Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY GRUDZIE ROK 2007 Instrukcja dla zdajàcego Czas pracy 180 minut 1. Sprawdê, czy arkusz egzaminacyjny
Bardziej szczegółowo1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie
Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące
Bardziej szczegółowoWYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012
mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU
Bardziej szczegółowoEGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 4 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 1. sà podane
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Próna Matura z OPERONEM Matematyka Poziom rozszerzony Listopad W ni niej szym sche ma cie oce nia nia za dań otwar tych są pre zen to wa ne przy kła do we po praw ne od po
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 0 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:
Bardziej szczegółowoWymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 14 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 3. sà
Bardziej szczegółowof(x) = ax 2, gdzie a 0 sności funkcji: f ( x) wyróżnik trójmianu kw.
FUNKCJA KWADRATOWA Moduł - dził - Lp Lp temt z.p. z.r. Zkres treści Wykres f() = 1 1 wykres i włsności f() =, gdzie 0 Przesunięcie wykresu f() = wzdłuż osi OX i OY /o wektor/ Postć knoniczn i postć ogóln
Bardziej szczegółowoZadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Bardziej szczegółowoLISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 17 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 5. sà
Bardziej szczegółowo2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Bardziej szczegółowoWymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy
Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu
Bardziej szczegółowoKONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania
KONKURS MATEMATYCZNY dl uczniów gimnzjów orz oddziłów gimnzjlnych województw mzowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schemty punktowni Z kżde poprwne i pełne rozwiąznie, inne niż przewidzine
Bardziej szczegółowoWymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
Bardziej szczegółowoMatematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA II
1.Sumy lgebriczne Mtemtyk wykz umiejętności wymgnych n poszczególne oceny KLASA II N ocenę dop: 1. Rozpoznwnie jednominów i sum lgebricznych 2. Oblicznie wrtości liczbowych wyrżeń lgebricznych 3. Redukownie
Bardziej szczegółowoWymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą
Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi
Bardziej szczegółowoPRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
Autor: Anna Jatczak TEST PRZED PRÓBNÑ MATURÑ 2007 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY ARKUSZ II Instrukcja dla zdajàcego Czas pracy: 150 minut 1. Prosz sprawdziç,
Bardziej szczegółowoWYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM
WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę
Bardziej szczegółowoMATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY
Bardziej szczegółowoKONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
Bardziej szczegółowoDorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY Czas pracy 180 minut LISTOPAD ROK 008 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny
Bardziej szczegółowoZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
Bardziej szczegółowoMATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
Bardziej szczegółowoWymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy
Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2017/2018 MATEMATYKA POZIOM ROZSZERZONY
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 07/08 MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Now Er Sp z oo Uwg: Akceptowne są wszystkie odpowiedzi merytorycznie poprwne i spełnijące
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć
Bardziej szczegółowoPrzedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy
Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez
Bardziej szczegółowoARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY Czas pracy 120 minut LISTOPAD ROK 2008 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 1. SUMY ALGEBRAICZNE rozpoznje jednominy i sumy lgebriczne
Bardziej szczegółowoPEWNIK DEDEKINDA i jego najprostsze konsekwencje
PEWNIK DEDEKINDA i jego njprostsze konsekwencje W rozdzile ósmym stwierdziliśmy, że z podnych tm pewników nie wynik istnienie pierwistków z liczb rzeczywistych. Uzupe lnimy terz liste pewników jeszcze
Bardziej szczegółowoPropozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
Bardziej szczegółowoZadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 05 skle.oeon.l/mtu
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 0 Zdni zmknięte
Bardziej szczegółowoWykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Bardziej szczegółowozestaw DO ĆWICZEŃ z matematyki
Mtemtyk Poziom podstwowy zestaw DO ĆWICZEŃ z mtemtyki poziom podstwowy rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1 Uzsdnij, że pole romu o przekątnych p i q wyrż się wzorem P = 1 pq Rozwiąznie: Przyjmij
Bardziej szczegółowoEGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 04/05 FORMUŁA DO 04 ( STARA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R CZERWIEC 05 Egzmin mturlny z mtemtyki str formuł Rozwiązni
Bardziej szczegółowoPlan wynikowy z matematyki
ln wynikowy z mtemtyki Dl kls 1-3 liceum ogólnoksztłcącego i 1-4 technikum sztłcenie ogólne w zkresie podstwowym i rozszerzonym Oznczeni: wymgni konieczne, wymgni podstwowe, R wymgni rozszerzjące, D wymgni
Bardziej szczegółowoModele odpowiedzi do arkusza próbnej matury z OPERONEM. Fizyka Poziom rozszerzony
Modele odowiedzi do arkuza róbnej matury z OPEONEM Fizyka Poziom rozzerzony Grudzieƒ 007... za zaianie wzoru na nat enie ola grawitacyjnego kt GM za zaianie warunku kt m v GM m c, gdzie M maa lanety, romieƒ
Bardziej szczegółowo