Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik
.. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania całkowitoliczbowego Mieszane zadanie programowania całkowitoliczbowego Relaksacja zadania Metoda zaokrągleń Metoda podziału i ograniczeń Metoda cięć Zmienne binarne T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 2
2.2. Metoda podziału i ograniczeń 2.2.. Zadanie czyste (/7) Przykład 2. Zadanie wyjściowe f(x, x 2 ) = x + x 2 max x + 2x 2 32 8x + 3x 2 224 x, x 2 x, x 2 - całkowite Zadanie zrelaksowane f(x, x 2 ) = x + x 2 max x + 2x 2 32 8x + 3x 2 224 x, x 2 O x 2 A ( 2 / 3, 2 / 3 ) x T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 3
2.2. Metoda podziału i ograniczeń 2.2.. Zadanie czyste (2/7) Podział względem x Zadanie 2 x + x 2 max x +2x 2 32 8x +3x 2 224 x x, x 2 Zadanie f(x, x 2 ) = x + x 2 max x + 2x 2 32 8x + 3x 2 224 x, x 2 2 / x 3 Zadanie 3 x + x 2 max x +2x 2 32 8x +3x 2 224 x x, x 2 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 4
2.2. Metoda podziału i ograniczeń 2.2.. Zadanie czyste (3/7) Zbiory rozwiązań dopuszczalnych zadań 2 i 3 Zadanie 2 O x 2 B C Zadanie 3 x T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 5
2.2. Metoda podziału i ograniczeń 2.2.. Zadanie czyste (4/7) Rozwiązania optymalne zadań 2 i 3 O x 2 x 2 Zadanie 2 B (, ) x O Zadanie 3 C (, 8 2 / 3 ) x T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 6
2.2. Metoda podziału i ograniczeń 2.2.. Zadanie czyste (5/7) Podział względem x 2 Zadanie f(x, x 2 ) = x + x 2 max x + 2x 2 32 8x + 3x 2 224 x, x 2 x 2 2 / 3 Zadanie 3 x + x 2 max x + 2x 2 32 8x + 3x 2 224 x 2 x, x 2 Zadanie 2 x + x 2 max x + 2x 2 32 8x + 3x 2 224 x 2 x, x 2 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 7
2.2. Metoda podziału i ograniczeń 2.2.. Zadanie czyste (6/7) Zbiory rozwiązano dopuszczalnych zadań 2 i 3 O x 2 Zadanie 3 E D C Zadanie 2 x T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 8
2.2. Metoda podziału i ograniczeń 2.2.. Zadanie czyste (7/7) Rozwiązania optymalne zadań 2 i 3 O x 2 Zadanie 2 D ( 7 / 9, ) x O x 2 Zadanie 3 E (, ) x T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 9
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (/3) Geometryczna interpretacja zbioru rozwiązań dopuszczalnych f(x, x 2 ) = x + x 2 max x + 2x 2 32 8x + 3x 2 224 x, x 2 x - całkowite O x 2 x T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (2/3) Geometryczna interpretacja zbioru rozwiązań dopuszczalnych (c.d.) f(x, x 2 ) = x + x 2 max x + 2x 2 32 8x + 3x 2 224 x, x 2 x 2 - całkowite O x 2 x T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (3/3) Przykład 2.2 Zadanie wyjściowe 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 5 x 3 5 x 2, x 3 - całkowite Zadanie zrelaksowane 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 5 x 3 5 Rozwiązanie x = 2,667, x 2 = 2,667, x 3 = f opt = 6 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 2
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (4/3) Iteracja Lista rozpatrywanych zadań: Zadania usuwane z listy: Lista zadań po modyfikacji: Zadania wybrane do podziału: Rozwiązanie zadania : Podział względem zmiennej: - x = 2,667, x 2 = 2,667, x 3 = x 2 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 3
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (5/3) Iteracja (c.d.) Zadanie 2 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 2 x 3 5 Rozwiązanie x = 2, x 2 = 2, x 3 =,286 f opt = 5,74 Zadanie 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 5 x 3 5 2 2,667 3 5 Zadanie 3 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x 3 x 2 5 x 3 5 Zadanie sprzeczne x 2 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 4
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (6/3) Iteracja 2 Lista rozpatrywanych zadań: Zadania usuwane z listy: Lista zadań po modyfikacji: Zadania wybrane do podziału: Rozwiązanie zadania 2: Podział względem zmiennej:, 2, 3 (podzielone), 3 (sprzeczne) 2 2 x = 2, x 2 = 2, x 3 =,286 x 3 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 5
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (7/3) Iteracja 2 (c.d.) Zadanie 2 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 2 x 3 5 Zadanie 4 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 2 x 3 Rozwiązanie x = 2,33, x 2 = 2, x 3 = f opt = 3,286 Zadanie 5 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 2 x 3 5 Rozwiązanie x =,33, x 2 =,33, x 3 = f opt = 5 5 x 3 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 6
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (8/3) Iteracja 3 Lista rozpatrywanych zadań: Zadania usuwane z listy: Lista zadań po modyfikacji: Zadania wybrane do podziału: Rozwiązanie zadania 5: Podział względem zmiennej: 2, 4, 5 2 (podzielone) 4, 5 5 x =,33, x 2 =,33, x 3 = x 2 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 7
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (9/3) Iteracja 3 (c.d.) Zadanie 5 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 2 x 3 5 Zadanie 6 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 x 3 5 Rozwiązanie x =, x 2 =, x 3 =,43 f opt = 4,857,333 2 Zadanie 7 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 2 x 3 5 Zadanie sprzeczne x 2 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 8
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (/3) Iteracja 4 Lista rozpatrywanych zadań: Zadania usuwane z listy: Lista zadań po modyfikacji: Zadania wybrane do podziału: Rozwiązanie zadania 6: Podział względem zmiennej: 4, 5, 6, 7 5 (podzielone), 7 (sprzeczne) 4, 6 6 x =, x 2 =, x 3 =,43 x 3 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 9
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (/3) Iteracja 4 (c.d.) Zadanie 6 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 x 3 5 Zadanie 8 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 x 3 Rozwiązanie x =,67, x 2 =, x 3 = f opt = 3,5,43 2 Zadanie 9 3x + 3x 2 + 3x 3 max 3x + 6x 2 + 7x 3 8 6x 3x 2 + 7x 3 8 x x 2 2 2 x 3 5 Zadanie sprzeczne 5 x 3 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 2
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (2/3) Iteracja 5 Lista rozpatrywanych zadań: Zadania usuwane z listy: Lista zadań po modyfikacji: 8 Rozwiązanie zadania 8: 4, 6, 8, 9 6 (podzielone), 9 (sprzeczne) 4 (f opt (4) = 3 < f opt (8) = 3,5) x =,67, x 2 =, x 3 = Spełnione warunki całkowitoliczbowości. Rozwiązanie zadania 8 jest rozwiązaniem optymalnym zadania wyjściowego. T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 2
2.2. Metoda podziału i ograniczeń 2.2.2. Zadanie mieszane (3/3) Zestawienie rozwiązywanych zadań Numer zadania Optymalna wartość funkcji celu Nowogenerowane zadania Rozwiązanie optymalne Zakresy zmienności x 2 x 3 x x 2 x 3 [, 5] [, 5] 2,667 2,667 6 2, 3 2 [, 2] [, 5] 2 2,286 5,74 4, 5 3 [3, 5] [, 5] Zadanie sprzeczne 4 [, 2] [, ] 2,333 2 3 5 [, 2] [, 5],333,333 5 6,7 6 [, ] [, 5],43 4,857 8,9 7 [, 2] [, 5] Zadanie sprzeczne 8 [, ] [, ],67 3,5 9 [, 2] [2, 5] Zadanie sprzeczne T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 22
2.2. Metoda podziału i ograniczeń 2.2.3. Reguły postępowania w metodzie podziału i ograniczeń (/) Algorytm W każdej iteracji wykonujemy następujące operacja:. 2. 3. 4. 5. Porządkowanie listy zadań zrelaksowanych. Sprawdzenie kryterium optymalności i w przypadku jego spełnienia zakończenie obliczeń. Wybór zadania do podziału. Wybór zmiennej, względem której dokonamy podziału. Podział zadania, rozwiązanie nowo utworzonych zadań i umieszczenie ich na liście zadań zrelaksowanych. T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 23
2.2. Metoda podziału i ograniczeń 2.2.4. Zaokrąglanie rozwiązań(/2) Przykład 2.3 Zadanie wyjściowe f(x, x 2 ) = 2x + x 2 max 7x + 4x 2 3 x, x 2 x, x 2 - całkowite Zadanie zrelaksowane f(x, x 2 ) = 2x + x 2 max 7x + 4x 2 3 x, x 2 B x 2 O A ( 3 / 7, ) x T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 24
2.2. Metoda podziału i ograniczeń 2.2.4. Zaokrąglanie rozwiązań(2/2) Porównanie wartości funkcji kryterium x 2 (, 3) (, 2) (, ) (, ) (, ) (, ) f(, ) =, f(, ) =, f(, 2) = 22, f(, 3) = 33, f(, ) = 2, f(, ) = 32, x T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 25
2.3. Metoda cięć 2.3.. Konstrukcja równania cięcia (/6) Przykład 2.4 x + x 2 max x + 2x 2 32 8x + 3x 2 224 x, x 2 x, x 2 - całkowite x + x 2 max x + 2x 2 + x 3 = 32 8x + 3x 2 + x 4 = 224 x, x 2, x 3, x 4 cx max Baza x x 2 x 3 x 4 b x 2,5455,33,6667 x,99,66,6667 c j z j,4545,33 2,3333 x,99x 3 +,66x 4 =,6667 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 26
2.3. Metoda cięć 2.3.. Konstrukcja równania cięcia (2/6) Wyprowadzenie wzoru Równanie cięcia odpowiadające zmiennej bazowej x : x,99x 3 +,66x 4 =,6667 Ponieważ dla współczynników przy zmiennych niebazowych zachodzą związki: tak więc: [,99],99 [,66],66 [,99]x 3,99x 3 [,66]x 4,66x 4 Dodając stronami te nierówności, otrzymujemy: [,99]x 3 + [,66]x 4,99x 3 +,66x 4 Do obu stron dodajemy zmienną x : (2.) x + [,99]x 3 + [,66]x 4 x,99x 3 +,66x 4 =,6667 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 27
2.3. Metoda cięć 2.3.. Konstrukcja równania cięcia (3/6) Wyprowadzenie wzoru (cd.) stąd x + [,99]x 3 + [,66]x 4,6667 Lewa strona może przyjąć jedynie wartość całkowitą, stąd: x + [,99]x 3 + [,66]x 4 [,6667] Wprowadzamy zmienna bilansującą x 5: x + [,99]x 3 + [,66]x 4 + x 5 = [,6667] (2.2) Odejmujemy stronami (2.) od (2.2): ([,99] +,99)x 3 + ([,66],66)x 4 + x 5 = [,6667],6667 po uporządkowaniu:,99x 3,66x 4 + x 5 =,6667 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 28
2.3. Metoda cięć 2.3.. Konstrukcja równania cięcia (4/6) Rozszerzenie tablicy simpleksowej cx max Baza x x 2 x 3 x 4 x 5 b x 2 x,5455,99,33,66,6667,6667 x 5,99,66,6667 c j z j,4545,33 2,3333 Dualna metoda simpleks x 2 x x 4 cx max Baza x x 2 x 3 x 4 5 c j z j x 5,5 6,5 b 2 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 29
2.3. Metoda cięć 2.3.. Konstrukcja równania cięcia (5/6) Interpretacja geometryczna,99x 3,66x 4 + x 5 =,6667 2 x 33 2 x x 33 3 x4 + x5 = 2 3 3 4 x 3 = 32 x 2x 2 x 4 = 224 8x 3x 2 2 (32 x 2x2) (224 8x 3x2) 33 x + x 2 2 2 3 2 3 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 3
2.3. Metoda cięć 2.3.. Konstrukcja równania cięcia (6/6) Interpretacja geometryczna (c.d.),67 O x 2 C 2 (,) B C (,) C 3 (,),67 x C 2 C C 3 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 3
2.3. Metoda cięć 2.3.2. Reguły postępowania w metodzie cięć (/) Algorytm. 2. 3. 4. 5. Rozwiązanie zadania zrelaksowanego. Wybór równania wykorzystywanego do konstrukcji równania cięcia (wiersz i). Konstrukcja równania cięcia: ( ij ] aij ) [ j n+ zmienne niebazowe a x + x = [ b ] b Przejście do nowej bazy dopuszczalnej. Zakończenie postępowania. i i T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 32
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.. Zagadnienie produkcyjno-modernizacyjne (/5) Przykład 2.5 Czas pracy Maszyna Maszyna 2 Zysk jednostkowy Maszyna 2 2 Wariant 2 2 Produkty 2 3 2 2 3 2 6 3 Zwiększenie czasu pracy 7 6 3 Łączny koszt modernizacji nie może przekroczyć 25. Maksymalny czas pracy 3 2 Koszt Należy dokonać takiej modernizacji maszyn, by zmaksymalizować zysk przy zwiększonych możliwościach produkcyjnych. T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 33 45 7 28 8
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.. Zagadnienie produkcyjno-modernizacyjne (2/5) Model matematyczny Cel Celem jest dokonanie takiej modernizacji maszyn, by zmaksymalizować zysk otrzymany z wytworzenia produktów P, P 2, P 3. Zmienne decyzyjne x planowany rozmiar produkcji wyrobu P, x 2 planowany rozmiar produkcji wyrobu P 2, x 3 planowany rozmiar produkcji wyrobu P 3, T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 34
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.. Zagadnienie produkcyjno-modernizacyjne (3/5) Model matematyczny (c.d.) x 4 x 5 x 6 x 7 = = = =, jeżeli czas pracy maszyny zostanie zwiększony o 7 jednostek, w przeciwnym wypadku, jeżeli eli czas pracy maszyny zostanie zwiększony o6 jednostek, w przeciwnym wypadku, jeżeli czas pracy maszyny 2 zostanie zwiększony o jednostek, w przeciwnym wypadku, jeżeli czas pracy maszyny 2 zostanie zwiększony o 3 jednostek, w przeciwnym wypadku T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 35
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.. Zagadnienie produkcyjno-modernizacyjne (4/5) Model matematyczny (c.d.) Funkcja celu Warunki ograniczające f(x, x 2, x 3 ) = x + 2x 2 + 3x 3 max ograniczenie związane z czasem pracy maszyny : x + 3x 2 + 2x 3 3 + 7x 4 + 6x 5 ograniczenie związane z czasem pracy maszyny 2: warunek budżetowy: 2x + 2x 2 + 6x 3 2 + x 6 + 3x 7 45x 4 + 7x 5 + 28x 6 + 8x 7 25 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 36
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.. Zagadnienie produkcyjno-modernizacyjne (5/5) Model matematyczny i rozwiązanie optymalne Warunki określające możliwość jednoczesnej realizacji wariantów: dla maszyny : dla maszyny 2: warunki nieujemności: warunki dodatkowe: Rozwiązanie optymalne x 4 + x 5 x 6 + x 7 x, x 2, x 3 x 4, x 5, x 6, x 7 {, } x =, x 2 = 8,7, x 3 = 5,43, x 4 =, x 5 =, x 6 =, x 7 = Wartość funkcji celu jest równa 33,7 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 37
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.2. Optymalizacja planu wydawniczego (/5) Przykład 2.6 Przedmiot Rodzaj skryptu Prognoza sprzedaży Zarządzanie nowe wydanie 25 Matematyka wznowienie 3 Statystyka nowe wydanie 2 Statystyka matematyczna nowe wydanie 5 Statystyka opisowa wznowienie 5 Finanse nowe wydanie 8 Rachunkowość nowe wydanie 3 Rachunkowość II wznowienie 35 Angielski nowe wydanie 5 Francuski nowe wydanie 35 Nad skryptami mogą pracować redaktorzy: Jerzy 48 godzin, Krystyna 32 godzin, Maria 35 godzin. T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 38
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.2. Optymalizacja planu wydawniczego (2/5) Przykład 2.6 (c.d.) Skrypt Zarządzanie Matematyka Statystyka Statystyka matematyczna Statystyka opisowa Finanse Rachunkowość Rachunkowość II Angielski Francuski Jerzy Krystyna 22 3 3 9 9 5 6-9 - - 22 - - - - 3 - - 4 Wydane zostaną: - co najwyżej dwa skrypty ze statystyki, - co najwyżej jeden skrypt z rachunkowości, - matematyka albo zarządzanie. Należy określić najlepszy plan wydawniczy. Maria - - 2 9 2 2 8 24 3 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 39
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.2. Optymalizacja planu wydawniczego (3/5) Model matematyczny Cel Ustalenie planu wydawniczego, który maksymalizuje łączną, planowaną wielkość sprzedaży Zmienne decyzyjne Zmienna x x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x wydanie skryptu: Opis zmiennej Zarządzanie Matematyka Statystyka Statystyka matematyczna Statystyka opisowa Finanse Rachunkowość Rachunkowość II Angielski Francuski Wartość {, } {, } {, } {, } {, } {, } {, } {, } {, } {, } T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 4
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.2. Optymalizacja planu wydawniczego (4/5) Model matematyczny (c.d.) Funkcja celu 25x + 3x 2 + 2x 3 + 5x 4 + 5x 5 + 8x 6 + 3x 7 + 35x 8 + 5x 9 + 35x max Warunki ograniczające Jerzy - co najwyżej 48 godzin: 22x + 3x 2 + 9x 3 + 6x 4 + 9x 5 + 3x 9 48 Krystyna - co najwyżej 32 godzin: 3x + 9x 2 + 5x 3 + 22x 6 + 4x 32 Maria - co najwyżej 35 godzin: 2x 3 + 9x 4 + 2x 5 + x 6 + 2x 7 + 8x 8 + 24x 9 + 3x 35 Nie więcej niż dwa skrypty ze statystyki: x 3 + x 4 + x 5 2 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 4
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.2. Optymalizacja planu wydawniczego (5/5) Model matematyczny i rozwiązanie optymalne Warunki ograniczające (c.d.) W planie nie może się znaleźć więcej niż jeden skrypt z rachunkowości: x 7 + x 8 W planie musi się znaleźć albo skrypt z zarządzania albo matematyki: x + x 2 = Dodatkowe warunki na zmienne decyzyjne: Rozwiązanie optymalne Rozwiązanie Rozwiązanie 2 x, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x {, } x x x 2 x 2 x 3 x 3 Optymalna wartość funkcji celu wynosi 8. x 4 x 4 x 5 x 5 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 42 x 6 x 6 x 7 x 7 x 8 x 8 x 9 x 9 x x
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.3. Zagadnienie lokalizacji (/4) Przykład 2.7 Proponowana lokalizacja Rejony A, 5, 7 B, 2, 5, 7 C, 3, 5 D 2, 4, 5 E 3, 4, 6 F 4, 5, 6 G, 5, 6, 7 Należy znaleźć najmniejszą liczbę zrelokalizowanych komisariatów pokrywających swym zasięgiem wszystkie siedem rejonów. T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 43
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.3. Zagadnienie lokalizacji (2/4) Model matematyczny Cel Określenie najmniejszej liczby relokalizowanych komisariatów, aby każdy rejon był pod opieką przynajmniej jednego komisariatu. Zmienne decyzyjne Zmienna x x 2 x 3 x 4 x 5 x 6 x 7 Proponowana lokalizacja komisariatu: Opis zmiennej A B C D E F G Wartość {, } {, } {, } {, } {, } {, } {, } T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 44
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.3. Zagadnienie lokalizacji (3/4) Model matematyczny (c.d.) Funkcja celu Warunki ograniczające Rejon : Rejon 2: Rejon 3: Rejon 4: x + x 2 + x 3 + x 4 + x 5 + x 6 + x 7 min x + x 2 + x 3 + x 7 x 2 + x 4 x 3 + x 5 x 4 + x 5 + x 6 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 45
2.4. Przykłady wykorzystania programowania liniowego całkowitoliczbowego 2.4.3. Zagadnienie lokalizacji (4/4) Model matematyczny i rozwiązanie optymalne Rejon 5: Rejon 6: Rejon 7 x + x 2 + x 3 + x 4 + x 5 + x 7 x 5 + x 6 + x 7 x + x 2 + x 7 Dodatkowe warunki na zmienne decyzyjne: x, x 2, x 3, x 4, x 5, x 6, x 7 {, } Rozwiązanie optymalne x x 2 x 3 x 4 Optymalna wartość funkcji celu wynosi 2. x 5 x 6 x 7 T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 46
Pora na relaks T.Trzaskalik: Wprowadzenie do badań operacyjnych z komputerem 47