Wprowadzenie mechanikę ośrodków ciągłych termodynamikę procesów nieodwracalnych termomechanika
|
|
- Irena Bednarek
- 7 lat temu
- Przeglądów:
Transkrypt
1 7 Wprowazene Obserwowany w ostatnm orese brzwy rozwó technoog wytwarzana materałów onstrc postawł nowe probemy teoretyczne. Szczegóne energetya tych procesów złożone powązana towarzyszących m przepływów masy, pę, łan eetrycznego energ wymagały stworzena ogóne teor, tóra łączyłaby we wspóną całość mechanę ośroów cągłych (MOC) termoynamę procesów neowracanych. Taą teorą est powstała prze trzyzest aty termomechana. Stworzone w ramach te teor moee metoy postępowana pozwaaą raconane przewywać własnośc nowych materałów wyonanych z nch onstrc - ta w trace proetowana a espoatac. Je zastosowana w szczegónych yscypnach a nżynera materałowa, teora onstrc są zsa zasancze cąge rosnące. Szczegóne zachęcaąca o zastosowań est t sytaca, ey mów sę ne tyo o zachozących w trace proces przemanach energetycznych strtry materał, ae równeż oreśa sę mechanzmy yssypac energ oraz sposoby sterowana tym procesam. Hstoryczne rzecz borąc zapowezą termomechan była ż termosprężystość. Następne poawła sę teora pó sprzężonych oraz opsy ośroów weosłanowych, a wśró nch termoyfza w ośro oształcanym. Prace z tego zares prze ćwerćweczem prowazśmy równeż w Opo. Naperw były to prace teoretyczne a późne zastosowana. Dzsa stanową one fragmenty termomechan poobne a nne propozyce z teor pó sprzężonych. Neozownym eementem tych rozważań est ośroe weosłanowy, co wyna m.n. z potrzeby ops procesów technoogcznych. Istotne, w trace typowych procesów wytwarzana przepływy różnych form energ prowazą o przeman eementów strtry materał. W postac rańcowe bęą to przemany fazowe z tworzenem nowe strtry oraz reace chemczne w faze stałe, a w naprostsze - zmany własnośc materał. W ażym z wymenonych przypaów naeży wprowazć poęca typowe a ośroa weosłanowego. Ta też postąpono w nneszym opracowan, gze trzec rozzał pośwęcono tem ęc wygonem o anazy te szeroe asy zaganeń termomechan na żyte technoog. Rozważana te poprzeza asyczny zarys MOC, a zaana brzegowe obemą cała sprężyste. Doamy, ż est to ta część mechan, tóra ne wymaga pogłębone znaomośc energety procesów eformac. Natomast ops własnośc pastycznych, reoogcznych oraz narastana szozeń wymaga równeż wzgęnena mechanzmów yssypac energ z ła. Naeży wówczas czysto mechanczne ęce probem rozszerzyć na termomechanczne. Wyna stą też neozowność szerszego sporzena na probemy asyczne mechan onstrc.
2 8 Typowy moe termomechanczny zawera ao słaowe moee nety ynam proces, tóre są powązane ścśe z opsem przepływów energ oraz mechanzmam e yssypac. W onsewenc zastosowane termomechan wymaga: - oreśena typowego fragment strtry materał, ośc słanów oraz powązań męzy nm, - zbowana moe ozaływań przepływów masy, pę, łan, energ entrop, - sformłowana a oreśonego moe typ ozaływań bansów proces, a w tym parcanych smarycznych bansów masy, łan, pę, ręt, energ entrop, - oreśena hstor proces oraz głównych fnconałów termoynamcznych łączne z wynaącym z nch równanam onstyttywnym, - sformłowana zaań brzegowych proces na postawe znaomośc równań onstyttywnych, bansów oraz warnów początowo - brzegowych, - poana rozwązana anatycznego zaana brzegowego b też zbowana opowene procery obczeń nmerycznych naczęśce z wyorzystanem waracynych ęć probem, np. MS. Naszcowany t program nwersanego postępowana znaazł zastosowane w we, często barzo oegłych, załach współczesne techn technoog. Korzystano z nego zarówno w mechance onstrc a przy wytwarzan ompozytów, bomaterałach n. Technoozy otrzyma barzo steczną metoę postępowana przy proetowan sterowan procesam wytwarzana materałów. Sązę węc, ż warto stentom nżyner przestawć postawowe ee te yscypny wezy. Przestawony wyła termomechan był prezentowany o nast at stentom specanośc teoretycznych na Potechnce Śąse Opose, a główne na stm otorancm. Praca natomast powstała w Katerze Fzy Materałów Potechn Opose, gze w trace prowazonego przeze mne semnarm z termomechan były ystowane postawy a e zastosowana, za co słaam pozęowana.
3 9 Rozzał I LMNTY MCHNIKI OŚRODK CIĄGŁGO 1. Wstęp W prezentowanym ęc MOC poaemy naperw poęca perwotne. Są nm zarówno poęca ośroa cągłego, ego gęstośc oraz ła sł (masowych powerzchnowych) a współzaeżnośc zachozące męzy rchem a słam. Poęca te w zasaze pozwaaą formłować tyo sprężyste zaana mechan ośroów cągłych. Natomast o ops nesprężystych cech materałów trzeba oatowo wprowazć poęca cepła ego przepływów, a taże energ wewnętrzne, entrop temperatry, co czynmy w oenym rozzae, wprowazaąc ęca typowe a termomechan. Ośroe cągły est pewnym moeem mater zachozących w nm zaws, tóre nazywamy marosopowym. Poęce to może sgerować, ż me ono eyne probemy w amś eanym ośro cągłym bez pęnęć, szczen tp. Tymczasem moe ten eyne sgere ops zaws wyorzystący poęce fnc cągłych. 2. Rch ośroa Rch ośroa cągłego w czasoprzestrzen opse ła trzech równań x x(, t) b x x (, t) (2.1) oreśaących położene cząst materane w aże chw czas. Zmennym nezaeżnym są t położene perwotne cząst materane czas. Ta ops rch nazywamy materanym (Lagrange a). Do równań tych stnee owzorowane owrotne (x( t), t) b ( x, t), (2.2) pozwaaące na równoważny - przestrzenny ops rch ośroa. W tym przypa zmennym nezaeżnym bęze atane położene cząst materane czas. Uporząowany ła czb ( ) nazywamy węc współrzęnym materanym (Lagrange a), a x ( x1, x2, x3) przestrzennym (era) cząst ośroa.
4 10 Rch ośroa można równeż zapsać równanem (, t ) x(, t) b x (, t) (2.3) t 0 0 x x (t > 0) x 3 x t > 0 x 1 Rys Rch ośroa Przytoczone równana w pełn oreśaą nematyę ośroa. Poe przemeszczeń x (2.4) est fncą ( t), w opse Lagrange a (ops zaeżny o czas położena początowego) ( x ( t), t) w opse era (ops zaeżny o atanego położena czas) wynos Natomast wetor pręośc przemeszczeń ( x ( t t) ), x & & (2.5) t x x Oształcene cała obczymy porównąc łgośc wetorów pntów bso sebe położonych prze po eformac x x 2 2 ( x ), ( ) δ x
5 11 Wyorzystąc zwąze (2.4) zysamy ( ) ( ) δ δ δ δ δ δ x (2.6) Materany tensor sończonych eformac - tensor Greena oreśaą węc wyrażena w nawasach wzor (2.6) gra gra gra gra T T 2 b (2.7) m p p m m m 2. Przypaem szczegónym est tensor nesończene małych oształceń ε T gra gra 2 b,, ε 2 (2.7 ) Wyszczegónone poa ε pozwaaą w pełn opsać eformace ośroa cągłego. Z oe wetor pręośc przyspeszena a oreśmy zaeżnoścam a x & &, (2.8) a wetor pręośc eformac T gra gra 2 b,, 2 (2.9) przy czym pełna pochona po czase poa przemeszczeń (x,t) wynos gra t (2.10)
6 12 Poane formły na obczane pochonych czasowych bęą wyorzystywane przy anaze równań bansów proces. 3. Zasaa zachowana masy Bęzemy załaa, że rozła masy m w owonym pnce cała to oatna saarna mara, absotne cągła. Jest ona aytywną fncą obętośc. Istnee węc gęstość ρ ao granczny stosne masy m o zamowane przez ną obętośc m ρ ( ) m (3.1) 0 Z rge strony masa m cała ϑ est równa m( ϑ) ρ (3.2) Natomast zasaa zachowana masy ma postać m( ϑ ) 0 ρ 0 (3.3) Gobana postać te zasay prowaz o równana ρ ρ ( ρ) (3.4) t stą e forma oana ρ ρ 0 t ρ t b ( ρ ) 0, 4. Wetor tensor naprężeń (3.5) Marą wewnętrznych sł z am ozaływą cząst materane na sebe est wetor naprężena oraz wynaący z nego tensor naprężeń. Wetor naprężeń otrzymamy po mownym pozae cała na we częśc oreśen ntensywnośc sły powerzchnowe P (x ) aa występe w pnce x na powerzchn rozzał o wetorze normanym n. Sposób postępowana est t
7 13 poobny a przy oreśan sł przeroowych w asyczne wytrzymałośc materałów (rys. 4.1a). Wetor naprężeń oreśa węc wyrażene a) b) I Q π II I π P II T M N Q x n x σ 33 σ σ 11 σ 22 Rys Wetor tensor naprężeń P P m (4.1) 0 ( x, n ) Wetor naprężeń P można rozłożyć na słaową normaną styczną. Poobne oreśaąc ntensywność ozaływań męzycząsteczowych na płaszczyznach eementarnego prostopałoścan o boach otrzymamy tensor naprężeń σ11 σ12 σ13 σ σ 21 σ 22 σ 23 (4.2) σ 31 σ 32 σ 33 Męzy wetorem P a tensorem naprężeń σ zachoz zaeżność P σ n (4.3)
8 14 5. Zasaa zachowana pę ręt Poęce sły słży zarówno o opsana wzaemnego ozaływana cał na sebe a ozaływań męzy cząstam w cee. Sły f załaące na cało bęzemy rozzeać na obętoścowe ρf oraz powerzchnowe. Ich sma wynos f ρ F P (5.1) Dae bęzemy załaać, ż na cało ne załaą powerzchnowe an też obętoścowe momenty. Stą smaryczny moment sł załaących na cało czony wzgęem począt ła współrzęnych ma postać xξ ρf m0 xξ P (5.2) Postawowe prawa mechan, a węc zasaa zachowana pę ręt, przymą postać ρ f b f ρ (5.3) oraz x ξ ρ m 0 b x m0 ε ρ (5.4) Pełna postać zasa zachowana pę ręt ma formę ρf ρν P (5.5) oraz ε x ρ ε x ρf ε x P (5.6) Poane w te forme zasay zachowana pę ręt są ogónym postawowym równanam mechan, stanowącym część termomechan.
9 15 6. Równana rch Z poanych w postac gobane równań zasa zachowana pę ręt zysamy ch oaną postać - czy równana rch. Są to postawowe równana ynam ośroa cągłego. Równana te zysamy wyorzystąc twerzene Gassa o zamane cał powerzchnowe na obętoścową oraz wprowazen operac różnczowana po zna cał. Zachoz ρf ρ σ n (6.1) a stą ρ ρf σ, 0 (6.2) Poana cała zanne, eże fnca pocałowa est równa zer ρ ρf σ, b ρ ρf σ (6.3) Zaeżnośc (6.3) są poszwanym równanam rch. Ich szczegónym przypaem, ey const, są równana równowag wewnętrzne. naogczne postępowane z równanem zasay zachowana moment pę, czy ręt, prowaz o symetr tensora naprężeń σ σ b T σ σ (6.4) Występąca w równan rch pochona czasowa ma formę ( x, t) x & t x x (6.5) w tóre rg słan zawera nenowość oczyn graent pręośc przez pręość. Weośc te a proszczena rozważań bęzemy często poma, co w onsewenc prowaz o nearyzac równań mechan. Istotne, występące w oanych równanach bansów pochone czasowe są smą pochonych oanych oraz onwecynych (pochone materane)
10 ( ) ( ) ( ) 16 w (6.6) x Forma tych pochonych est następstwem przyętego ops rch cała, a ae bansów proces, onoszonych o atane onfgrac cała. 7. Zaana brzegowe mechan Poane poprzeno równana rch oraz wyrażena oreśaące tensor naprężeń w zaeżnośc o poa przemeszczeń są zasanczym równanam mechan. Uła ten naeży eszcze zpełnć o równana onstyttywne, tóre są zaeżnoścam męzy tensoram naprężeń oraz oształceń. Postać tych równań wyna z rozważań energetycznych, a występące w nch tzw. fnce materałowe wyznacza sę z esperyment. W naprostszym, nowo sprężystym przypa tensor naprężeń z tensorem oształceń ε (por. (2.7 )) łączy prawo Hooe a σ (7.1) ε Natomast w nenowo - sprężystym cee zachoz poobna zaeżność a przyrostów tensorów σ ε σ ( ε ε,, σ...) ε 2 (7.1 ) gze est tensorem stałych materałowych, a poane równana onoszą sę o cała anzotropowego. Kasyczne oraz przyrostowe zaana brzegowe mechan maą postać ρ ρf σ, ρ ρ F σ, 2 ε,, ε,, (7.2) 2 (7.3) ( ε σ ( ε ) ε σ...) ε (7.4) Po postawen równań (7.3) (7.4) o (7.2) otrzymamy ła równań przemeszczenowych mechan
11 17, ρ F ρ, ρ F ρ (7.5) Do poanych wyże równań naeży ołączyć warn początowe ) ( ) (7.6) ( x, t 0 0 x, t 0 0 oraz brzegowe o σ n P, b σ n P, (7.7) σ Otrzymaśmy t naprostsze zaana MOC równana teor sprężystośc, tóre ne wymagaą rozważań energetycznych. Jest to sytaca wyątowa, natomast złożone probemy przeman energetycznych występących w technoogach wytwarzana espoatac materałów onstrc wymagaą oenych rozszerzeń moyfac asyczne mechan m. n. o opsy przeman fazowych ozaływań natry nemechanczne. σ o Zaganena 1. Oreść współrzęne tensora oształceń Greena w płasm stane eformac, ey ( x, t), 1, Wyznaczyć postawowe nezmenn tensora oształceń Greena, I, II, III 3. Oreść napęce powerzchnowe ao szczegóny przypae stan naprężeń w ośro. 4. Poać równana rch (6.3) w przypa ey poa występące w tych równanach zaeżą tyo o x 1, x 2, t. 5. Sprecyzować równana fzyczne (7.1), ey poe oształceń ε est płase b enowymarowe. 6. Poać zotropowe transwersano-zotropowe opowen równań (7.1) (7.5).
12 18 7. Wyprowazć równana o (7.1) o (7.6) w przypa, ey poe przemeszczeń 1 1( x, t) (zaganene warstwy) w przypa materał zotropowego transwersano-zotropowego.
Małe drgania wokół położenia równowagi.
ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne
5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla
Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. MECHANIKA OŚRODKÓW CIĄGŁYCH Potr Konderla paźdzernk 2014 2 SPIS TREŚCI Oznaczena stosowane w konspekce...
ANALIZA NIERÓWNOŚCI REZYDUALNEJ GRADIENTOWEJ TERMOMECHANIKI
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZY 5/205 Komsa Inżyner Buowlane Ozał Polske Akaem Nauk w Katowcach ANALIZA NIERÓWNOŚCI REZYDUALNEJ GRADIENOWEJ EROECHANIKI Jan KUBIK Wyzał Buownctwa Archtektury, Poltechnka
Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.
Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno
KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla
Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk
1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA
J. Wyrwał Wyłady z mechan materałów.. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA... Wetor przemeszczena Rozważmy bryłę (cało materalne) o dowolnym ształce meszczoną w prostoątnym ładze odnesena Ox xx (rys.
TENSOR W ZAPISIE LAGRANGE A I EULERA
TENSOR W ZAPISIE LAGRANGE A I EULERA N postwe skłowych wektor przemeszczeń obczmy skłowe tensor oksztłcen. Tensor oksztłcen może być w zpse Lgrnge b Eer. We współrzęnych Lgrnge rch cząsteczk est opsny
r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej
Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL
Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE
MECHANIKA BUDOWLI 4. Słowa kluczowe: praca wirtualna, przemieszczenie wirtualne
Oga Kopacz, Aa Łoygows, Wocech Pawłows, Mchał Płotowa, Krzysztof Tyber Konsutace nauowe: prof. r hab. JERZY RAKOWSKI Poznań / MECHANIKA BUDOWI 4 Rozzał ten pośwęcony est wyprowazenu twerzena o pracy wrtuane,
MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE
Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra
MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI
Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z
Obliczanie geometrycznych momentów figur płaskich 4
Obzane geometrznh momentów fgur płaskh Postawowe zaeżnoś Geometrzne moment bezwłanoś fgur płaskh wzgęem os ukłau współrzęnh obzm w oparu o ponższe zaeżnoś: (.a) (.b) Geometrzn moment bezwłanoś wzgęem punktu
9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH
Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu
punktów ciała w dowolnej fazie deformacji. W chwili początkowej, tuż przed przyłożeniem obciążenia, mamy oczywiście (1)
Wyład II STAN ODKSZTAŁCENIA Przeeszczena odształcena Oznaczy przez B obszar zaowany przez analzowane cało w chwl początowe a przez b przestrzeń zaowaną przez ne w dowolne faze proces deforac Na rysn oznaczono:
Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy
etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO
OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze
Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym
ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE
ZAGADNIENIE ZAKRZYWIONEJ ANIZOTROPOWEJ ORAZ FUNKCJONALNIE GRADOWANEJ POWŁOKI PODDANEJ DZIAŁANIU POLA TEMPERATURY
ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 298, Mechana 90 RUTMech, t. XXXV, z. 90 (2/18), weceń-czerwec 2018, s. 237-244 Daman SZUBARTOWSKI 1 ZAGADNIENIE ZAKRZYWIONEJ ANIZOTROPOWEJ ORAZ FUNKCJONALNIE GRADOWANEJ
1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ
Część. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. Wstęp Podstawowym narzędzem służącym do rozwązywana zadań metodą przemeszczeń są wzory transformacyjne.
Ł ś ą ś ż ą Ż ż ż ó ó ó ó ś ą ą Ś ą ą ó ą ś Ż ą ż ż ż ą ą Ś ą ą ą ż ś ą ó ą Ę ą ą ś ą ą ó ś ą ś Ą ż ż ą ą Ś ą Ż ą ż Ł ó ą ś ą ó ó Ę ą ą Ś ą ą ó ą ą ż ś ą ą Ę ż Ąą ą ś ą ą ą ą ś Ż ó ą ą ż ż ą ą Ś ą Ę ó
Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
III. KINEMATYKA OŚRODKA ODKSZTAŁCALNEGO
onerl P Mechn ośroów cąłych III INEMATYA OŚRODA ODSZTAŁALNEO Ops rch cł oszłclneo Obe fzyczny es cłem w rozmen MO eżel zme przesrzeń opoloczną w óre ży pn m swoe ooczene z oreśloną meryą orz obe en e sę
Inercjalne układy odniesienia
Inecjalne ukłay onesena I II zasaa ynamk Newtona są spełnone tylko w pewnej klase ukłaów onesena. Nazywamy je necjalnym ukłaam onesena. Kyteum ukłau necjalnego: I zasaa jeżel F 0, to a 0. Jeżel stneje
MECHANIKA BUDOWLI 13
1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym
Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
4. Zjawisko przepływu ciepła
. Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg
Płyny nienewtonowskie i zjawisko tiksotropii
Płyny nenewtonowske zjawsko tksotrop ) Krzywa newtonowska, lnowa proporcjonalność pomędzy szybkoścą ścnana a naprężenem 2) Płyny zagęszczane ścnanem, naprężene wzrasta bardzej nż proporcjonalne do wzrostu
ZAGADNIENIE POCZĄTKOWO-BRZEGOWE LINIOWEJ HIGROTERMOPIEZOSPRĘŻYSTOŚCI
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 11/2011 Komsa Inżyner Budowlane Oddzał Polse Aadem Nau w Katowcach ZAGADNIENIE POCZĄTKOWO-BRZEGOWE LINIOWEJ HIGROTERMOPIEZOSPRĘŻYSTOŚCI Potr GORECKI Jerzy WYRWAŁ Poltechna
Stateczność układów ramowych
tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po
VIII. NIELINIOWE ZAGADNIENIA MECHANIKI
Konerla P. Metoa Eleentów Skończonych, teora zastosowana 57 VIII. NIELINIOWE ZAGADNIENIA MECHANIKI. Rozaje nelnowośc a) Nelnowość fzyczna: nelnowe zwązk konstytutywne, plastyczność, lepkoplastyczność,
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.
WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w
Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k
METODA ELEMENTU SKOŃCZONEGO. Termokinetyka
METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)
=(u 1.,t) dla czwórnika elektrycznego dysypatywnego o sygnale wejściowym (wymuszeniu) G k. i sygnale wyjściowym (odpowiedzi) u 2
Przyła Ułożyć równane ruchu u u,t la czwórna eletrycznego ysypatywnego o sygnale wejścowym wymuszenu G u sygnale wyjścowym opowez u. Zmenna uogólnona Współrzęna uogólnona Pręość uogólnona q Energa netyczna
Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania
Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w
ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany
Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na
Budownictwo, II rok sem IV METODY OBLICZENIOWE. dr inŝ. Piotr Srokosz IP Temat 8
Bdownctwo, II rok sem IV MEODY OBLICZEIOWE dr nŝ. Potr Srokosz IP- emat 8 emat 8 Równana róŝnczkowe cząstkowe Metoda Elementów Skończonch (MES) Zagadnene brzegowe Sformłowane zagadnena fzcznego Równana
- ---Ą
Ą ż ą ą ą Ą ó ą ł ą ł Ąą ż ś Ę ÓŁ Ę Ó ŁĄ ŁŚĆ ł ż ł ż ó ł Ó Ć Ą Ł ŁÓ ŁŚ Ą ż Ó ŁÓ Ę ś ś ł ż ł Ą ęś Ą ń ź ć ą ą ę ń ż ąń ę ę ć óź ŁĄ ą ł ę ę ł ę ń Ą Ęł ą Ł ł ł ż ó ą ł ęę ĘĘ ęć ó ą ń ł ą Ą ęś ł ś ÓŁ Ą ę ę
Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Ł Ą Ó ŁÓ Ę Ę Ę Ł Ą Ś ŁĄ Ż Ą Ą Ł Ś Ś Ż ŁÓ ć ŁÓ ĘĘ Ą Ę ĘĘ Ą Ł Ą Ś Ą Ć ŁÓ ć ć ć ĄĄ ć ĄĄ Ł ć ć ć ŁÓ Ó Ś Ą Ł Ą ć ć ć Ę ć ć ć Ę Ś Ą ć Ą Ł ĄĄ ĄĄ ć Ę Ś Ą ć Ś Ą Ł ć Ł ć Ś Ś Ś Ś Ą Ł Ś ŁĄ Ż ć Ą Ł Ł ć ć ć ć Ę Ę Ę
1. Komfort cieplny pomieszczeń
1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych
II. PODSTAWOWE RÓWNANIA MECHANIKI W UJĘCIU NIELINIOWYM
Kr a Sach Dooracch Poech Wrocławe wera: y 7 II. PODSTAWOWE RÓWNANIA MECHANIKI W UJĘCIU NIELINIOWYM W roae amecoe ą poawowe rówaa eowe mecha cała oałcaego be wyprowaeń ora omeary. Załaa ę że cye acył r
7.5.1. Ruch bryły swobodnej
751 Ruch brł swobone Swobona brła stwna ma w prestren seść stopn swobo o oreślena e ruchu potreba seścu równań ruchu Ruch brł możem robć na ruch śroa mas wwołan pre ałane wetora głównego sł ewnętrnch obrót
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu
Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
F - wypadkowa sił działających na cząstkę.
PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych
ŁĄ ę ł
ŁĄ ę ł ł ń ł ł ł ł ł ó ą Ń ł ń ł ł ł ż Ł ń ąó ż ąó ó ą ę ó ąę ą ł ą ę ń ł ś ół ż ł ł ł ą ń ś ół ń ł ł ę ł ó ł Ćć ć Ą ż ł ć ć ć ł ł ż ó ąę ó ó ą ś ó ół ż ą ń ł ó ą ę ą ó ę ś ś ó ą ę ą ą ęś ć ś ę ą ę ł ę
Ę ż Ł ś ą ł ść ó ą ż ę ł Ł ś ą ś Ż ż ż ń ż ł ś ń ż żę Ł ż ó ń ę ż ł ńó ó ł ń ą ż ę ż ą ą ż Ń ż ż ż óź ź ź ż Ę ż ś ż ł ó ń ż ć óź ż ę ż ż ńś ś ó ń ó ś
Ę Ł ś ą ł ść ą ę ł Ł ś ą ś Ż ł ś ę Ł ę ł ł ą ę ą ą Ń ź ź ź Ę ś ł ć Ź ę ś ś ś Ę ł ś ć Ę ś ł ś ą ź ą ą ą ą ą ą ą ą ś ą ęń ś ł ą ś Ł ś ś ź Ą ł ć ą ą Ę ą ś ź Ł ź ć ś ę ę ź ą Ż ć ć Ą ć ć ł ł ś ł ś ę ą łą ć
spinem elektronu związanym z orbitującymi elektronami H = H 0 +V ES +V LS + V ES
Oałwane pn-obta: B' R ' popawka Thomaa R B' e pocho o magnet. momentu poowego, B wąanego e m pnem eektonu W poem magnet., B' wąanm obtującm eektonam mec W popawka enegetcna aeżna o c ) j m c chemat pężeń
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC
Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ
Ź Ć Ą ć Ą ż Ć Ł Ł Ł Ą ć Ź ż ń ć ń ż ż ż ż Ź Ź Ą ż Ć ż ż ż ż ż Ą Ą Ć Ź ż ć ż ż Ą Ź Ą ż ż ć ż Ć Ą Ą ż Ą ź ż Ą ż Ź ż Ą ż ż ż ć Ąć ć Ą ć ż Ć Ą Ź Ą ż ż Ą ż Ą Ą ĄĄ Ą ż ż Ą Ć ż Ą ż ż ż ć Ą Ą Ł ż Ć ć ĄĄ Ą ć Ą
obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3
TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu
IV. WPROWADZENIE DO MES
Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.
Laboratorium wytrzymałości materiałów
oitechnia Lbesa MECHANIA Laboratorim wytrzymałości materiałów Ćwiczenie - Statycznie wyznaczany przypade osiowego rozciągania rzygotował: Andrzej Teter (do żyt wewnętrznego) Statycznie wyznaczany przypade
KOMPUTEROWE SYMULACJE CIECZY
KOMPUTEROWE SYMULACJE CIECZY Najwcześnejsze eksperymenty (ruchy Browna) Współczesne metody (rozpraszane neutronów) Teoretyczne modele ceczy Struktura ceczy dynamka cząsteczek Symulacje komputerowe 1 Ponad
; -1 x 1 spełnia powyższe warunki. Ale
AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także
LINIOWA MECHANIKA PĘKANIA
Podstawowe informacje nt. LINIOW MECHNIK PĘKNI Wytrzymałość materiałów II J. German KONCEPCJ CŁKI J 1 Podstawy teoretyczne Sprężyste (iniowo b nieiniowo), jednorodne i anizotropowe continm materiane o
Arytmetyka finansowa Wykład z dnia 30.04.2013
Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty
INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
Prąd elektryczny U R I =
Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Wyznaczanie przemieszczeń
ór Maxwea-Mora δ ynacane premesceń ór Maxwea-Mora: Bea recywsym obcążenem δ MM JE NN E ( ) M d g N o P q P TT κ G ór służy do wynacena premescena od obcążena recywsego. równanu wysępuą weośc, wywołane
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy
Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi
I. PRZEPŁYWY W BUDOWLACH
9 I. PRZEPŁYWY W BUDOWLCH Zarys problematyk Fzyka budowl est edną z namłodszych dzedzn nżyner budowlane. Rozwnęła sę w latach 70-tych, główne w wynku kryzysu energetycznego, aczkolwek e podstawy są znaczne
Ń Ą Ń Ń Ń
ŁĄ Ń Ł ć ć ć Ę Ę Ą Ą Ę Ń Ą Ń Ń Ń Ń ć Ą Ź ć Ź ć Ź ć ź ź Ł Ą Ę ć ć Ę Ć Ć Ą ć Ć Ć Ł Ć Ź Ć Ą Ą Ą Ą ĄĄ Ć Ą Ą Ą ć Ć Ł Ć Ę Ć Ć Ę Ę Ć Ć Ę Ą Ć Ć Ń Ń Ć Ę Ć Ł Ć Ł Ą Ę Ź Ć Ł Ę Ł Ł Ł Ę Ę Ł Ę Ł Ć Ć Ą Ę Ł Ą Ć Ą Ź Ą Ę
Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI
METRO MEtalurgczny TRenng On-lne Modelowane omputerowe przeman fazowych w stane stałym stopów ze szczególnym uwzględnenem odlewów ADI Wyład II: ADI, wzrost ausferrytu Wojcech Kapturewcz AGH Eduacja Kultura
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11
WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA RUCHU PŁYNU. ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. 1/11 RÓŻNICZKOWE RÓWNANIA RUCHU PŁYNU Wiemy uż, że Zasada Zmienności Pędu est szczególnym przypadkiem ogólne
Wykład III STAN NAPRĘŻENIA I ODKSZTAŁCENIA
IV. Wprowadzene. Wykład III STAN NAPRĘŻENIA I ODKSZTAŁCENIA Modelowane przepływu ceczy przez ośrodek porowaty pozwala na sformułowane równań opsuących proces fltrac wody lub nne ceczy przez ośrodek gruntowy
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Ćw. 26. Wyznaczanie siły elektromotorycznej ogniwa na podstawie prawa Ohma dla obwodu zamkniętego
6 KATEDRA FZYK STOSOWANEJ PRACOWNA FZYK Ćw. 6. Wyznaczane sły eektromotorycznej ognwa na podstawe prawa Ohma da obwodu zamknętego Wprowadzene Prądem nazywamy uporządkowany ruch ładunku eektrycznego. Najczęścej
UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.
Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym
Metody rozwiązania ZBTS i proste przykłady
Wyład : Metody rozwiązania ZBTS i proste przyłady Lesze CHODOR dr inż. bd inż.arch. lesze@chodor.co Literatra: [] Timoscheno S. Goodier A.J.N. Theory of lasticity Mc Graw Hill nd Oford 95 [] Piechni S.
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Ę ę ę Łó-ź ----
-Ę- - - - - - -ę- ę- - Łó-ź -ś - - ó -ą-ę- - -ł - -ą-ę - Ń - - -Ł - - - - - -óż - - - - - - - - - - -ż - - - - - -ś - - - - ł - - - -ą-ę- - - - - - - - - - -ę - - - - - - - - - - - - - ł - - Ł -ń ł - -
16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski
6. Poe magnetczne, nukcja Wbó opacowane Maek meewsk 6.. Znaeźć nukcje poa magnetcznego w oegłośc o neskończone ługego pzewonka wacowego o pomenu pzekoju popzecznego a w któm płne pą I. 6.. Wznaczć nukcję
WYZNACZANIE PARAMETRÓW KINETYCZNYCH REAKCJI ELEKTRODOWEJ *
WYZNACZANIE PARAMETRÓW KINETYCZNYCH REAKCJI ELEKTRODOWEJ * I. Cel ćwczena: Praktyczne zapoznane sę z zależnoścą parametrów knetycznych procesu elektroowego o warunków eksperymentalnych, oraz wyznaczene
Współczynniki aktywności w roztworach elektrolitów. W.a. w roztworach elektrolitów (2) W.a. w roztworach elektrolitów (3) 1 r. Przypomnienie!
Współczynnk aktywnośc w roztworach elektroltów Ag(s) ½ (s) Ag (aq) (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H H H r Przypomnene! tw, Ag ( aq) tw, ( aq) Jest ona merzalna ma sens fzyczny.