ZAGADNIENIE POCZĄTKOWO-BRZEGOWE LINIOWEJ HIGROTERMOPIEZOSPRĘŻYSTOŚCI

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZAGADNIENIE POCZĄTKOWO-BRZEGOWE LINIOWEJ HIGROTERMOPIEZOSPRĘŻYSTOŚCI"

Transkrypt

1 ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 11/2011 Komsa Inżyner Budowlane Oddzał Polse Aadem Nau w Katowcach ZAGADNIENIE POCZĄTKOWO-BRZEGOWE LINIOWEJ HIGROTERMOPIEZOSPRĘŻYSTOŚCI Potr GORECKI Jerzy WYRWAŁ Poltechna Opolsa Opole 1. Wprowadzene Z rezultatów badań esperymentalnych wyna [9] że wlgoć temperatura w znaczący sposób zmenaą właścwośc ompozytów polmerowych z włónam pezoeletrycznym (wyorzystywanych np. do dagnosty bądź montorngu onstruc). Wpływ zman wlgotnośc otoczena na właścwośc ompozytów pezoeletrycznych est szczególne wdoczny w przypadu tach ompozytów a AFC (actve fbre composte) PFC (pezofbre composte) a tym samym płyt powło wyonanych z tych materałów [10]. Wadomo że naprężena wlgotnoścowe spowodowane zmanam warunów otoczena mogą wywołać dynamczną nestablność ompozytowych strutur powłoowych [7]. Z rezultatów badań opsanych w [13] wyna że adaptacyne ompozyty drewnane (adaptve wood compostes) zwane też ompozytam atywnym bądź ntelgentnym złożone z warstw drewna pezoeletrya są przyładem tach elementów struturalnych gdze sprzężone pola: mechanczne eletryczne ceplne wlgotnoścowe mogą meć slny wpływ na ch zachowane. W lteraturze można spotać newele prac pośwęconych mechance ompozytów (lamnatów) poddanych ednoczesnemu dzałanu obcążeń mechancznych pola eletrycznego a taże zmenne temperaturze wlgotnośc otoczena. Perwszą z tach nelcznych prac est publaca [12] w tóre na baze lnowych równań termosprężystośc [8] oraz hgrotermosprężystośc [11] zaproponowano podstawowe równana lnowe hgrotermopezoeletrycznośc w postac loalne (różnczowe). Analzę płyt powło wyonanych z ompozytów pezoeletrycznych poddanych dzałanu wspomnanych wyże pól przy wyorzystanu metody ważonych resduów można znaleźć w [910]. Autorzy pracy [14] sformułowal zasadę waracyną w przypadu dynamcznego zagadnena anzotropowe pezohgrotermoleposprężystośc w uęcu MES. Wyprowadzenu zasady waracyne w przypadu dzałana uas-statycznego pola eletrycznego na materał hgrotermopzoeletryczny pośwęcona est praca [1]. Drgana cene powło hgrotermopezoeletryczne analzowane były w pracach [3 4]. Analze zachowana sę lamnowanych hgrotermopezoeletrycznych płyt pośwęcona est praca [14]. Przegląd lteratury z zaresu zasad waracynych hgrotermopezoeletrycznośc można znaleźć w [2]. Warto też zwrócć uwagę na rezultaty zawarte w pracy [6].

2 70 2. Sformułowane zagadnena początowo-brzegowego lnowe hgrotermopezosprężystośc 2.1. Równana pola Rozważmy anzotropowy materał pezoeletryczny w tórym zachodzą procesy wymany cepła wlgoc w obecnośc obcążeń mechancznych pola eletrycznego. Rozważane zagadnene opsuą następuące ogólne znane równana: ruchu (blansu pędu) wraz ze zwązam geometrycznym σ + f ρ& u& (1) Maxwella blansu entrop dyfuz (blansu masy) ( u + u ) u( ) 1 ε (2) 2 D ρ e 0 (3) E Φ (4) ρ r T s& (5) + o ρr + ρc&. (6) W powyższych równanach przecne w dolnym ndese oznacza pochodną cząstową względem dane zmenne (np. u u/ x ) zaś ropa nad daną weloścą oznacza loalną pochodną po czase Równana onstytutywne W perwsze olenośc przymemy że wetor strumena cepła gradentu temperatury materału (zgodne z prawem Fourera): zależny est od κ (7) Θ zaś wetor strumena masy zależy od gradentu potencału chemcznego:. (8) D M

3 Do równań ( ) musmy eszcze dołączyć równana onstytutywne oreślaące: tensor naprężena σ wetor przesunęca pola eletrycznego D entropę s potencał chemczny M. Równana te uzysamy różnczuąc potencał hgrotermopezosprężysty H ε E θ c będący uogólnenem potencału termopezoeletrycznego sformułowanego ( ) w [5]. Potencał ten zależny od tensora odształcena ε wetora natężena pola eletrycznego E przyrostu temperatury θ ( θ T T θ << T ) oncentrac c 0 0 ( c C C c << C 0 0 ) przymemy w przypadu rozważanego zagadnena w następuące postac: 71 H ( ε E Θ c) ( a ε ε c E E αθ mc ) 2 + e l E ε h θe β ε Θ µ ε c ϑ E c + dθc l (9) gdze α ρc ε T0. W powyższe zależnośc welośc a l e c β µ h ϑ m d α oznaczaą współczynn materałowe tóre należy wyznaczyć esperymentalne. Charateryzuą sę one następuącym symetram: a a a a l l l l c c e e β β µ µ. (10) W przypadu materału pezoeletrycznego w tórym pola: mechanczne eletryczne ceplne wlgotnoścowe są w pełn sprzężone równana onstytutywne oreślaące: tensor naprężena wetor przesunęca pola eletrycznego entropę potencał chemczny dane są zależnoścam: H σ alε l e E βθ µ c (11) ε H D eε + c E + hθ ϑc (12) E s Σ β ε + h E + αθ + dc (13) θ H M µ ε + ϑ E + dθ + mc. (14) c Otrzymalśmy w ten sposób uład 32 równań różnczowych cząstowych z 32 newadomym a manowce: 3 równana równowag (1) 6 zwązów geometrycznych (2) 4 równana Maxwella (3) (4) po ednym równanu blansu entrop (5) masy (6) po trzy równana oreślaące strumeń cepła (7) masy (8) oraz 11 równań onstytutywnych (11-14). Z równań tych możemy wyznaczyć po 6 sładowych tensorów naprężena odształcena po trzy sładowe wetorów: przemeszczena przesunęca natężena pola

4 72 eletrycznego strumen cepła masy entropę temperaturę potencał chemczny oncentracę Warun początowo-brzegowe Aby rozwązać zagadnene hgrotermopezosprężystośc opsane wymenonym wyże równanam należy przedtem sformułować warun brzegowe. Warun te maą następuącą postać: Bα u uˆ na B (15) u σ n pˆ na B B B (16) D n σ u σ Φ Φ ˆ na B (17) Φ D ˆ na B B B (18) D Φ n D θ θˆ na B Θ (19) ˆ na B B B (20) θ ( u p Φ D Θ c M ) B c c cˆ na (21) n ˆ na B B B (22) gdze: α powerzchna do tóre est przyłożona odpowedna welość wynaąca z warunu brzegowego uˆ pˆ Φˆ Dˆ Θˆ ˆ cˆ ˆ to oleno zadane na brzegu cała: przemeszczene sła powerzchnowa potencał przesunęce eletryczne temperatura strumeń cepła oncentraca strumeń masy. Komplet równań zagadnena uzupełnaą warun początowe u o o ( x t 0) u v& ( x t 0) v w B s ( x t o 0) s w B c ( x t o 0) c w B c (23) (25) (26) o o o o gdze: u v s c wartośc początowe przemeszczena prędośc entrop oncentrac. Przedstawone powyże równana pola (1-6) równana onstytutywne (7) (8) (11-14) warun brzegowe (15-22) oraz warun początowe (23-26) tworzą zadane początowobrzegowe hgrotermopezosprężystośc. Jest to somplowany uład sprzężonych równań różnczowych cząstowych mechan przewodnctwa ceplnego dyfuz eletrodynam ośrodów cągłych.

5 73 3. Podsumowane W prezentowanym artyule przedstawono podstawowe równana hgrotermopezosprężystośc wraz z warunam początowym brzegowym. Mogą być one wyorzystane do poszuwana analtycznych numerycznych rozwązań problemów zwązanych z wyorzystanem materałów pezoeletrycznych poddanych dzałanu temperatury wlgotnośc. Oznaczena symbol c przyrost oncentrac concentraton ncrement [-] c ε cepło właścwe specfc heat [J g -1 K -1 ] C oncentraca wlgoc mosture concentraton [-] C oncentraca początowa reference concentraton [-] 0 D wetor przesunęca pola eletrycznego electrc dsplacement vector [C m -2 ] E wetor natężena pola eletrycznego electrc feld vector [V m -1 ] f wetor sły obętoścowe mechancal body force [N m -3 ] wetor natężena strumena masy mass flux vector [g m 2 s -1 ] n wetor normalny do brzegu unt outward normal vector wetor natężena strumena cepła heat flux vector [W m -2 ] ρ r źródło cepła heat source [W m -3 ] ρ R źródło masy mass source [g m -3 s -1 ] t zmenna przestrzenna tme [s] T temperatura absolutna absolute temperature [K] T temperatura początowa reference temperature [K] u 0 wetor przemeszczena elastc dsplacement vector [m] x współrzędna przestrzenna spatal poston [m] ε tensor odształcena symmetrc stran tensor [-] Φ potencał eletryczny electrc potental [V] η gęstość entrop entropy densty [J K -1 m -3 ] κ współczynn przewodnctwa ceplnego thermal conductvty [W m -2 K -1 ] Θ przyrost temperatury temperature ncrement [K] ρ gęstość masy mass densty [g m -3 ] ρ e gęstość ładunu charge densty [C m -3 ] σ tensor naprężena symmetrc stress tensor [Pa]. Lteratura [1] Altay G. and Dömec M. C. Certan hygrothermopezoelectrc multfeld varatonal prncples for smart lamnae n elastc range Mechancs of Advanced Materals and Structures

6 74 [2] Altay G. and Dömec M. C. Varatonal prncples for pezoelectrc thermopezoelectrc and hygrothermopezoelectrc contnua revsted Mechancs of Advanced Materals and Structures [3] Dömec M. C. Altay G. Hgh-freuency vbratons of hygrothermopezoelectrc thn shells Proceedngs of Mndln Centennal Symposum Colorado (June 2006). [4] Dömec M. C. Altay G. Curved lamnae euatons for hygrothermopezoelectrc materals at elastc range Proceedngs of ESM Mechancs Conference Vrgna Tech (May 2008) 23. [5] Gülay A. Dömec M. C. The consstent Mdln s thermopezoelectrc euatons and the prncple of vrtual wor Mechancs Research Communcatons [6] Jędrzeczy-Kub J Varatonal theorem for theory of thermopezoelectrcty wth damage Roczn Inżyner Budowlane [7] Kundu C. K. Han J-H. Nonlnear pezo-hygro-thermo-elastc behavor of pezolamnated composte shells usng fnte element method Proceedngs of KSAS- JSASS Jont Internatonal Symposum on Aerospace Engneerng Jeu Korea (November 2008) [8] NowacW. Dynamc problems of thermoelastcty Noordhoff Leyden The Netherlands [9] Raa S. Dwaraanathan D. Snha P. K. and Prathap G. Bendng behavor of pezo hygrothermo elastc smart lamnated composte flat and curved plates wth actve control J. Renforced Plast. Compos [10] Raa S. Snha P. K. Prathap G. and Dwaraanathan D. Influence of actve stffenng on dynamc behavor of pezo hygro thermo elastc composte plates and shells Journal of Sound and Vbraton [11] Sh G. C. Mchopoulos J. G. and Chou S. C. Hygrothermoelastcty Martnus Nhoff Dordrecht The Netherlands [12] Smttaorn W. and Heylger P. R. A dscrete-layer model of lamnated hygrothermopezoelectrc plates Mechancs of Advanced Materals and Structures [13] Smttaorn W. A theoretcal and expermental study of adaptve wood compostes (dssertaton) Colorado State Unversty Colorado [14] Y S. Lng S. F. Yng M. Hlton H. H. and Vnson J. R. Fnte element formulaton for ansotropc coupled pezoelectro hygro thermo vscoelasto dynamc problems Int. J. Num. Meth. Engng BOUNDARY INITIAL VALUE PROBLEM OF LINEAR HYGROTHERMOPIEZOELASTICITY Summary The paper contans balance euatons consttutve euatons and ntal-boundary value condtons of lnear hgrothermopezoelectrcty. The results obtaned n ths wor can become the theoretcal bass to formulate the numercal solutons of dfferent scentfc and engneerng problems connected wth pezoelectrc materals.

ANALIZA NIERÓWNOŚCI REZYDUALNEJ GRADIENTOWEJ TERMOMECHANIKI

ANALIZA NIERÓWNOŚCI REZYDUALNEJ GRADIENTOWEJ TERMOMECHANIKI ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZY 5/205 Komsa Inżyner Buowlane Ozał Polske Akaem Nauk w Katowcach ANALIZA NIERÓWNOŚCI REZYDUALNEJ GRADIENOWEJ EROECHANIKI Jan KUBIK Wyzał Buownctwa Archtektury, Poltechnka

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla

KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. MECHANIKA OŚRODKÓW CIĄGŁYCH Potr Konderla paźdzernk 2014 2 SPIS TREŚCI Oznaczena stosowane w konspekce...

Bardziej szczegółowo

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE

Bardziej szczegółowo

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze

Bardziej szczegółowo

UWAGI O BILANSIE MASY I PĘDU W GRADIENTOWEJ TERMOMECHANICE

UWAGI O BILANSIE MASY I PĘDU W GRADIENTOWEJ TERMOMECHANICE ROCZNIKI INŻYNIERII BUDOWLANEJ ZEZYT 15/2015 Komsa Iżyer Budowlae Oddzał Polse Aadem Nau w Katowcach UWAGI O BILANIE MAY I PĘDU W GRADIENTOWEJ TERMOMECHANICE Ja KUBIK Wydzał Budowctwa Archtetury, Poltecha

Bardziej szczegółowo

exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B

exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B Koncentracja nośnów ładunu w półprzewodnu W półprzewodnu bez domesz swobodne nośn ładunu (eletrony w paśme przewodnctwa, dzury w paśme walencyjnym) powstają tylo w wynu wzbudzena eletronów z pasma walencyjnego

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

ZAGADNIENIE ZAKRZYWIONEJ ANIZOTROPOWEJ ORAZ FUNKCJONALNIE GRADOWANEJ POWŁOKI PODDANEJ DZIAŁANIU POLA TEMPERATURY

ZAGADNIENIE ZAKRZYWIONEJ ANIZOTROPOWEJ ORAZ FUNKCJONALNIE GRADOWANEJ POWŁOKI PODDANEJ DZIAŁANIU POLA TEMPERATURY ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 298, Mechana 90 RUTMech, t. XXXV, z. 90 (2/18), weceń-czerwec 2018, s. 237-244 Daman SZUBARTOWSKI 1 ZAGADNIENIE ZAKRZYWIONEJ ANIZOTROPOWEJ ORAZ FUNKCJONALNIE GRADOWANEJ

Bardziej szczegółowo

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)

Bardziej szczegółowo

I. PRZEPŁYWY W BUDOWLACH

I. PRZEPŁYWY W BUDOWLACH 9 I. PRZEPŁYWY W BUDOWLCH Zarys problematyk Fzyka budowl est edną z namłodszych dzedzn nżyner budowlane. Rozwnęła sę w latach 70-tych, główne w wynku kryzysu energetycznego, aczkolwek e podstawy są znaczne

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

e mail: i metodami analitycznymi.

e mail: i metodami analitycznymi. Budownctwo Archtektura () (04) 4-5 w Eurokodu przy kon owych e mal: w.baran@po.opole.pl Streszczene: W pracy opsano rodzaje analz oblczenowych przy projektowanu ch dla dowolneo sposobu znych na metodam

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy

Bardziej szczegółowo

MODELOWANIE OSCYLACJI TEMPERATURY POWIERZCHNI GRZEJNEJ WE WRZENIU W MIKROKANALE

MODELOWANIE OSCYLACJI TEMPERATURY POWIERZCHNI GRZEJNEJ WE WRZENIU W MIKROKANALE MODEOWANIE INŻYNIERSKIE nr 45, t. 4, ro 0 ISSN 896-77X MODEOWANIE OSCYACJI TEMPERATURY POWIERZCHNI RZEJNEJ WE WRZENIU W MIKROKANAE Hubert rzybows a, Romuald Mosdorf b Katedra Mechan Informaty Stosowanej,

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

SYMULACJA KRZEPNIĘCIA OBJĘTOŚCIOWEGO METALI Z UWZGLĘDNIENIEM PRZECHŁODZENIA TEMPERATUROWEGO

SYMULACJA KRZEPNIĘCIA OBJĘTOŚCIOWEGO METALI Z UWZGLĘDNIENIEM PRZECHŁODZENIA TEMPERATUROWEGO 49/14 Archves of Foundry, Year 2004, Volume 4, 14 Archwum O dlewnctwa, Rok 2004, Rocznk 4, Nr 14 PAN Katowce PL ISSN 1642-5308 SYMULACJA KRZEPNIĘCIA OBJĘTOŚCIOWEGO METALI Z UWZGLĘDNIENIEM PRZECHŁODZENIA

Bardziej szczegółowo

WYSYCHANIE ZABYTKOWYCH MURÓW Z CEGŁY *

WYSYCHANIE ZABYTKOWYCH MURÓW Z CEGŁY * ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komsja Inżyner Budowlanej Oddzał Polskej Akadem Nauk w Katowah WYSYCHANIE ZABYTKOWYCH MURÓW Z CEGŁY * Andrzej KUCHARCZYK Poltehnka Opolska, Opole. Wprowadzene

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra

Bardziej szczegółowo

NIESTACJONARNE ZJAWISKO TERMOSPRĘŻYSTOŚCI W NIEPERIODYCZNYM LAMINACIE

NIESTACJONARNE ZJAWISKO TERMOSPRĘŻYSTOŚCI W NIEPERIODYCZNYM LAMINACIE MODELOWANIE INŻYNIERSKIE 207 nr 63 ISSN 896-77X NIESTACJONARNE ZJAWISKO TERMOSPRĘŻYSTOŚCI W NIEPERIODYCZNYM LAMINACIE Jarosław Jędrysak a Ewelna Pazera b Katedra Mechank Konstrukc Poltechnka Łódzka a arek@p.lodz.pl

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

GAZY DOSKONAŁE I PÓŁDOSKONAŁE

GAZY DOSKONAŁE I PÓŁDOSKONAŁE TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene

Bardziej szczegółowo

ANALIZA PEŁZANIA PRĘTA WARSTWOWEGO

ANALIZA PEŁZANIA PRĘTA WARSTWOWEGO ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 16/2016 Komsja Inżyner Budowlanej Oddzał Polskej Akadem Nauk w Katowah ANALIZA PEŁZANIA PRĘTA WARSTWOWEGO Jan KUBIK Poltehnka Opolska, Wydzał Budowntwa Arhtektury,

Bardziej szczegółowo

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM Budownctwo 7 Mkhal Hrtsuk, Rszard Hulbo WYZNACZNI ODKSZTAŁCŃ, PRZMISZCZŃ I NAPRĘŻŃ W ŁAWACH FNDAMNTOWYCH NA PODŁOŻ GRNTOWYM O KSZTAŁCI WYPKŁYM Wprowadzene Prz rozwązanu zagadnena przmuem, że brła fundamentowa

Bardziej szczegółowo

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Stansław Bogdanowcz Poltechna Warszawsa Wydzał Transportu Załad Logsty Systemów Transportowych METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Streszczene: Ogólna podstawa

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

KORZYŚCI PŁYNĄCE ZE STOSOWANIA ZASADY PRAC WIRTUALNYCH NA PRZYKŁADZIE MECHANIKI OGÓLNEJ. 1. Wprowadzenie. 2. Więzy układu materialnego.

KORZYŚCI PŁYNĄCE ZE STOSOWANIA ZASADY PRAC WIRTUALNYCH NA PRZYKŁADZIE MECHANIKI OGÓLNEJ. 1. Wprowadzenie. 2. Więzy układu materialnego. Górnctwo Geonżynera Rok 33 Zeszyt 3/ 2009 Maran Paluch* KORZYŚCI PŁYNĄCE ZE STOSOWNI ZSDY PRC WIRTULNYCH N PRZYKŁDZIE MECHNIKI OGÓLNEJ. Wprowadzene W pracy kerując sę dewzą Johna Zmana: Celem nauk jest

Bardziej szczegółowo

MECHANIK NR 3/2015 281

MECHANIK NR 3/2015 281 MECHANIK NR 3/2015 281 Radosław ATYK 1 Sylwa ATYK 2 Leon KUKIEŁKA 3 główna sła wygnatana, warstwa werzchna, stan powerzchn, technologa obrób nagnatanem, metody numeryczne, modelowane symulacja procesów,

Bardziej szczegółowo

Stateczność układów ramowych

Stateczność układów ramowych tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po

Bardziej szczegółowo

PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA

PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA InŜynera Rolncza 7/2005 Jan Radoń Katedra Budownctwa Weskego Akadema Rolncza w Krakowe PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA Streszczene Opsano nawaŝnesze

Bardziej szczegółowo

ZASTOSOWANIE METOD ANALIZY WRAŻLIWOŚCI DO MODELOWANIA KONSTRUKCJI Z PRZEDZIAŁOWYMI PARAMETRAMI. 1 Wprowadzenie

ZASTOSOWANIE METOD ANALIZY WRAŻLIWOŚCI DO MODELOWANIA KONSTRUKCJI Z PRZEDZIAŁOWYMI PARAMETRAMI. 1 Wprowadzenie Andrze POWNUK ZASTOSOWANIE METOD ANALIZY WRAŻLIWOŚCI DO MODELOWANIA KONSTRUKCJI Z PRZEDZIAŁOWYMI PARAMETRAMI Wprowadzene Wartośc wszystkch parametrów układów mechancznych obarczone są pewną nepewnoścą

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

WPŁYW ZMIAN SZTYWNOŚCI I ODKSZTAŁCALNOŚCI WĘZŁÓW NA REDYSTRYBUCJĘ SIŁ WEWNĘTRZNYCH W WIELOKONDYGNACYJNEJ KONSTRUKCJI RAMOWEJ

WPŁYW ZMIAN SZTYWNOŚCI I ODKSZTAŁCALNOŚCI WĘZŁÓW NA REDYSTRYBUCJĘ SIŁ WEWNĘTRZNYCH W WIELOKONDYGNACYJNEJ KONSTRUKCJI RAMOWEJ WPŁYW ZMIAN SZYWNOŚCI I ODKSZAŁCALNOŚCI WĘZŁÓW NA REDYSRYBUCJĘ SIŁ WEWNĘRZNYCH W WIELOKONDYGNACYJNEJ KONSRUKCJI RAMOWEJ Jarosław MALESZA Wydzał Budownctwa Inżyner Środowsa, Poltechna Bałostoca, ul. Wejsa

Bardziej szczegółowo

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI MODELOWANIE INśYNIERSKIE ISSN 1896-771X 36, s. 187-192, Glwce 2008 OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI ZBIGNIEW KOSMA, BOGDAN NOGA Instytut Mechank Stosowane,

Bardziej szczegółowo

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH Z E S Z Y T Y N A U K O W E P O L I T E C H N I K I P O Z N AŃSKIEJ Nr Budowa Maszyn Zarządzane Produkcją 005 PIOTR GORZELAŃCZYK, JAN ADAM KOŁODZIEJ OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI

Bardziej szczegółowo

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

MARTA GAWRON * METODY SYMULACJI STATYCZNEJ SIECI GAZOWEJ

MARTA GAWRON * METODY SYMULACJI STATYCZNEJ SIECI GAZOWEJ UNIWERSYTET ZIELONOGÓRSKI ZESZYTY NAUKOWE NR 144 Nr 4 INŻYNIERIA ŚRODOWISKA 011 MARTA GAWRON * METODY SYMULACJI STATYCZNEJ SIECI GAZOWEJ S t r e s z c z e n e W artyule przedstawono metody symulacj statycznej

Bardziej szczegółowo

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

ANALIZA DYNAMICZNA KONSTRUKCJI Z TŁUMIKAMI Z NIEDOKŁADNIE OKREŚLONYMI PARAMETRAMI PROJEKTOWYMI

ANALIZA DYNAMICZNA KONSTRUKCJI Z TŁUMIKAMI Z NIEDOKŁADNIE OKREŚLONYMI PARAMETRAMI PROJEKTOWYMI ZASOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISKA I ARHITEKTURY JOURNAL OF IVIL ENGINEERING, ENVIRONMENT AND ARHITETURE JEEA, t. XXXIII, z. 63 (1/I/16), styczeń-marzec 2016, s. 439-446 Magdalena ŁASEKA-PLURA 1

Bardziej szczegółowo

Volume Issue 2 MODEL AND NUMERICAL ANALYSIS OF HARDENING PROCESS PHENOMENA FOR MEDIUM-CARBON STEEL

Volume Issue 2 MODEL AND NUMERICAL ANALYSIS OF HARDENING PROCESS PHENOMENA FOR MEDIUM-CARBON STEEL A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 52 27 Issue 2 A. BOKOTA, A. KULAWIK MODEL AND NUMERICAL ANALYSIS OF HARDENING PROCESS PHENOMENA FOR MEDIUM-CARBON STEEL MODEL I ANALIZA

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo

ZARYS LINIOWEJ TERMODYNAMIKI NIERÓWNOWAGOWEJ UKŁADÓW CIĄGŁYCH I MEMBRANOWYCH

ZARYS LINIOWEJ TERMODYNAMIKI NIERÓWNOWAGOWEJ UKŁADÓW CIĄGŁYCH I MEMBRANOWYCH Unwersytet Mołaja Koperna w orunu ózef Ceynowa ZARYS LINIOWE ERMODYNAMIKI NIERÓWNOWAGOWE UKŁADÓW CIĄGŁYCH I MEMBRANOWYCH ORUŃ 008 Recenzenc Bogdan Baranows, Macej Leszo Preprnt Copyrght by ózef Ceynowa

Bardziej szczegółowo

Opracować model przekaźnika różnicowego do zabezpieczania transformatora dwuuzwojeniowego. Przeprowadzić analizę działania przekaźnika.

Opracować model przekaźnika różnicowego do zabezpieczania transformatora dwuuzwojeniowego. Przeprowadzić analizę działania przekaźnika. PRZKŁAD C4 Opracować model przeaźna różncowego do zabezpeczana transformatora dwuuzwojenowego. Przeprowadzć analzę dzałana przeaźna. Model fragmentu sec eletrycznej wraz z zabezpeczenem różncowym transformatora

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju Praca podkładu kolejowego jako konstrukcj o zmennym przekroju poprzecznym zagadnene ekwwalentnego przekroju Work of a ralway sleeper as a structure wth varable cross-secton - the ssue of an equvalent cross-secton

Bardziej szczegółowo

ZMIANA WARUNKÓW EKSPLOATACYJNYCH ŁOŻYSK ŚLIZGO- WYCH ROZRUSZNIKA PO PRZEPROWADZENIU NAPRAWY

ZMIANA WARUNKÓW EKSPLOATACYJNYCH ŁOŻYSK ŚLIZGO- WYCH ROZRUSZNIKA PO PRZEPROWADZENIU NAPRAWY PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, maja 999 r. Jan Burcan Krzysztof Sczek Poltechnka Łódzka ZMIANA WARUNKÓW EKSPLOATACYJNYCH ŁOŻYSK ŚLIZGO- WYCH ROZRUSZNIKA PO PRZEPROWADZENIU NAPRAWY

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

OPTYMALIZACJA KSZTAŁTU KANAŁU DO WTRYSKU MATERIAŁÓW TIKSOTROPOWYCH

OPTYMALIZACJA KSZTAŁTU KANAŁU DO WTRYSKU MATERIAŁÓW TIKSOTROPOWYCH 56/1 ARCHIWUM ODLEWNICTWA Rok 006, Rocznk 6, Nr 1(/) ARCHIVES OF FOUNDARY Year 006, Volume 6, Nº 1 (/) PAN Katowce PL ISSN 164-5308 OPTYMALIZACJA KSZTAŁTU KANAŁU DO WTRYSKU MATERIAŁÓW TIKSOTROPOWYCH J.

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Prąd elektryczny U R I =

Prąd elektryczny U R I = Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój

Bardziej szczegółowo

=(u 1.,t) dla czwórnika elektrycznego dysypatywnego o sygnale wejściowym (wymuszeniu) G k. i sygnale wyjściowym (odpowiedzi) u 2

=(u 1.,t) dla czwórnika elektrycznego dysypatywnego o sygnale wejściowym (wymuszeniu) G k. i sygnale wyjściowym (odpowiedzi) u 2 Przyła Ułożyć równane ruchu u u,t la czwórna eletrycznego ysypatywnego o sygnale wejścowym wymuszenu G u sygnale wyjścowym opowez u. Zmenna uogólnona Współrzęna uogólnona Pręość uogólnona q Energa netyczna

Bardziej szczegółowo

punktów ciała w dowolnej fazie deformacji. W chwili początkowej, tuż przed przyłożeniem obciążenia, mamy oczywiście (1)

punktów ciała w dowolnej fazie deformacji. W chwili początkowej, tuż przed przyłożeniem obciążenia, mamy oczywiście (1) Wyład II STAN ODKSZTAŁCENIA Przeeszczena odształcena Oznaczy przez B obszar zaowany przez analzowane cało w chwl początowe a przez b przestrzeń zaowaną przez ne w dowolne faze proces deforac Na rysn oznaczono:

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

WPŁYW ZMIENNEGO ZAWILGOCENIA GRUNTU NA JEGO NATURALNE POLE TEMPERATURY

WPŁYW ZMIENNEGO ZAWILGOCENIA GRUNTU NA JEGO NATURALNE POLE TEMPERATURY FIZYKA BUDOWLI W TEORII I PRAKTYCE TOM II, 007 Sekca Fzyk Budowl KILW PAN WPŁYW ZMIENNEGO ZAWILGOCENIA GRUNTU NA JEGO NATURALNE POLE TEMPERATURY Maa STANIEC, Henryk NOWAK Poltechnka Wrocławska, Zakład

Bardziej szczegółowo

Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI

Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI METRO MEtalurgczny TRenng On-lne Modelowane omputerowe przeman fazowych w stane stałym stopów ze szczególnym uwzględnenem odlewów ADI Wyład II: ADI, wzrost ausferrytu Wojcech Kapturewcz AGH Eduacja Kultura

Bardziej szczegółowo

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej

Zastosowanie technik sztucznej inteligencji w analizie odwrotnej Zastosowane technk sztucznej ntelgencj w analze odwrotnej Ł. Sztangret, D. Szelga, J. Kusak, M. Petrzyk Katedra Informatyk Stosowanej Modelowana Akadema Górnczo-Hutncza, Kraków Motywacja Dokładność symulacj

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ

ROCZNIKI INŻYNIERII BUDOWLANEJ POLSKA AKADEMIA NAUK ODDZIAŁ W KATOWICACH KOMISJA INŻYNIERII BUDOWLANEJ ISSN 55-845 ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT Wydawntwo współfnansowane ze środów Europejsego Funduszu Rozwoju Regonalnego w

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI

Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI MERO MEtalurgczny Renng On-lne Modelowane oputerowe przean fazowych w stane stały stopów ze szczególny uwzględnene odlewów ADI Wyład III: Metoda różnc sończonych dla transportu cepła asy Wocech Kapturewcz

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność Magnetyzm Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman 28 II 2019 18 lutego 2010 Z poprzednego wykładu Sły elektrostatyczne, ładunek [C], prawo Coulomba, Elektryzowane bezpośredne

Bardziej szczegółowo

MODELOWANIE PRZEMIAN FAZOWYCH W POŁĄCZENIACH SPAWANYCH LASEROWO

MODELOWANIE PRZEMIAN FAZOWYCH W POŁĄCZENIACH SPAWANYCH LASEROWO echnologa Automatyzacja Montażu 3/013 MODELOWANIE PRZEMIAN FAZOWYC W POŁĄCZENIAC PAWANYC LAEROWO Adam KULAWIK, Joanna WRÓBEL treszczene Wytwarzane stalowych konstrukcj zwązane jest często z wykorzystanem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

Eugeniusz Rosołowski. Komputerowe metody analizy elektromagnetycznych stanów przejściowych

Eugeniusz Rosołowski. Komputerowe metody analizy elektromagnetycznych stanów przejściowych Eugenusz Rosołows Komputerowe metody analzy eletromagnetycznych stanów przejścowych Ocyna Wydawncza Poltechn Wrocławsej Wrocław 9 Opnodawcy Jan IŻYKOWSKI Paweł SOWA Opracowane redacyjne Mara IZBIKA Koreta

Bardziej szczegółowo

PRACE ORYGINALNE ORIGINAL PAPERS

PRACE ORYGINALNE ORIGINAL PAPERS PRACE ORYGINALNE ORIGINAL PAPERS Przegląd Nauowy Inżynieria i Kształtowanie Środowisa nr 66, 04: 37 33 (Prz. Nau. Inż. Kszt. Środ. 66, 04) Scientific Review Engineering and Environmental Sciences No 66,

Bardziej szczegółowo

Identyfikacja oporu wiskotycznego z uwzględnieniem wpływu tarcia suchego

Identyfikacja oporu wiskotycznego z uwzględnieniem wpływu tarcia suchego Ćwczene 7 Identyfacja oporu wsotycznego z uwzględnenem wpływu tarca suchego Cel ćwczena: Estymacja współczynna tłumena wsotycznego z uwzględnenem wpływu tarca suchego (Coulomba) na podstawe przebegów czasowych

Bardziej szczegółowo

Wykład 2: Stan naprężeń i odkształceń

Wykład 2: Stan naprężeń i odkształceń Wykład : Stan naprężeń odkształceń Leszek CHODOR, dr nż. bud, nż.arch. leszek@chodor.pl ; leszek.chodor@polske-nwestycje.pl Lteratura: [] Tmoschenko S. Gooder A.J.N., Theory of Elastcty Mc Graw Hll, nd,

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA J. Wyrwał Wyłady z mechan materałów.. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA... Wetor przemeszczena Rozważmy bryłę (cało materalne) o dowolnym ształce meszczoną w prostoątnym ładze odnesena Ox xx (rys.

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Metody Numeryczne 7/8 Inormatya Stosowana II ro Inżynera Oblczenowa II ro Wyład 7 Równana nelnowe Problemy z analtycznym rozwązanem równań typu: cos ln 3 lub uładów równań ja na przyład: y yz. 3z y y.

Bardziej szczegółowo

Wstępne przyjęcie wymiarów i głębokości posadowienia

Wstępne przyjęcie wymiarów i głębokości posadowienia MARCIN BRAS POSADOWIENIE SŁUPA 1 Dane do projektu: INSTYTUT GEOTECHNIKI Poltechnka Krakowska m. T. Koścuszk w Krakowe Wydzał Inżyner Środowska MECHANIKA GRUNTÓW I FUNDAMENTOWANIE P :=.0MN H := 10kN M :=

Bardziej szczegółowo

ANALIZA WYBOCZENIOWA RAM PŁASKICH I ICH MODELOWANIE W PROGRAMIE AUTODESK ROBOT STRUCTURAL ANALYSIS

ANALIZA WYBOCZENIOWA RAM PŁASKICH I ICH MODELOWANIE W PROGRAMIE AUTODESK ROBOT STRUCTURAL ANALYSIS Budownctwo 1 Krzysztof Kubc ANAIZA WYBOCZENIOWA RAM ŁASKICH I ICH MODEOWANIE W ROGRAMIE AUTODESK ROBOT STRUCTURA ANAYSIS Wprowadzene Analtyczne wyznaczene sł ytycznych za pomocą metody przemeszczeń, nawet

Bardziej szczegółowo

* Prof. dr hab. inż. Adam S. Jagiełło, Katedra Trakcji i Sterowania Ruchem, Wydział Inżynierii Elektrycznej i Komputerowej, Politechnika Krakowska.

* Prof. dr hab. inż. Adam S. Jagiełło, Katedra Trakcji i Sterowania Ruchem, Wydział Inżynierii Elektrycznej i Komputerowej, Politechnika Krakowska. Adam S. Jagełło* WŁAŚCIWOŚCI BEZSZCZOTKOWEJ MASZYNY PRĄDU STAŁEGO WZBUDZANEJ MAGNESAMI TRWAŁYMI W ZASTOSOWANIU DO NAPĘDU POJAZDÓW Propertes of drect current machnes brushless permanent magnet excted applcable

Bardziej szczegółowo

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu

Bardziej szczegółowo

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB

Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB Julusz MDZELEWSK Wydzał Eletron Techn nformacyjnych, nstytut Radoeletron, oltechna Warszawsa do:0.599/48.05.09.36 dosonalona metoda oblczana mocy traconej w tranzystorach wzmacnacza lasy AB Streszczene.

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Filtracja pomiarów z głowic laserowych

Filtracja pomiarów z głowic laserowych dr inż. st. of. Paweł Zalewsi Filtracja pomiarów z głowic laserowych słowa luczowe: filtracja pomiaru odległości, PNDS Założenia filtracji pomiaru odległości. Problem wyznaczenia odległości i parametrów

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

IV. WPROWADZENIE DO MES

IV. WPROWADZENIE DO MES Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

STATECZNOŚĆ NIEPRYZMATYCZNEJ KOLUMNY SMUKŁEJ PODDANEJ OBCIĄŻENIU SIŁĄ ŚLEDZĄCĄ SKIEROWANĄ DO BIEGUNA DODATNIEGO

STATECZNOŚĆ NIEPRYZMATYCZNEJ KOLUMNY SMUKŁEJ PODDANEJ OBCIĄŻENIU SIŁĄ ŚLEDZĄCĄ SKIEROWANĄ DO BIEGUNA DODATNIEGO MODELOWANIE INŻYNIERSKIE 016 nr 60, ISSN 1896-771X STATECZNOŚĆ NIEPRYZMATYCZNEJ KOLUMNY SMUKŁEJ PODDANEJ OBCIĄŻENIU SIŁĄ ŚLEDZĄCĄ SKIEROWANĄ DO BIEGUNA DODATNIEGO Janusz Szmdla 1a, Anna Jurczyńska 1b 1

Bardziej szczegółowo

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ Część. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. Wstęp Podstawowym narzędzem służącym do rozwązywana zadań metodą przemeszczeń są wzory transformacyjne.

Bardziej szczegółowo

Ściśliwa magnetyczna warstwa graniczna jako prosty model Tachokliny we wnętrzu Słońca. Krzysztof Mizerski,

Ściśliwa magnetyczna warstwa graniczna jako prosty model Tachokliny we wnętrzu Słońca. Krzysztof Mizerski, Ściśliwa magnetyczna warstwa graniczna jako prosty model Tachokliny we wnętrzu Słońca Krzysztof Mizerski, Univ. Leeds, School of Maths, Woodhouse Lane, Leeds, UK przy współpracy z: Davidem Hughes 23 Czerwca

Bardziej szczegółowo

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z

Bardziej szczegółowo

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3 TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

MESHING USING P-METHOD TWORZENIE MODELI DYSKRETNYCH ZA POMOCĄ MODELI TYPU P

MESHING USING P-METHOD TWORZENIE MODELI DYSKRETNYCH ZA POMOCĄ MODELI TYPU P MARTA ŻAKOWSKA MESHING USING P-METHOD TWORZENIE MODELI DYSKRETNYCH ZA POMOCĄ MODELI TYPU P Abstract Accuracy and effcency of analyss carred out thanks to the FEM method manly depends on the qualty of dscrete

Bardziej szczegółowo

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

METODA STRZAŁÓW W ZASTOSOWANIU DO ZAGADNIENIA BRZEGOWEGO Z NADMIAROWĄ LICZBĄ WARUNKÓW BRZEGOWYCH

METODA STRZAŁÓW W ZASTOSOWANIU DO ZAGADNIENIA BRZEGOWEGO Z NADMIAROWĄ LICZBĄ WARUNKÓW BRZEGOWYCH RAFAŁ PALEJ, RENATA FILIPOWSKA METODA STRZAŁÓW W ZASTOSOWANIU DO ZAGADNIENIA BRZEGOWEGO Z NADMIAROWĄ LICZBĄ WARUNKÓW BRZEGOWYCH APPLICATION OF THE SHOOTING METHOD TO A BOUNDARY VALUE PROBLEM WITH AN EXCESSIVE

Bardziej szczegółowo

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo