Zagadnienia AI wykład 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zagadnienia AI wykład 1"

Transkrypt

1 Zagadnienia AI wykład

2 Podręcznik do wykładu: Leszek Rutkowski Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN Prezentacje do wykładu będą sukcesywnie umieszczane na stronie: For students Zaliczenie wykładu: Egzamin pisemny w formie testu Zaliczenie laboratorium: Kolokwium + projekty

3 Co to jest inteligencja? Inteligencja to ogólna zdolność adaptacji do nowych warunków i wykonywania nowych zadań (W.Stern) Inteligencja to zdolność rozwiązywania problemów (J.Piaget) Inteligencja to zdolność do aktywnego przetwarzania informacji, przekształcania ich z jednej formy w inną poprzez operacje logiczne. Inteligencja to zdolność uczenia się (G.Ferguson).

4 Co to jest sztuczna inteligencja (AI)? Sztuczna inteligencja jest nauką o maszynach realizujących zadania, które wymagają inteligencji, gdy są wykonywane przez człowieka (M. Minsky) Sztuczna inteligencja stanowi dziedzinę informatyki dotyczącą metod i technik wnioskowania symbolicznego przez komputer oraz symbolicznej reprezentacji wiedzy stosowanej podczas takiego wnioskowania (E. Feigenbaum) Sztuczna inteligencja obejmuje rozwiązywanie problemów sposobami wzorowanymi na naturalnych działaniach i procesach poznawczych człowieka za pomocą symulujących je programów komputerowych (R.J. Schalkoff)

5 Jaka sztuczna inteligencja? Silna Słaba

6 Kiedy możemy uznać, że program lub maszyna jest inteligentna? W roku 960 Alan Turing zaproponował następujący test. Test Turinga Za pomocą klawiatury i monitora zadajemy te pytania maszynie. Czas trwania testu 5 minut. Jeżeli maszyna przekona 33% sędziów, że jest człowiekiem wówczas test jest zaliczony. Można wówczas stwierdzić ze maszyna (program) jest inteligentna. Czy taki test jest wystarczający?

7 Główne zastrzeżenia do testu Turinga Maszyna, która przejdzie test Turinga może być w stanie symulować ludzkie zachowanie konwersacyjne, lecz może to być znacznie mniej niż prawdziwa inteligencja. Maszyna może zwyczajnie używać sprytnie wymyślonych reguł. Maszyna może być inteligentna nie posiadając ludzkiej umiejętności prowadzenia rozmowy. Wielu ludzi mogłoby nie być w stanie zaliczyć takiego testu.

8 Czy istnieje maszyna (program), która zaliczyła test Turinga? Nie istnieje!* Proste programy konwersacyjne są w stanie sprawić, że ludzie wierzą, że rozmawiają z żywym człowiekiem. Program ten wybierał pewne kluczowe słowa z wypowiedzi ludzi, a następnie tworzył odpowiedź łącząc słowo kluczowe ze zwrotami z wcześniej wprowadzonej bazy danych otwartych zwrotów, takich jak co to dla Ciebie znaczy, zawsze ma sens, nie znam itp, co dawało czasami efekt głębokiego znaczenia odpowiedzi.

9 Czy istnieje maszyna (program), która zaliczyła test Turinga?

10 Czy istnieje maszyna (program), która zaliczyła test Turinga?

11 Eugene Goostman? W sobotę 7 czerwca 204 Eugene Goostman podawał się za 3- letniego chłopca i przekonał 33 proc. sędziów, że jest człowiekiem. Jako pierwszy w historii przeszedł test Turinga!?

12 Eugene Goostman?

13 Chiński pokój (John Searle) Załóżmy, że skonstruowaliśmy komputer, który zachowuje się, jakby rozumiał język chiński. Innymi słowy, komputer bierze chińskie znaki jako podstawę wejściową i śledzi zbiór reguł nimi rządzący (jak wszystkie komputery), koreluje je z innymi chińskimi znakami, które prezentuje jako informację wyjściową. Załóżmy, że komputer ten łatwo przechodzi test Turinga, tzn. przekonuje Chińczyka, że jest Chińczykiem. Searle proponuje, żeby założyć, iż to on sam siedzi wewnątrz komputera. Innymi słowy, on sam znajduje się w małym pokoju, w którym dostaje chińskie znaki, konstruuje książkę reguł, a następnie zwraca inne chińskie znaki, ułożone zgodnie z tymi regułami. Searle zauważa, że oczywiście nie rozumie ani słowa po chińsku, mimo iż wykonuje powierzone mu zadanie.

14 Jakie są praktyczne zastosowania sztucznej inteligencji?. Technologie i systemy oparte na logice rozmytej 2. Systemy ekspertowe 3. Sieci neuronowe 4. Robotyka 5. Przetwarzanie mowy i języka naturalnego W czasie naszego wykładu ograniczymy się do punktów i 3.

15 Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie takiego modelu jest nieopłacalne lub nawet niemożliwe. Technologie oparte na logice rozmytej znajdują zastosowanie m.in. w bazach danych, sterowaniu, modelowaniu i przetwarzaniu języka naturalnego.

16 Na czym polega różnica między logiką tradycyjną i logiką rozmytą? Paweł zarabia 5 tys. złotych. Paweł kupił 2 kg jabłek. Paweł ma 25 lat. Paweł w ciągu wakacji 3 dni spędził nad morzem. Określenia precyzyjne. Przypisanie 0 lub jest jednoznaczne. Logika tradycyjna Paweł zarabia dużo. Paweł kupił trochę jabłek. Paweł jest młody. Paweł w ciągu wakacji był krótko nad morzem. Określenia nieprecyzyjne. Przypisanie 0 lub nie jest jednoznaczne. Logika rozmyta

17 Rozmyty świat Czy to jest pudełko zawierające niebieskie kulki? Czy to jest pudełko zawierające czerwone kulki? Czy to jest pudełko zawierające niebieskie/czerwone kulki?

18 Bez rozmycia Brak czerwonych kulek 0 Tylko czerwone kulki Między stanami 0 i możliwe są stany pośrednie.

19 Rozmycie Pudełko nie zawiera czerwonych kulek (0). Pudełko zawiera sporo czerwonych kulek. Pudełko zawiera znikomą ilość czerwonych kulek. Pudełko zawiera przeważnie czerwone kulki. Pudełko zawiera trochę czerwonych kulek. Tak, pudełko zawiera tylko czerwone kulki ().

20 Logika klasyczna 0 Logika rozmyta Tylko dwie wartości: prawda i fałsz 0 Wartości z przedziału [0,] Zanim poznamy logikę rozmytą musimy poznać teorię zbiorów rozmytych

21 Zbiory - powtórzenie Zbiór to kolekcja, wielość obiektów. Pojęcie zbioru jest podstawowe i niedefiniowalne. Określenie zbioru musi być jednoznaczne w tym sensie, że musi być jasne czy dany konkretny obiekt należy do tego zbioru. Obiekt który należy do zbioru jest nazywany elementem zbioru. Zbiór definiujemy przez podanie jego elementów.

22 Przykład A = {0, 0, -5, 7} B = ø C = {{},,{{},{3}}} D = {xr: x>4} E = zbiór zielonych samochodów F = zbiór latających słoni W przypadku każdego z tych zbiorów łatwo określić czy dany obiekt należy do zbioru czy nie należy. 7A 3D

23 Zbiory rozmyte Istnieją zbiory w przypadku których określenie przynależności danego konkretnego obiektu nie jest jednoznaczne. Przykład A = zbiór młodych ludzi B = zbiór szybkich samochodów C = zbiór wysokich drzew W przypadku takich zbiorów możemy mówić o stopniu przynależności. Przykład Można powiedzieć, że osoba w wieku 35 lat należy do zbioru A w większym stopniu niż osoba w wieku 80 lat.

24 Dla ustalenia uwagi określmy tzw. obszar rozważań (ang. the universe of the discourse). Nazywać go będziemy przestrzenią lub zbiorem i oznaczymy przez X. Definicja Zbiorem rozmytym A w pewnej (niepustej) przestrzeni X, co zapisujemy jako AX nazywamy zbiór par A={(x, A (x)): xx} gdzie A : X [0,] jest funkcją przynależności zbioru rozmytego A. Funkcja ta każdemu elementowi xx przypisuje jego stopień przynależności do zbioru rozmytego A.

25 Możemy wyróżnić 3 przypadki: ) A (x)= oznacza pełną przynależność elementu x do zbioru rozmytego A, tzn. xa. 2) A (x)=0 oznacza brak przynależność elementu x do zbioru rozmytego A, tzn. xa. 3) 0< A (x)<0 oznacza częściową przynależność elementu x do zbioru rozmytego A. Jeżeli X jest przestrzenią o skończonej liczbie elementów X={x,x 2,,x 3 } To zbiór rozmyty A oznaczamy następująco A A( x) A( x2) A( x x x x 2 n n )

26 Jeżeli X zawiera nieskończoną liczbę elementów to zbiór rozmyty AX symbolicznie zapisujemy jako A X ( x) A x Przykład Niech X=N (zbiór liczb naturalnych) Zbiór liczb naturalnych bliskich liczbie 2 określamy następująco: A 0, 9 0,4 0 0,7 2 0,7 3 0,4 4 0, 5

27 Przykład Niech X=R (zbiór liczb rzeczywistych) Zbiór liczb rzeczywistych bliskich liczbie 2 (oznaczmy go przez A) określamy wykorzystując następującą funkcję przynależności: A ( x) ( x 2) 2 Zatem 0,5 A X [ ( x 2) 2 ] x x

28 Przykład Niech X=R (zbiór liczb rzeczywistych) Zbiory rozmyte liczb rzeczywistych bliskich liczbie 2 można też określić inaczej wykorzystując inną funkcję przynależności: ( x) A 0, x 2, 9 x 5 3 w przeciwnym razie 0, x

29 Przykład Sformalizujmy teraz określenie temperatura wody odpowiednia do kąpieli. Zbiór rozważań: Zbiór rozmyty: X=[5, 6,, 24, 25] A 0, 6 0,3 7 0,5 8 0,8 9 0, ,9 22 0,8 23 0, ,7 25 Inna możliwość: 0, A 5 0,2 6 0,4 7 0,7 8 0, ,9 2 0, ,8 23 0, ,7 25

30 Przykłady funkcji przynależności Funkcja Gaussowska gdzie x x x A( x) exp 2 jest środkiem, a określa szerokość krzywej Funkcja typu dzwonowego ( A x; a, b, c) 2b x c a gdzie parametr a określa szerokość, b określa nachylenie, natomiast c określa środek.

31 Przykłady funkcji przynależności Funkcja klasy t t( x; a, b, c) 0 x a b a c x c b 0 dla dla dla dla a b x x x x a c b c Funkcja klasy L L( x; a, b) b b x a 0 dla dla dla a x x x a b b

32 Przykłady funkcji przynależności Funkcja klasy s s( x; a, b, c) 0 2 x a 2 c a x c 2 c a dla dla dla dla a b x x x x a c b c Funkcja radialna ( x) A exp x x

33 Przykłady funkcji przynależności Funkcja klasy ( x; a, b) 0 x a b a dla dla dla a x x x a b b Funkcja singleton ( x) A 0 dla dla x x x x Do zbioru rozmytego A należy tylko x.

34 Przykład Niech X= [0, zł] Funkcję przynależności zbioru rozmytego dużo pieniędzy określamy jako funkcję klasy s. 0,

35 Możliwość vs prawdopodobieństwo Za pomocą rachunku prawdopodobieństwa możemy wyznaczyć np. prawdopodobieństwo tego, że w wyniku rzutu kostką dostaniemy 4 oczka. Za pomocą zbiorów rozmytych możemy opisać nieprecyzyjne stwierdzenie wyrzucenie dużej liczby oczek. Jedyne podobieństwo między teorią zbiorów rozmytych i teorią rachunku prawdopodobieństwa to fakt, że funkcja przynależności i prawdopodobieństwo przyjmują wartości z przedziału [0, ].

36 Definicja Zbiór elementów przestrzeni X dla których A (x)>0 nazywamy nośnikiem zbioru rozmytego A. Wprowadzamy oznaczenie: supp A:={ xx: A (x)>0 } Przykład Jeżeli X={,2,3,4,5,6,7,8} oraz wówczas A 0,2 0,4 2 0,6 5 0,3 7 supp A={, 2, 5, 7}

37 Definicja Wysokość zbioru rozmytego A oznaczamy przez h(a) i określamy jako: Przykład h( A) sup ( x) xx Jeżeli X={,2,3,4,5,6,7,8,9,0} oraz A wówczas A 0,2 0,4 2 0,6 5 0,3 7 h(a) = 0,6

38 Definicja Zbiór rozmyty A nazywamy normalnym wtedy i tylko wtedy gdy h(a)=. Zbiór, który nie jest normalny można znormalizować rozważając funkcję przynależności: Przykład A zn ( x) Jeżeli X={,2,3,4,5,6,7,8,9,0} oraz wówczas oraz A A zn 0,2 0,4 2 h(a) = 0,5 0,4 A( x) h( A) 0,8 2 0, , 7 0,2 7

39 Definicja Mówimy, że zbiór rozmyty A jest pusty (ozn. A=ø) wtedy i tylko wtedy supp A:= ø Definicja Mówimy, że zbiór rozmyty A zawiera się w zbiorze B (ozn. AB) wtedy i tylko wtedy ( x) ( x) dla każdego x X A B Przykład 0,5 A B

40 Definicja -Przekrojem zbioru rozmytego AX oznaczanym A nazywamy następujący zbiór nierozmyty A { x X : ( x) }, [0,] A Innymi słowy jest to zbiór określony przez funkcję charakterystyczną dla A( x) A ( x) 0 dla ( x ) A Z powyższej definicji widać, że zachodzi następująca implikacja: A 2 2 A 2

41 Przykład Jeżeli X={,2,3,4,5,6,7,8,9,0} oraz A 0,2 0,4 2 0,6 5 0,3 7 0,7 8 Wówczas: A {, 0 2, 3, 4, 5, 6, 7, 8, 9,0} A 0, {, 2, 5, 7, 8} A 0 {, 2, 5, 7, 8},2 A 0,4 A 0,5 {5, 8} A {2, 5, 8}

42 Definicja Mówimy, że zbiór rozmyty AR jest wypukły wtedy i tylko wtedy, gdy dla dowolnych x, x 2 R i [0,] zachodzi Przykład A[ x ( ) x2] min A( x), A( x2 Poniższy zbiór nie jest wypukły ) 0,

43 Operacje na zbiorach rozmytych Definicja Przecięciem zbiorów rozmytych A,BX jest zbiór rozmyty AB o funkcji przynależności AB ( x) min{ ( x), ( x)} W przypadku wielu zbiorów A, A 2,,A n przecięcie określone jest następującą funkcją przynależności A ( x) min{ A B ( x),..., A... A A x n n ( )} A B 0,5 AB

44 Definicja Sumą zbiorów rozmytych A,BX jest zbiór rozmyty AB o funkcji przynależności ( x) max{ ( x), ( x)} AB W przypadku wielu zbiorów A, A 2,,A n przecięcie określone jest następującą funkcją przynależności A ( x) max{ A B ( x),..., A... A A x n n ( )} 0,5 A AB B

45 Definicja Iloczynem algebraicznym zbiorów rozmytych A,BX jest zbiór rozmyty AB o funkcji przynależności Przykład AB Jeżeli X={,2,3,4,5,6,7,8} oraz ( x) ( x) ( x) A B A wówczas 0,2 0,4 2 A B A B 0,6 5 0,2 0,4 0,3 2 0,4 2 0,3 7 0,6 3 B A B 0,3 4 0,4 0,08 0,3 2 0,6 5 0,2 2 0,6 3 0,3 7 0,3 4

46 Definicja Dopełnieniem zbioru rozmytego AX jest zbiór rozmyty o funkcji A przynależności gdzie xx. Przykład 0,5 Jeżeli X={,2,3,4} A oraz wówczas A ( x) ( x) A ,8 A 0,6 2 A 0,2 0,4 4 3 A 0,4 2 A 0,6 4

47 Można łatwo pokazać (ćwiczenia!), że przypadku zbiorów rozmytych nie są spełnione prawa dopełnienia tzn: A A A A X Zachodzą natomiast prawa de Morgana oraz absorbcji (ćwiczenia!). Ponadto w przypadku operacji na zbiorach rozmytych zachodzą własności przemienności, łączności oraz rozdzielności. Przykład Jeżeli X={,2,3} oraz wówczas A A A A A 0,8 0,2 0,2 0,4 2 0, ,4 2 X A 0,8 0,6 2 3

48 Definicja Iloczynem kartezjańskim zbiorów rozmytych AX i BY nazywamy zbiór rozmyty AB funkcji przynależności gdzie xx i yy. AB ( x, y) min{ ( x), ( y)} A B Przykład Jeżeli X={,2,3,4,5} oraz wówczas A AB 0,2 0,2 (,) 0,4 2 0,2 (,2) 0,6 5 0,4 (2,) B 0,3 (2,2) 0,4 0,4 (5,) 0,3 2 0,3 (5,2)

49 Definicja Koncentrację zbioru rozmytego AX oznaczamy przez CON(A) i definiujemy jako gdzie xx. Definicja CON ( ( x) ( ( x)) A) Rozcieńczenie zbioru rozmytego AX oznaczamy przez DIL(A) i definiujemy jako gdzie xx. Przykład DIL Jeżeli X={,2,3,4,5} oraz Wówczas A) A ( ( x) ( ( x)) A 0,04 CON( A) A 0,2 0, ,4 2 0,44 DIL( A) 0,63 2

50 Zmienna lingwistyczna Zmienną lingwistyczną nazywamy zmienną, której wartościami są słowa lub zdania w języku naturalnym lub sztucznym. Powyższe słowa lub zdania nazywamy wartościami lingwistycznymi zmiennej lingwistycznej. Przykład Niech x będzie zmienną lingwistyczną oznaczającą wiek. Wartości zmiennej lingwistycznej x należą do zbioru T={ stary, bardzo stary, nie tak stary, zupełnie młody, młody, bardzo młody } Do każdego z elementów zbioru T można przyporządkować odpowiedni zbiór rozmyty.

51 Przykład Niech X={0, 20, 40, 60, 80} oraz A 0 0,6 20 0, 40 Zbiór rozmyty A odpowiada określeniu młody. Wówczas 0,36 CON( A) 0 20 możemy interpretować jako bardzo młody. Natomiast CON( CON( A)) 0 0,0 40 0,3 20 możemy interpretować jako bardzo, bardzo młody.

52 Przykład 4-osobowa rodzina chce kupić mieszkanie. Komfort mieszkania związany jest z ilością sypialni. Opisujemy go zbiorem rozmytym C 0,2 0,5 2 0, ,7 5 0,3 6 Wielkość mieszkania opisujemy zbiorem rozmytym W 0,2 3 0,4 4 0,6 5 0, Mieszkanie komfortowe i jednocześnie duże opisywane jest zbiorem rozmytym C W 0,2 3 0,4 4 0,6 5 0,3 6

53 t -normy Przecięcie zbiorów rozmytych A,BX określiliśmy jako zbiór rozmyty AB o funkcji przynależności AB ( x) min{ ( x), ( x)} Zamiast funkcji min możemy użyć dowolnej t-normy, tzn. funkcji T takiej, że: T(T(a, b), c) = T(a, T(b, c)) (łączność) T(a, b) = T(b, a) (przemienność) T(a, b) T(d, c) dla a d, b c (monotoniczność) T(a, ) = a (warunek brzegowy) A B Wprowadźmy oznaczenie T ( a, b ) a T b

54 Operatory t -normy

55 s -normy Sumę zbiorów rozmytych A,BX określiliśmy jako zbiór rozmyty AB o funkcji przynależności AB ( x) max{ ( x), ( x)} Zamiast funkcji max można wziąć dowolna s-normę, tzn. dowolna funkcje spełniająca warunki: S(S(a, b), c) = S(a, S(b, c)) (łaczność) S(a, b) = S(b, a) (przemienność) S(a, b) S(d, c) dla a d, b c (monotoniczność) S(a, 0) = a (warunek brzegowy) A B Wprowadźmy oznaczenie S( a, b) S ab

56 Operatory s -normy

57 Relacje rozmyte Zbiory rozmyte pozwalają nam operować nieprecyzyjnym sformułowaniami temperatura wody odpowiednia do kąpieli szybki samochód Zajmiemy się teraz relacjami rozmytymi. Relacje takie pozwalają sprecyzować nieprecyzyjne sformułowania np. x jest znacznie mniejsze od y zdarzenie x miało miejsce dużo wcześniej niż zdarzenie y

58 Definicja Relacją rozmytą R między dwoma niepustymi zbiorami (nierozmytymi) X i Y nazywamy zbiór rozmyty określony na iloczynie kartezjańskim X Y tzn: gdzie x, y, ( x, y x X y Y R R ) R : X Y [0,] jest funkcją przynależności. Oznaczenia R XY R( x, y) ( x, y) R XY R( x, y) ( x, y)

59 Przykład Niech X={3,4,5} i Y={4,5}. Zdefiniujmy następującą relację R 0,8 (3,4) 0,3 (3,5) (4,4) 0,8 (4,5) 0,8 (5,4) (5,5) Relację tą możemy interpretować jako reprezentację zdania x jest mniej więcej równe y. Funkcja przynależności dla tej relacji R ( x, y) 0,8 0,3 dla dla dla x x y x y y 2

60 Przykład (cd) Relację R 0,8 (3,4) 0,3 (3,5) (4,4) 0,8 (4,5) 0,8 (5,4) (5,5) możemy zapisać za pomocą macierzy y y 2 x x x 2 3 0,8 0,8 0,3 0,8 gdzie x =3, x 2 =4, x 3 =5 oraz y =4, y 2 =5.

61 Przykład Przyjmijmy, że X=Y=[40,300] będzie przedziałem prędkości osiąganych przez samochody. Rozważmy relację R o następującej funkcji przynależności R ( x, y) 0 x y 70 dla dla dla 0 x y 0 x y 70 x y 70 Relację tą możemy interpretować jako reprezentację zdania samochód osiągający prędkość maksymalną x jest dużo szybszy od samochodu osiągającego prędkość maksymalną y.

62 Złożenie relacji Niech X, Y i Z będą zbiorami nierozmytymi. Rozważmy dwie relacje rozmyte RX Y z funkcją przynależności SY Z z funkcją przynależności R S ( x, y) ( y, z) Definicja Złożeniem typu sup-t relacji rozmytych R i S nazywamy relację rozmytą RSX Z określoną następującą funkcją przynależności RS ( x, z) sup{ ( x, y) ( y, z)} yy gdzie T jest operatorem t normy. R T S

63 Przykład Jeżeli T(a, b)=min{a, b} wówczas otrzymujemy RS ( x, z) sup{min{ ( x, y), ( y, z)}} yy (tzw. złożenie typu sup-min) R S Jeżeli zbiór Y ma skończoną liczbę elementów wówczas RS ( x, z) max{min{ ( x, y), ( y, z)}} yy (tzw. złożenie typu max-min) R S

64 Przykład Rozważmy dwie relacje rozmyte R 0,3 0,6 0,7 S 0,4 0,3 0,8 0,4 gdzie X={x, x 2 }, Y={y, y 2 }, Z={z, z 2, z 3 } Złożenie typu max-min relacji R i S ma postać R S 0,3 0,6 0,7 0,4 0,3 0,8 0,4 a a 2 a a 2 22 a a 3 23

65 Przykład (cd) Korzystając ze wzoru RS Znajdujemy wartości a ij ( x, z) max{min{ ( x, y), ( y, z)}} yy a max{min{0,3;0,4};min{ ;0,3}} 0,3 a max{min{0,3;};min{ ;0,8}} 0,8 a 2 max{min{0,3;0,4};min{ ;}} 3 a2 max{min{0,6;0,4};min{0,7;0,3}} 0,4 a max{min{0,6;};min{0,7;0,8}} 0,7 22 a23 max{min{0,6;0,4};min{0,7;}} R S 0,7

66 Przykład (cd) Ostatecznie R S 0,3 0,4 0,8 0,7 0,7

67 Złożenie relacji - własności R R I I R O R O O R T S R T S R n m n m R R R mn n m R R ) ( ) ( ) ( T R S R T S R ) ( ) ( ) ( T R S R T S R T R S R T S

68 Przykład Rozważmy relacje rozmyte RX Y, IY Z, OY Z R r r 2 r r 2 22 I 0 0 O gdzie X={x, x 2 }, Y={y, y 2 }, Z={z, z 2 } Złożenie typu max-min relacji R i I ma postać max{min{ r max{min{ r 2 R I,},min{ r,},min{ r r r ,0}},0}} r r max{min{ r max{min{ r 2,0},min{ r,0},min{ r 2 22,}},}}

69 Przykład (cd) czyli R I r r 2 r r r r 2 r r 2 22 R Złożenie typu max-min relacji R i O ma postać max{min{ r max{min{ r 2 R O,0},min{ r,0},min{ r r r ,0}},0}} 0 0 r r max{min{ r max{min{ r 0 O 0 2,0},min{ r,0},min{ r 2 22,0}},0}}

70 Koniec wykładu

Technologie i systemy oparte na logice rozmytej

Technologie i systemy oparte na logice rozmytej Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup.

Zasada rozszerzania. A U A jest zbiorem rozmytym, B jest obrazem zbioru A Przeniesienie rozmytości A w odwzorowaniu f na zbiór B. sup. Zasada rozszerzania f U V U jest zbiorem rozmytym V = f( ), jest obrazem zbioru Przeniesienie rozmytości w odwzorowaniu f na zbiór v) = ( v)? ( f ( ) = sup ( u) gdy ( v) 0 1 = 1 u f ( v) f( ) ( v) 1 0

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F.

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI. METODY HEURYSTYCZNE wykład 6. (alternatywa dla s) (zdef. poprzez klasę s) GAUSSOWSKA F. METODY HEURYSTYCZNE wykład 6 STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI 2 GAUSSOWSKA F. PRZYNALEŻNOŚCI F. PRZYNALEŻNOŚCI KLASY s środek; a określa szerokość krzywej 3 4 F. PRZYNALEŻNOŚCI KLASY π F. PRZYNALEŻNOŚCI

Bardziej szczegółowo

Wnioskowanie rozmyte. Krzysztof Patan

Wnioskowanie rozmyte. Krzysztof Patan Wnioskowanie rozmyte Krzysztof Patan Wprowadzenie Informacja precyzyjna jest to jedyna postać informacji akceptowanej przez konwencjonalne metody matematyczne, najczęściej dostarczana jest przez precyzyjne

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE

ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE SYSTEMY ROZMYTE ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 2 965 Lotfi A. Zadeh: Fuzzy sets Metoda reprezentacji wiedzy wyrażonej w języku naturalnym: Temperatura wynosi 29 o C informacja liczbowa - naturalna

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. III

Sztuczna inteligencja : Zbiory rozmyte cz. III Instytut Informatyki Uniwersytetu Śląskiego lab 3 Notacja Zadeha: symboliczny zapis zbioru rozmytego dla przestrzeni dyskretnej. Dla X jest przestrzenią o skończonej liczbie elementów X = {x 1, x 2,...,

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Sztuczna inteligencja: zbiory rozmyte

Sztuczna inteligencja: zbiory rozmyte Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. 2

Sztuczna inteligencja : Zbiory rozmyte cz. 2 Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:

Bardziej szczegółowo

Reprezentacja rozmyta - zastosowania logiki rozmytej

Reprezentacja rozmyta - zastosowania logiki rozmytej 17.06.2009 Wrocław Bartosz Chabasinski 148384 Reprezentacja rozmyta - zastosowania logiki rozmytej 1. Wstęp Celem wprowadzenia pojęcia teorii zbiorów rozmytych była potrzeba matematycznego opisania tych

Bardziej szczegółowo

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.

Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np. ZBIORY ROZMYTE Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonyc przypadkac daje się opisać tylko w sposób nieprecyzyjny, np. W dużym mieście, powinien istnieć regionalny port

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 1 Zasady współpracy https://mat.ug.edu.pl/~matpz/ wykłady nie są obowiązkowe, ale nieobecności będą odnotowywane nieobecności nie należy usprawiedliwiać,

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.

Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie

Po uruchomieniu programu nasza litera zostanie wyświetlona na ekranie Część X C++ Typ znakowy służy do reprezentacji pojedynczych znaków ASCII, czyli liter, cyfr, znaków przestankowych i innych specjalnych znaków widocznych na naszej klawiaturze (oraz wielu innych, których

Bardziej szczegółowo

Algebra zbiorów. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak

Algebra zbiorów. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Algebra zbiorów Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Teoria mnogości Teoria mnogości jest działem matematyki zajmującym się

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S. Logika binarna Logika binarna zajmuje się zmiennymi mogącymi przyjmować dwie wartości dyskretne oraz operacjami mającymi znaczenie logiczne. Dwie wartości jakie mogą te zmienne przyjmować noszą przy tym

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 5 - Zbiory i logiki rozmyte Część 1. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 5 - Zbiory i logiki rozmyte Część 1 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 36 Plan

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji

Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

METODY INTELIGENCJI OBLICZENIOWEJ wykład 6

METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 2 ZBIORY ROZMYTE I WNIOSKOWANIE PRZYBLIŻONE 965 Lotfi A. Zadeh: : Fuzzy sets In almost every case you can build the same product without fuzzy logic, but fuzzy

Bardziej szczegółowo

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie: Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

020 Liczby rzeczywiste

020 Liczby rzeczywiste 020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie

Bardziej szczegółowo

Sztuczna inteligencja

Sztuczna inteligencja Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Kurs logiki rozmytej - zadania. Wojciech Szybisty

Kurs logiki rozmytej - zadania. Wojciech Szybisty Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.

DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego

Bardziej szczegółowo

Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy

Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

14. Przestrzenie liniowe

14. Przestrzenie liniowe 14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest

Bardziej szczegółowo

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu

Bardziej szczegółowo

Wstęp do Matematyki (2)

Wstęp do Matematyki (2) Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 4 (Fuzzy logic) 23 listopad 2011 Plan wykładu 1 Systemy wnioskowania z danymi niepewnymi 2 3 Inteligentne systemy z wiedzą Systemy z wiedzą składają się z dwóch części: 1 Baza wiedzy (KB): zbioru

Bardziej szczegółowo

Sztuczna inteligencja - wprowadzenie

Sztuczna inteligencja - wprowadzenie Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne. Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Interwałowe zbiory rozmyte

Interwałowe zbiory rozmyte Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku

Bardziej szczegółowo

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą

Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/

Bardziej szczegółowo

SID Wykład 7 Zbiory rozmyte

SID Wykład 7 Zbiory rozmyte SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent

Bardziej szczegółowo

Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych

Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej

Bardziej szczegółowo

Zbiory wypukłe i stożki

Zbiory wypukłe i stożki Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Układy logiki rozmytej. Co to jest?

Układy logiki rozmytej. Co to jest? PUAV Wykład 14 Co to jest? Co to jest? Logika rozmyta (fuzzy logic) jest to dział matematyki precyzyjnie formalizujący nieprecyzyjne, nieformalne ludzkie rozumowanie. Co to jest? Logika rozmyta (fuzzy

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo