3b. Rozwiązywanie zadań ze skali mapy
|
|
- Natalia Patrycja Jakubowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 3b. Rozwiązywanie zadań ze skali mapy
2 SKALA MAPY określa stopień zmniejszenia odległości przedstawionej na mapie w stosunku do odpowiedniej odległości w terenie. Wyróżniamy następujące rodzaje skali: SKALA LICZBOWA, SKALA MIANOWANA, SKALA LINIOWA (PODZIAŁKA), SKALA POLOWA.
3 SKALA LICZBOWA jest przedstawiona w postaci ułamka, np.: 1: , rzadziej 1/ (w chwili obecnej tego zapisu już nie używamy). W liczniku i mianowniku tej skali występują takie same jednostki. Zapis ten oznacza, że odległość na mapie zmniejszono razy w porównaniu do odległości rzeczywistych, czyli 1 mm (1 cm) na mapie odpowiada mm (cm) w terenie. SKALA MIANOWANA określa odległość w terenie, której odpowiada podstawowa jednostka długości na mapie, np. 1 cm 2000 m, 1 cm 2 km. SKALA LINIOWA (PODZIAŁKA) przedstawia skalę w postaci graficznej. Ma postać prostego odcinka z zaznaczonymi jednostkami miary liniowej. Pierwsza jednostka dodatkowo podzielona jest na mniejsze, równe części w celu dokonania dokładniejszego odczytu.
4 Przedstawiona skala liniowa odpowiada skali liczbowej 1: Odległość odczytujemy z rozstawień nóżek cyrkla przeniesionych z mapy. Czyli odległość na wyznaczonym obszarze wynosi 1,8 km
5 DANE: SKALA LICZBOWA: 1 : ZAMIANA NA SKALĘ MIANOWANĄ: 1 cm cm (wprowadzamy takie same jednostki przy obu liczbach) ZAMIENIAMY NA WIĘKSZE JEDNOSTKI CM Z PRAWEJ STRONY: 1 cm 2000 m 1 cm 2 km PAMIĘTAJMY: Skalę liczbową zamieniamy na mianowaną, odcinając określoną liczbę zer: jeżeli zapis zamieniamy na metry, z prawej strony odcinamy dwa zera, jeżeli na kilometry pięć zer.
6 Na mapie w skali 1 : długość odcinka AB wynosi 3,4 cm. Ile wynosi długość tego odcinka w terenie? Obliczenia: zamieniamy skalę liczbową na mianowaną (pamiętamy aby pozostawić ją w jak najprostszej postaci aby miała ona po prawej stronie możliwie mało zer ): 1 cm cm 1 cm m 1 cm 10 km obliczamy rzeczywistą odległość w terenie w tej skali, tworząc proporcję: 1 cm 10 km 3,4 cm x km po obliczeniu proporcji: xx kkkk = 33,44 cm 1111 km 11 cm = 3333 km Odpowiedź: Długość odcinka AB w terenie wynosi 34 km.
7 Odległość w linii prostej między Krakowem i Kielcami zmierzona na mapie w skali 1 : wynosi 20,2 cm. Oblicz odległość rzeczywistą w linii prostej między tymi miejscowościami. CZAS: 2 minuty Obliczenia: Pamiętaj aby wyprowadzać pełne wzory (pełne obliczenia)! Pamiętaj o jednostkach! Odpowiedź:.
8 Odległość w linii prostej między Krakowem i Kielcami zmierzona na mapie w skali 1 : wynosi 20,2 cm. Oblicz odległość rzeczywistą w linii prostej między tymi miejscowościami. Obliczenia: zamieniamy skalę liczbową na mianowaną (pamiętamy aby pozostawić ją w jak najprostszej postaci aby miała ona po prawej stronie możliwie mało zer ): 1 cm cm 1 cm m 1 cm 5 km obliczamy rzeczywistą odległość w terenie w tej skali, tworząc proporcję: 1 cm 5 km 20,2 cm xkm po obliczeniu proporcji: 𝒙𝒙𝒌𝒌𝒌𝒌 = 𝟐𝟐𝟐𝟐,𝟐𝟐 cm 𝟓𝟓 km 𝟏𝟏 cm = 𝟏𝟏𝟏𝟏𝟏𝟏 km Odpowiedź: Odległość rzeczywista w linii prostej między Krakowem a Kielcami wynosi 101 km.
9 Wiedząc, że odległość pomiędzy dwoma miastami na mapie wynosi 2 cm, zaś odległość w terenie jest równa 40 km, podaj skalę liczbową i mianowaną, w której została sporządzona mapa. CZAS: 3 minuty Obliczenia: Pamiętaj aby wyprowadzać pełne wzory (pełne obliczenia)! Pamiętaj o jednostkach! Odpowiedź:.
10 Wiedząc, że odległość pomiędzy dwoma miastami na mapie wynosi 2 cm, zaś odległość w terenie jest równa 40 km, podaj skalę liczbową i mianowaną, w której została sporządzona mapa. Obliczenia: obliczamy za pomocą proporcji, ile wynosi odległość pomiędzy dwoma miastami w terenie odpowiadająca odległości 1 cm na mapie: 2 cm 40 km 1 cm xkm po obliczeniu proporcji: 𝒙𝒙𝒌𝒌𝒌𝒌 = 𝟏𝟏 cm 𝟒𝟒𝟒𝟒 km 𝟐𝟐 cm = 𝟐𝟐𝟐𝟐 km reasumując: 1 cm na mapie odpowiada 20 km odległości w terenie. korzystając ze wcześniejszych obliczeń piszemy: skalę mianowaną: 1 cm 20 km skalę liczbową (dodajemy 5 zer, ponieważ przechodzimy z km na cm): 1 : Odpowiedź: Mapa została sporządzona w skali mianowanej liczbowej 1 : cm 20 km, co odpowiada skali
11 SKALA POLOWA to stosunek pola powierzchni figury na mapie do pola odpowiadającej jej figury w terenie. Sposób otrzymania skali polowej dla mapy w skali 1 : skalę liczbową zamieniamy na mianowaną: skala liczbowa: 1 : skala mianowana (po zamianie): 1cm 2 km w celu uzyskania skali polowej: obie strony skali mianowanej (w naszym przykładzie 1cm 2 km) podnosimy do kwadratu: (1 cm) 2 (2 km) 2 uzyskujemy wynik naszą skalę polową: 1 cm 2 4 km 2 czytamy: powierzchnia 1 cm 2 na mapie odpowiada 4 km 2 w terenie.
12 Na mapie w skali 1 : powierzchnia jeziora wynosi 4 cm2. Oblicz rzeczywistą powierzchnię tego jeziora. Obliczenia: skalę liczbową zamieniamy na mianowaną: skala liczbowa: 1 : skala mianowana (po zamianie): 1cm 3 km obliczamy skalę polową: obie strony skali mianowanej podnosimy do kwadratu: (1 cm)2 (3 km)2 uzyskujemy skalę polową: 1 cm2 9 km2 obliczamy powierzchnię rzeczywistą jeziora (dla danej w zadaniu skali): tworzymy proporcję: 1 cm2 9 km2 4 cm2 xkm2 po obliczeniu proporcji: 4 cm2 9 km2 xkm2 = = 𝟑𝟑𝟑𝟑 𝐤𝐤𝐤𝐤𝟐𝟐 2 1 cm Odpowiedź: Powierzchnia jeziora w rzeczywistości wynosi 36 km2.
13 Na mapie w skali 1: zaznaczony jest sad za pomocą sygnatury powierzchniowej o wymiarach 4 cm x 5 cm. Jaka jest powierzchnia rzeczywista tego sadu w hektarach? CZAS: 4 minuty Obliczenia: Pamiętaj aby wyprowadzać pełne wzory (pełne obliczenia)! Pamiętaj o jednostkach! Odpowiedź:.
14 Na mapie w skali 1: zaznaczony jest sad za pomocą sygnatury powierzchniowej o wymiarach 4 cm x 5 cm. Jaka jest powierzchnia rzeczywista tego sadu w hektarach? Obliczenia: zamieniamy skalę liczbową naszej mapy (1:10000) na mianowaną: 1cm 100 m obliczamy skalę polową obie strony skali mianowanej podnosimy do kwadratu: (1 cm)2 (100 m)2 i uzyskujemy skalę polową: 1 cm m2 obliczamy powierzchnię (Psad) sadu na mapie: Psad = 4 cm 5 cm = 20 cm2 obliczamy powierzchnię rzeczywistą sadu (dla danej w zadaniu skali): tworzymy proporcję: 1 cm m2 20 cm2 xm2 po obliczeniu proporcji: xm2 = 20 cm m2 = 𝟐𝟐𝟐𝟐𝟐𝟐 𝟎𝟎𝟎𝟎𝟎𝟎 𝐦𝐦𝟐𝟐 1 cm2 Poprzedni wynik przeliczamy na hektary (pamiętamy że: 1 ha = m2): przesuwamy przecinek o 4 miejsca w lewo ( m2) czyli: xha = 𝟐𝟐𝟎𝟎 𝒉𝒉𝒉𝒉 lub po prostu piszemy i obliczamy kolejną proporcję: 1 ha m2 xha m2 po obliczeniu proporcji: xha = 1 ha m2 = 𝟐𝟐𝟐𝟐 𝒉𝒉𝒉𝒉 m2 Odpowiedź: Powierzchnia rzeczywista sadu wynosi 20 ha.
15 Przekształć do postaci mianowanej i graficznej skalę: 1: OBLICZENIA: 1 krok: zamiana na skalę mianowaną: 1 cm cm czyli: 1 cm 250 metrów (przy zamianie odcięto 2 zera) 2 krok: narysowanie podziałki graficznej: Teoretycznie można było podać odp.: 1cm 0,25 km
16 Przekształć do postaci mianowanej i graficznej skalę: 1 : Skala 1 : to tzw. jednocalówka (używana w angielskim systemie miar) Przeliczaj na tylko na miary polskie! OBLICZENIA: 1 krok: zamiana na skalę mianowaną: 1 cm cm czyli: 1 cm 633,6 m (przy zamianie odcięto 2 zera) Aby móc przejść do kroku nr 2 należy ją uprościć wyznaczając proporcję, abyśmy mogli zaznaczyć ją na przedziałach w skali graficznej, np. liczba 500 m: 1 cm 633,6 m xcm 500 m po obliczeniu proporcji: 𝒙𝒙𝒄𝒄𝒄𝒄 = 𝟏𝟏 cm 𝟓𝟓𝟓𝟓𝟓𝟓 m 𝟔𝟔𝟔𝟔𝟔𝟔,𝟔𝟔 m = 0, cm 0,8 cm 2 krok: narysowanie podziałki graficznej:
17 Czy możemy zrobić inaczej TAK: Należy po prostu inną wartość wstawić do proporcji: np.: 1000 m oczywiście może to być każda inna ale OKRĄGŁA liczba (np. 750, 1500) 1 cm 633,6 m x cm 1000 m po obliczeniu proporcji: xx cccc = 11 cm m ,66 m = 1, cm 1,6 cm I znów możemy przejść do 2 kroku: narysowania podziałki graficznej (dla wartości przedziału wynoszącego 1000 m):
18 Skala liczbowa: 1: Skala mianowana: 1 cm 633,6 m lub 1cm 0,6336 km Skala liniowa (powstała ze wcześniejszych obliczeń):
19 SKALA LICZBOWA SKALA MIANOWANA SKALA LINIOWA (PODZIAŁKA GRAFICZNA) SKALA POLOWA 1 : : cm 340 m 1 cm m 1cm 23,6 km 1 : cm 157,75 m 1cm 670 m Pracę dokończ w domu!!!
20 Materiały pomocnicze do nauki Opracowane w celach edukacyjnych (niekomercyjnych) Opracowanie i redakcja: Sławomir Dmowski Kontakt: kontakt@norwid24.waw.pl WSZELKIE PRAWA ZASTRZEŻONE - KOPIOWANIE ZABRONIONE -
Test całoroczny z matematyki. Wersja A
Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Trenuj przed sprawdzianem! Matematyka Test 4
mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce
KONKURSY MATEMATYCZNE. Treść zadań
KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,
Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski.
Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski. Uczeń: odczytuje z map informacje przedstawione za pomocą różnych metod kartograficznych Mapa i jej przeznaczenie Wybierając się
ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C
Wymagania na poszczególne oceny klasa 4
Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
RAPORT z diagnozy Matematyka na starcie
RAPORT z diagnozy Matematyka na starcie przeprowadzonej w klasach pierwszych szkół ponadgimnazjalnych 1 Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy
SPRAWDZIANY Z MATEMATYKI
SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci
I. LOGICZNE STRUKTURY DRZEWIASTE
I LOGICZNE STRUKTURY DRZEWIASTE Analizując dany problem uzyskuje się zadanie projektowe w postaci pewnego zbioru danych Metoda morfologiczna, która została opracowana w latach 1938-1948 przez amerykańskiego
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2015/2016 Etap II rejonowy
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 05/06 Etap II rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania
TEST WIADOMOŚCI: Równania i układy równań
Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za
Zagadnienia transportowe
Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt
1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy.
Granice funkcji Definicja (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f() w punkcie = a, co zapisujemy f() = g (.) a jeżeli dla każdego ε > 0 można wskazać taką liczbę (istnieje
Karta pracy: Ćwiczenie 5.
Imię i nazwisko: Grupa: Karta pracy: Ćwiczenie 5. Tytuł ćwiczenia: Optymalizacja geometrii prostych cząsteczek organicznych. Analiza populacyjna i rzędy wiązań. Zagadnienia do przygotowania: Przypomnij
KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,
KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych
Segment B.XII Opór elektryczny Przygotował: Michał Zawada
Segment B.XII Opór elektryczny Przygotował: Michał Zawada Zad. 1 Człowiek może zostać porażony nawet przez tak słaby prąd, jak prąd o natężeniu 50 ma, jeżeli przepływa on blisko serca. Elektryk, pracując
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.
MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY
INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 9 FUNKCJE WYKŁADNICZE, LOGARYTMY Dla dowolnej liczby a > 0, liczby
Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest
Harmonogramowanie projektów Zarządzanie czasem
Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013
Etap szkolny 13 listopada 2012 r. Godzina 10.00 Kod ucznia Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i
OBLICZENIA MATEMATYCZNE W GEOGRAFII
OBLICZENIA MATEMATYCZNE W GEOGRAFII 1. Kartografia Wysokość względna bezwzględna Wysokość względna to wysokość liczona od podstawy formy terenu podawana w metrach. Wysokość bezwzględna jest wysokością
TWIERDZENIE PITAGORASA
PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt
ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4
PRACA KLASOWA PO REALZACJ PROGRAMU NAUCZANA W KLASE 4 PLAN PRACY KLASOWEJ Nr zad. Czynności sprawdzane Cele / Wymagania Odniesienie do podstawy programowej Odpowiedzi 1 zapisywanie liczby w systemie dziesiątkowym
XXXV OLIMPIADA GEOGRAFICZNA Zawody II stopnia pisemne podejście 1 - rozwiązania
-1r/1- XXXV OLIMPIADA GEOGRAFICZNA Zawody II stopnia pisemne podejście 1 - rozwiązania W zadaniach 1-3 należy wykorzystać mapę (s. 4) i przekrój geologiczny (s. 5). Zadanie 1. Uwaga: w miejscach pozostawionych
Katedra Technik Wytwarzania i Automatyzacji TOLERANCJE I POMIARY WALCOWYCH KÓŁ ZĘBATYCH
Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: TOLERANCJE I POMIARY WALCOWYCH KÓŁ ZĘBATYCH 1. Cel ćwiczenia Zapoznanie studentów z narzędziami do pomiaru
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
WOJEWÓDZKI KONKURS FIZYCZNY
Kod ucznia Liczba punktów: Zad. 1- Zad. 2- Zad. 3- Zad.4- Zad.5- R A Z E M : pkt. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ WOJEWÓDZKI 13. 03. 2014 R. 1. Zestaw
Temat: Miary i przedrostki układu SI obliczenia w sklepie i w domu.
Spotkanie 5 Temat: Miary i przedrostki układu SI obliczenia w sklepie i w domu. Plan zajęć 1. Miary masy. 1 g najmniej w sklepie 1 dag = 10 g 1 kg = 100 dag = 1000 g 1 t = 1000 kg 1 dag (1 deko Deco piłkarz
Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa
Zamawiający: Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej 00-662 Warszawa, ul. Koszykowa 75 Przedmiot zamówienia: Produkcja Interaktywnej gry matematycznej Nr postępowania: WMiNI-39/44/AM/13
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV SZKOŁA PODSTAWOWA W KLĘCZANACH ROK SZKOLNY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV SZKOŁA PODSTAWOWA W KLĘCZANACH ROK SZKOLNY 2014/ 2015 Dostosowane do programu,,matematyka z kluczem'' I półrocze Dopuszczający Dostateczny
Matematyka dla liceum/funkcja liniowa
Matematyka dla liceum/funkcja liniowa 1 Matematyka dla liceum/funkcja liniowa Funkcja liniowa Wstęp Co zawiera dział Czytelnik pozna następujące informacje: co to jest i jakie ma własności funkcja liniowa
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
Matematyka:Matematyka I - ćwiczenia/granice funkcji
Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie
STA T T A YSTYKA Korelacja
STATYSTYKA Korelacja Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM
ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM DLA UCZNIÓW GIMNAZJUM Drogi gimnazjalisto! Serdecznie dziękujemy, że zdecydowałeś się na wzięcie udziału w naszym konkursie. Test (tzw. wielokrotnego wyboru) składa
Rys. 1. Rysunek do zadania testowego
Test zaliczeniowy Zadanie testowe. Przeanalizuj rysunek 1., przedstawiający odwzorowanie pewnej sytuacji przestrzennej przy pomocy metody Monge a (rzutów prostokątnych na dwie wzajemnie prostopadłe rzutnie
SPRAWDZIAN NR 1 A. XX B. XXX C. III D. XXI. Rozmiar opon Gumix Opon-net. 175/ zł / szt. 210 zł / szt. 175/ zł / szt. 190 zł / szt.
SPRAWDZIAN NR 1 PAULINA CZERENKO IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz na osi liczbowej liczby: 2, 5 i 6. 2. Zaznacz poprawne dokończenie zdania. Liczba 30 zapisana znakami rzymskimi to A. XX B. XXX
Promocja i identyfikacja wizualna projektów współfinansowanych ze środków Europejskiego Funduszu Społecznego
Promocja i identyfikacja wizualna projektów współfinansowanych ze środków Europejskiego Funduszu Społecznego Białystok, 19 grudzień 2012 r. Seminarium współfinansowane ze środków Unii Europejskiej w ramach
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 20/202 KOD UCZNIA Etap: Data: Czas pracy: szkolny 5 listopada 20 r. 90 minut Informacje dla ucznia:.
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
D-01.01.01. wysokościowych
D-01.01.01 Odtworzenie nawierzchni i punktów wysokościowych 32 Spis treści 1. WSTĘP... 34 1.1. Przedmiot SST... 34 1.2. Zakres stosowania SST... 34 1.3. Zakres robót objętych SST... 34 1.4. Określenia
MATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI KL. IV
Kod ucznia ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI KL. IV dysleksja Czas pracy: 40 minut Instrukcja dla ucznia: 1. Sprawdź, czy arkusz zawiera 8 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi.
Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.
Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia
Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a
ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY
ZASADY WYPEŁNIANIA ANKIETY 1. ZMIANA GRUPY PRACOWNIKÓW LUB AWANS W przypadku zatrudnienia w danej grupie pracowników (naukowo-dydaktyczni, dydaktyczni, naukowi) przez okres poniżej 1 roku nie dokonuje
BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:
BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f() = przy = zakładając, że przyrost zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f() w punkcie
1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla
Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie
Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie 1. Wprowadzenie W wielu zagadnieniach dotyczących sterowania procesami technologicznymi niezbędne jest wyznaczenie
Temat: Mnożenie liczby całej przez ułamek. Obliczanie ułamka z danej liczby.
Temat: Mnożenie liczby całej przez ułamek. Obliczanie ułamka z danej liczby. Cele lekcji: A. Uczeń zna zasadę mnożenia liczby naturalnej przez ułamek. B. Uczeń potrafi pomnożyć ułamek przez liczbę całą
Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk
Marzena Kococik Olga Kuśmierczyk Szkoła Podstawowa im. Marii Konopnickiej w Krzemieniewicach Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Konkursy wyzwalają aktywność
Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą.
Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą. Po pierwsze - notacja - trzymasz swoją kostkę w rękach? Widzisz ścianki, którymi można ruszać? Notacja to oznaczenie
KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych
KONSPEKT LEKCJI MATEMATYKI Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum TEMAT: Działania łączne na liczbach wymiernych Cele lekcji: Cel ogólny: - utrwalenie wiadomościiumiejętności z działu
Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej
Międzyszkolny Konkurs Matematyczny dla klasy trzeciej Cele konkursu : - rozwijanie zainteresowań matematycznych u dzieci w młodszym wieku szkolnym; - wdrażanie do logicznego myślenia; - zwiększanie efektywności
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
Wniosek o ustalenie warunków zabudowy
Wniosek o ustalenie warunków zabudowy Informacje ogólne Kiedy potrzebna jest decyzja Osoba, która składa wniosek o pozwolenie na budowę, nie musi mieć decyzji o warunkach zabudowy terenu, pod warunkiem
Spis treści. Dokument pochodzi ze strony www.gwo.pl LICZBY NATURALNE I UŁAMKI
Spis treści LICZBY NATURALNE I UŁAMKI Działania na liczbach naturalnych i ułamkach dziesiętnych... 3 Potęgowanie liczb.. 8 Przykłady pierwiastków 12 Działania na ułamkach zwykłych... 13 Ułamki zwykłe i
Zintegrowane Systemy Zarządzania Biblioteką SOWA1 i SOWA2 SKONTRUM
Zintegrowane Systemy Zarządzania Biblioteką SOWA1 i SOWA2 SKONTRUM PROGRAM INWENTARYZACJI Poznań 2011 Spis treści 1. WSTĘP...4 2. SPIS INWENTARZA (EWIDENCJA)...5 3. STAŁE UBYTKI...7 4. INTERPRETACJA ZAŁĄCZNIKÓW
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014
PRZYRODA RODZAJE MAP
SCENARIUSZ LEKCJI PRZEDMIOT: PRZYRODA TEMAT: RODZAJE MAP AUTOR SCENARIUSZA: mgr Katarzyna Borkowska OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI RODZAJE MAP CZAS REALIZACJI 2 x 45
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
WZÓR UMOWA Nr... zawarta w dniu...
WZÓR UMOWA Nr... zawarta w dniu... w Długołęce, pomiędzy Gminnym Ośrodkiem Pomocy Społecznej w Długołęce ul. Szkolna 40 a, 55-095 Mirków, działającym na podstawie Uchwały Nr 20/IV/90 Rady Gminy Długołęka
Przeliczanie jednostek długości i masy oraz zapisywanie ich w postaci ułamka dziesiętnego
Przeliczanie jednostek długości i masy oraz zapisywanie ich w postaci ułamka dziesiętnego Przedmowa Opracowanie to omawia zamianę jednostek długości oraz masy przy założeniu że czyta go uczeń klasy 4 lub
Geometria Wykreślna Wykład 3
Geometria Wykreślna Wykład 3 OBRÓT PUNKTU Z obrotem punktu A związane są następujące elementy obrotu: - oś obrotu - prosta l, - płaszczyzna obrotu - płaszczyzna, - środek obrotu - punkt S, - promień obrotu
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania
TEST Z MATEMATYKI W KLASIE IV pt. Matematyka w historii
TEST Z MATEMATYKI W KLASIE IV pt. Matematyka w historii Twój kod ------------------- Witaj! Przed Tobą test sprawdzający umiejętności i wiadomości z zakresu matematyki klasy IV. Zawiera 0 zadań. W zadaniach,,
Wiedza niepewna i wnioskowanie (c.d.)
Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu
i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.
Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie
XIII KONKURS MATEMATYCZNY
XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania
art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.),
Istota umów wzajemnych Podstawa prawna: Księga trzecia. Zobowiązania. Dział III Wykonanie i skutki niewykonania zobowiązań z umów wzajemnych. art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny
Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas
Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Ćwiczenie 1. Niech W = {(x 1, x 2, x 3 ) K 3 : x 2 1 + x 2 2 + x 2 3 = x 1 x 2 + x 2 x 3 + x 3 x 1 }. Czy W jest podprzestrzeni a gdy
Objaśnienia do Wieloletniej Prognozy Finansowej na lata 2011-2017
Załącznik Nr 2 do uchwały Nr V/33/11 Rady Gminy Wilczyn z dnia 21 lutego 2011 r. w sprawie uchwalenia Wieloletniej Prognozy Finansowej na lata 2011-2017 Objaśnienia do Wieloletniej Prognozy Finansowej
PLANIMETRIA. Poziom podstawowy
LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
ZAPYTANIE OFERTOWE. Tłumaczenie pisemne dokumentacji rejestracyjnej ZAPYTANIE OFERTOWE
ZAPYTANIE OFERTOWE Tłumaczenie pisemne dokumentacji rejestracyjnej Biofarm sp. z o.o. ul. Wałbrzyska 13 60-198 Poznań Poznań, 09 grudnia 2015r. ZAPYTANIE OFERTOWE I. Nazwa i adres Zamawiającego: Biofarm
Lepsze samopoczucie to lepsze oceny. Jaka jest korzyść dla dziecka?
Lepsze samopoczucie to lepsze oceny Jaka jest korzyść dla dziecka? Gdy dziecko przebywa w szkole, warunki nauki znacząco wpływają na jego samopoczucie i skuteczność przyswajania wiedzy. Uczenie się może
Umowa o pracę zawarta na czas nieokreślony
Umowa o pracę zawarta na czas nieokreślony Uwagi ogólne Definicja umowy Umowa o pracę stanowi dokument stwierdzający zatrudnienie w ramach stosunku pracy. Według ustawowej definicji jest to zgodne oświadczenie
KOMISJA NADZORU FINANSOWEGO
KOMISJA NADZORU FINANSOWEGO PLAC POWSTAŃ CÓW WARSZAWY 1, 00-950 WARSZAWA WNIOSEK O ZATWIERDZENIE ANEKSU DO PROSPEKTU EMISYJNEGO zatwierdzonego w dniu 6 marca 2008 r. decyzją nr DEM/410/4/26/08 (Na podstawie
Świat fizyki powtórzenie
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Masz
Spis treści. 1. Znak... 3. Konstrukcja symbolu... 3. Budowa znaku... 3. 2. Kolorystyka wersja podstawowa... 3. Kolorystyka wersja czarno-biała...
KSIĘGA ZNAKU 1 Spis treści 1. Znak... 3 Konstrukcja symbolu... 3 Budowa znaku... 3 2. Kolorystyka wersja podstawowa... 3 Kolorystyka wersja czarno-biała... 4 Kolorystyka wersja jednokolorowa druk aplą,
Gaz i jego parametry
W1 30 Gaz doskonały Parametry gazu Równanie Clapeyrona Mieszaniny gazów Warunki normalne 1 Gazem doskonałym nazywamy gaz spełniaj niający następuj pujące warunki: - cząstki gazu zachowują się jako doskonale
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!