MODELOWANIE WIELOSTOPNIOWYCH PRZEKŁADNI ZĘ BATYCH METODĄ SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODELOWANIE WIELOSTOPNIOWYCH PRZEKŁADNI ZĘ BATYCH METODĄ SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH"

Transkrypt

1 MECHANIKA TEORETYCZNA I STOSOWANA 3 16 (1978) MODELOWANIE WIELOSTOPNIOWYCH PRZEKŁADNI ZĘ BATYCH METODĄ SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH STEFAN BERCZYŃ SKI HENRYK MAĆ KOWIAK KRZYSZTOF MARCHELEK (SZCZECIN) Metoda sztywnych elementów skoń czonych (SES) może być efektywnie wykorzystana do obliczeń gię tno- skrę tnyc h drgań swobodnych i wymuszonych napę dów wielostopniowych z przekł adniami zę batymi. W monografii [1] która jest najpełniejszym opracowaniem metody SES problem ten nie został poruszony. W niniejszej pracy przedstawiony jest algorytm obliczeń który stanowi rozwinię cie metody SES w jej zastosowaniu do obliczeń napę dów z przekł adniami zę batymi. Algorytm opracowano dla modelu przekładni zę - batej przenoszą cej ś rednie moce (np. napę dy obrabiarek) w której nie wystę puje luz obwodowy. a) t. _i r -i L r». r ~> ł 1r~ «- _i U j - element jprę ż yjło - ttumą cy Rys. 1 Przy tworzeniu przedstawionego modelu pominię to takie zjawiska jak zmiana ką ta przyporu 1 * na skutek odkształceń zę bów wpływ nierównomiernoś ci rozkładu obcią ż eni a wzdłuż linii styku zę bów oraz zazę bienia krawę dziowego powstają cego wskutek zwichrowania kół pod obcią ż eniem błę dów wykonawczych i montaż owych oraz zjawiska giros- J) Definicje poję ć zwią zanych z geometrią zazę bienia znaleźć moż na np. w [4].

2 28 S. BERCZYŃ SKI H. MAĆ KOWIAK K. MARCHELEK kopowe. Wpł yw tych czynników na procesy dynamiczne zachodzą ce w napę dzie jest z reguły lokalny i moż na go w pierwszym przybliż eniu przy analizie całoś ci napę du pominą ć. Na rys. 1. pokazano model przykł adowej dwustopniowej przekładni zę batej zbudowany ze sztywnych elementów skoń czonych połą czonych mię dzy sobą elementami sprę - ż ysto- tłumią cym i o liniowych charakterystykach. Koł a zę bate są przedstawione za pomocą SES nr 2 5pir. Rys. 2 Na rys. 2 przedstawiono sposób modelowania zazę bienia dla przypadku trzech współ - pracują cych kólp r s. Przyję to zał oż enie że koła współ pracują ze sobą na linii przypora. Punkty styku P pr - P P pr - r oraz P rs i P rs _j tylko w stanie równowagi pokrywają się tworzą c odpowiednio punkty P pr i P rs (rys. 2). W czasie ruchu punkty P pr - P P pr - r oraz P M i P _ s muszą cią gle znajdować się na odpowiednich pł aszczyznach zazę bienia których ś lady przecię cia z płaszczyzną rysunku oznaczono przez / i l pr. Jest to równoznaczne z nałoż eniem na ukł ad wię zów geometrycznych. W punktach styku P pr i P rs zaczepiono ukł ady współrzę dnych P pr> Z prl Z pr2 Z vr i oraz P rs Z fsi Z rs2 Z rs3. Macierze współ - rzę dnych punktów P pr - P> P pr^r i P rs - r Prs- sw tych układach mają postać: ;... P r ~P. = CO H^pr- pl> Z pr _ v i Z pr _ p3 j Ł> P T- r -.. VT~T ~ gdzie Ż j._p macierz kolumnową współrzę dnych punktu P pi._ p w ukł adzie P pr Z trl Zpn Z P r3 Z pr _ pi współ rzę dna.punktu P pr ~ p na. osi Z pr _ t (i = 1^2 3);

3 MODELOWANIE WIELOSTOPNIOWYCH PRZEKŁADNI ZĘ BATYCH 281 Macierze wektorów kierunkowych płaszczyzn zazę bienia mają postać U pr = C\{A p r B pr Cpr}' ^rs = Col{^rs B rs C rs }. Równania wię zów geometrycznych (płaszczyzn zazę bienia) wyraż one są wzorami: (1) f pr == A pr {Zpr- pl Zpr- n) + Bpr{Zpr- p2 Zpr- rz) + Cpr(Z pr _ p 3 Zpr- ri) ~ ) (2) f rs = A r.(z - n - Z - sl ) + B (Z r _ Ta ~Z - l 3 + C r (Z n - r3 - Z - t a) =. Układy współrzę dnych są układami prawoskrę tnymi przy czym osie Z pr2 i Z rs2 są zwrócone do osi obrotu kół napę dzanych w danej współpracują cej parze. Przy wyprowadzaniu wzorów ustalono nastę pują ce reguły: litera stoją ca na pierwszym miejscu w indeksie oznacza koło napę dzają ce litera stoją ca na drugim miejscu koł o napę dzane np. indeks pr oznacza że koło napę dzają ce ma numer p zaś koło napę dzane ma numer r kierunek obrotów koła napę dzają cego (np. p) jest prawy gdy ukł ad z nim zwią zany obraca się zgodnie z reguł ą ś ruby prawoskrę tnej wokół osi x pi kierunek pochylenia linii zę bów koła napę dzają cego (np. p) jest prawy gdy rzut linii zę bów na płaszczyznę osi x pl x p3 tworzy z osią x pl ką t od do 9. Rys. 3 Współ rzę dne A pt B pr C pr wektora kierunkowego płaszczyzny zazę bienia kół p i r opisują zależ nośic A pr = (- iy + 1 cosa sm/ 3 pr B pr = (- l)'sina n) w C pr = cosa n cos/ 9 pr przy y czym jo gdy kierunek obrotów koła p jest prawy ~ \ l gdy kierunek obrotów koła p jest lewy. ( gdy kierunek; pochylenia linii zę bów koł a p jest prawy \ l gdy kierunek pochylenia linii zę bów koła/ ) jest lewy gdzie «oznacza nominalny ką t przyporu koła zę batego zaś / 3 pr ką t pochylenia linii zę ba koł a p. y..

4 282 S. BERCZYŃ SKI H. MAĆ KOWIAK K. MARCHELEK Zależ nośi c(1) i (3) są także słuszne dla przekładni utworzonej z kół stoż kowych (rys. 3)» Układ współrzę dnych P pr! Z prl Z pr2 Z pr3 powinien być tak zorientowany aby oś Z prl pokrywała się ze wspólną tworzą cą stoż ków podziałowych obu kół p i r zaś oś Z pp2 zwrócona była w kierunku osi obrotu koł a napę dowego r. Równania wię zów (1) i (2) należy wyrazić w tych samych współ rzę dnych w których opisany jest ruch sztywnych elementów skoń czonych. Jako współ rzę dne uogólnione opisują ce ruch sztywnych elementów skoń czonych przyję to trzy wzajemnie prostopadłe przemieszczenia translacyjne d wzdłuż osi x f oraz trzy ką ty obrotów f wokół tych osi. Na przykł ad przemieszczenia uogólnione SES / i s wyraż one są zależ noś ciami : q P = col{q n q r2... q rs q r6 } = col{8 r <J> P } (4) r >»: i q 5 = co% sl q s2)... q ss q s6 } = col{s s < > s } gdzie q ri q si oznacza przemieszczenia uogólnione kół r i s w układach P x Pl x r2 x r3 Przemieszczenia punktów P rs kół risw układzie Z PSl Z 2 Z rs3 wyrazić moż na za pomocą współ rzę dnych uogólnionych korzystają c z wzorów: przy czym > q s _ P = U rs - P V PS - P q P q rs - s = U_V _q (4b) r "~ r U ""'*' ' "~ r5> rs ~ r6 1.fi**""'' q M _ P = COli^rs_ s i q r s- s2> qrs- ss q r s- s6s COl{O PS _ s 4*rs- s/» gdzie q rs - ri q r s- si oznaczają przemieszczenia kół risw ukł adzie P rs Z PS1 Z rs2 Z 3. Wystę pują ce w równaniach (4a) macierze U _ P i U _ s transformacji przemieszczeń z ukł adów r x n x r2 x r3 i s x sl x s2 x s3 do ukł adu P rs Z sl Z rs2 Z ta3 wyraż one są nastę pują co: (5) U PS _ P = T U PS _ S = r przy czym i oraz macierze wersorów osi ukł adów h = col {j P i j P 2 j P3 } j s = col {j sl j s 2 j s3 } Jr«- Cl{j PSl j Ps2 i" Ps3 }. "Wyraz C PS _ P<I)t macierzy C PS _ P zdefiniowany jest nastę pują co: C - P( u = cos(x rl Zrsk) h k = gdzie (X H Z rsk ) oznaczają ką t zawarty mię dzy / - tą osią ukł adu zwią zanego z koł em r a k- tą osią ukł adu P rs Z m Z Ps2 Z Ps3 do którego transformuje się przemieszczenia. Macierze v rj v P _ 5 przenoszenia przemieszczeń z układów O r X rl X r2 X r3 i Oi ^si>^s2^s3 do układu P rb) Z rst Z 2) Z ra3 są wyraż one w postaci (7) V - v

5

6 284 S. BERCZYŃ SJU H. MAĆ KOWIAK K. MARCHELEK przedstawić moż na w postaci:.. (15a) f pr = nj r Z pr _ p - <.Z pr = (16a) / - n r T sz rs - n?;z _ s =. Podstawiają c do równań (15a) i (16a) zależ nośi c (12) uzyska się : f pr = n T ptc^_ p y^ pqp- n T prc^ rv^ rą r = Wprowadzają c oznaczenia: T i _ nt r*t V* T n T C T V* pr p "pr^pr- p ' pr- pi *pr r "pr^pr r 'pr rj * ' T n T r T v* T nt T V* x 1- rs r "rs^ti r ' rs r > rs s "rs^rs s " rs s? równania (17) przyjmują postać 1 j fpr = T pr _ p q p - T pr q. = fn = T rs q- T rs _ s q s =. Wyraż enia (19) są liniowymi formami współrzę dnych uogólnionych. Wyrazy macierzy T pp - p T pr T rs _ 5 T rs _ s są pochodnymi równań wię zów wzglę dem odpowiednich współrzę dnych uogólnionych czyli Tr P ~ \ 8fpr > 8f " r r hł (2) L^"' 8q r2 '- ' 8q r6 \ ' rs - s ~ Przy zał oż eniu że wię zy są idealne równania ruchu modelu napę du składają cego sic* z SES i uwzglę dniają cego wię zy geometryczne nał oż one na zazę bienia moż na zapisać w postaci (21) Mq + Lq + Kq= P+ gx gdzie M oznacza diagonalną macierz współczynników bezwładnoś ci sztywnych elementów skoń czonych modelu Lkwadratową macierz tł umienia K kwadratową macierz sztywnoś ci q kolumnową macierz współ rzę dnych uogólnionych X kolumnową macierz nieoznaczonych mnoż ników Lagrange'a zaś g prostoką tną macierz pochodnych równań wię zów wzglę dem współ rzę dnych uogólnionych. Sposób budowania macierzy g (wzór (22)) przedstawiono dla nastę pują cych założ eń: jeś li w kolejnoś ci SES w modelu para kół o numerach p i / 'jest pierwszą parą współpracują cą para kół r i s drugą parą współpracują cą (koł o r jest kołem poś redniczą cym patrz rys. 2) zaś para kół o numerach t i w jest k- tą parą współ pracują cą oraz / oznacza

7 MODELOWANIE WIELOSTOPNIOWYCH PRZEKŁ ADNI ZĘ BATYCH 285 liczbę współ pracują cyc h par kół a n- liczbę stopni swobody cał ego modelu wówczas: Jfc-1 k Lpr- p r r np5t 1 rs- r (22) g= s - T _ TT xtw- t w T r Kolumnową macierz nieoznaczonych mnoż ników Lagrange'a przedstawia wzór (ZJ) A = GOl^/ lprj / lf S ni Af W... / Luz/ 1 2 k 1 gdzie l pr jest nieoznaczonym mnoż nikiem Lagrange'a przyporzą dkowanym wię zom geometrycznym nr 1 (pierwszej parze współ pracują cyc h kół tj. p i r) X ty) nieoznaczonym mnoż nikiem Lagrange'a przyporzą dkowanym wię zom geometrycznym nr k (ifc- tej parze współ pracują cyc h kół tj. t i w). Równania (21) moż na rozwią zać przy uż yciu ETO jednakże konieczne jest wyrugowanie nieoznaczonych mnoż ników Lagrange'a. W tym celu wykorzystano metodę podaną w pracy [2]. Róż niczkując dwukrotnie wzglę dem czasu t równania wię zów geometrycznych uzyska się równania warunkowe o postaci nxl Jpr = = *- pr php *- pr rqr ~ ^s (24) Jrs ~ *rs rhf *- rs shs *-N Równania (24) w notacji macierzowej przyjmują postać (25) gtq =. Kolumnowy wektor przyspieszeń wyznaczony z równań (21) wyraż ony jest wzorem (26) q' = M-

8 286 S. BERCZYŃ SKI H. MAĆ KOWIAK K. MARCHELEK Podstawiają c (26) do (25) i dokonują c prostych przekształceń otrzyma się macierz nieoznaczonych mnoż ników Lagrange'a: (27) X = ( g TM- 1 g)- 1 g r M- 1 (Lq + Kq- P). Aby macierz (g T M~*g) był a odwracalna speł niony musi być warunek jej nieosobliwoś ci. Analizują c budowę macierzy g ł atwo stwierdzić że rzą d macierzy (g T M~ 1 g) jest równy / co implikuje jej nieosobliwoś ć. Macierz X wyraż oną wzorem (27) podstawia się do równań (21) (28) Mq+ Lq+ Kq = P+ g(g T M- 1 g)- 1 g r M- 1 (Lq+ Kq- P). Oznaczają c w równaniu (28): (29) L / = - g (g T M- 1 g)- 1 g r M- 1 L (3) K r = (31) P/ = uzyska się równanie ruchu w postaci (32) Mq+ (L+ L / )q + (K+ K / )q= P+ P r. Podstawiają c L = L+L f ; K= K+ K / ; P^P+ P - do równania (32) uzyska się (33) Mq+ tq+ Kq= P. Macierze L K i P tworzy się zgodnie z zasadami uję tymi w pracy [1]. Równania (33) opisują ruch liniowego modelu wielostopniowej przekł adni zę batej I mogą być rozwią zane przy uż yciu metod i programów zamieszczonych w pracy [1]. Przedstawiona w niniejszej pracy metoda modelowania wielostopniowych przekładni zę batych przy uż yciu metody sztywnych elementów skoń czonych może być stosowana w tych przypadkach gdy w układzie wystę puje wstę pne napię cie o wartoś ci gwarantują cej le w trakcie jego pracy nie bę dzie zachodzić odkrywanie luzów. W porównaniu z dotychczas stosowanymi w praktyce obliczeniowej matematycznymi modelami drgań skrę tnych [5679] model zbudowany z SES umoż liwia wyznaczenie charakterystyk dynamicznych zarówno drgań skrę tnych jak i gię tnych poszczególnych wałków napę du. Wprawdzie "w metodach przedstawionych w pracach [5 7] uwzglę dnia się wpływ ugię ć wałków i promieniowych odkształceń łoż ysk na charakterystyki drgań skrę tnych lecz tylko statycznie przez wprowadzenie tzw. skrę tnej podatnoś ci równoważ nej. Model matematyczny drgań gię tno- skrę tnyc h powinien zatem dać dokł adniejsze wyniki. Dodatkową zaletą modelu wielostopniowej przekładni zę batej zbudowanego z SES jest moż liwość wykorzystania programów metody SES [1]. Literatura cytowana w tekś cie 1. J. KRUSZEWSKI i in. Metoda sztywnych elementów skoń czonychwarszawa G. K. SUSŁOW Mechanika teoretyczna Warszawa W. L. WEJC A. E. KOCZURA A. M. MARTYNIENKO Obliczanie dynamiki napę dówmaszyn Warszawa ' -

9 MODELOWANIE WIELOSTOPNIOWYCH PRZEKŁADNI ZĘ BATYCH K. OCHĘ DUSZKO Kola zę bate tom. I Konstrukcja Warszawa Wilson W. KER Precical Solution of Torsional Vibration Problems Volume II London K. MARCHELEK Dynamika obrabiarek Warszawa W. NADOLSKI Modelowanie dynamiczne przekładni zę batych jednostopniowych Prace IPPT Warszawa M. MIELCZAREK Moż liwoś ciwykorzystania systemowego modelu matematycznego do badania charakterystyk dynamicznych wielostopniowej przekładni zę batej Arch. Bud. Masz (1975). P e 3 io M e MOflEJIHPOBAHKE MHOrOCTYnEH'qATBIX 3YB^ATBIX IIEPEJWJ no METODY 3KECTKHX KOHE^HLIX 3JIEMEHTB H3jioJKeH MeTOfl onpeaejiehhh H3rH6HO- KpyTiuii>Hbix KOJieSamiH rjiabhmx nphbo^ob MeTajinope- H<ymnx crahkob. <E>n3iwecKaH MOflejit nodpoena ii3 wcecrcthx Korie- rawx sjiemeitrob coeflmieirabix c nomomtio ynpyro- ffemn(j)hpyioinhx ajieiweirrob c JiHHeiłHbiMH xapai<tephcthkamh. Ka>Kflbift 3neirteHT ynpyraii HJIH fleiwncbhpyiomhh onpefleneh mectbio K3cb({)HUHeHTaMH ynpyrocth H flemm})hpobahhfi. KOHeifflbie 3JieMeHTbi MOflejiupyiomne sys^iatłie nepe^a^jh HaxoflHTCH uop fleiictbhem reo- H anrophtm ee peuiehhh npeflcrabjiehbi B npoctom BH«e npnroflhom RJIK 3 I B M. Summary MODELLING OF MULTIPLE TOOTHED GEARS BY RIGID FINITE ELEMENTS A method of calculating the f lexural and torsional vibrations of the machine tool main drives is presented. The physical model was constructed of rigid finite elements connected with elasticdamping elements of linear characteristics. Each elastic or damping element is defined by six rigidity or damping coefficients. The rigid finite elements modelling the gear are subjected to geometrical constraints resulting from the conditions of constant gearing. Both the mathematical model and the corresponding solution algorithm are presented in the form suitable for computations. POLITECHNIKA SZCZECIŃ SKA Praca została złoż onaw Redakcji dnia 3 stycznia 1977 r. ponownie dnia 1 marca 1978 r

Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8

Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8 Wykład 7 i 8 Zagadnienie Keplera Przybli Ŝ enie małych drgań Ruch w potencjale U(r)=-α/r RozwaŜ my ruch punktu materialnego w polu centralnym, o potencjale odwrotnie proporcjonalnym do odległo ś ci r od

Bardziej szczegółowo

Wykład 3. Ruch w obecno ś ci wię zów

Wykład 3. Ruch w obecno ś ci wię zów Wykład 3 Ruch w obecno ś ci wię zów Wię zy Układ nieswobodnych punktów materialnych Układ punktów materialnych, których ruch podlega ograniczeniom wyraŝ onym przez pewne zadane warunki dodatkowe. Wię zy

Bardziej szczegółowo

METODA OBLICZANIA AMPLITUD DRGAŃ WYMUSZONYCH BELEK SŁABO TŁUMIONYCH TARCIEM KONSTRUKCYJNYM. 1. Wstę p

METODA OBLICZANIA AMPLITUD DRGAŃ WYMUSZONYCH BELEK SŁABO TŁUMIONYCH TARCIEM KONSTRUKCYJNYM. 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 3, 4, (986) METODA OBLICZANIA AMPLITUD DRGAŃ WYMUSZONYCH BELEK SŁABO TŁUMIONYCH TARCIEM KONSTRUKCYJNYM WIESŁAW OSTACHOWICZ DARIUSZ SZWEDOWICZ Politechnika Gdań ska. Wstę

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

METODA IDENTYFIKACJI PODATNOŚ CI DYNAMICZNEJ FUNDAMENTÓW MASZYN JANUSZ K O L E N D A (GDAŃ SK) 1. Wstę p

METODA IDENTYFIKACJI PODATNOŚ CI DYNAMICZNEJ FUNDAMENTÓW MASZYN JANUSZ K O L E N D A (GDAŃ SK) 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 3, 6 (978) METODA IDENTYFIKACJI PODATNOŚ CI DYNAMICZNEJ FUNDAMENTÓW MASZYN JANUSZ K O L E N D A (GDAŃ SK). Wstę p Obserwowany w ostatnich latach wzrost mocy jednostkowych

Bardziej szczegółowo

PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI

PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI MECHANIKA TEORETYCZNA I STOSOWANA 3, 10 (1972) PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI KAROL H. BOJDA (GLIWICE) W pracy wykorzystano wł asnoś ci operacji T a [1] do rozwią zania równania

Bardziej szczegółowo

WYZNACZANIE NAPRĘ ŻŃ ENA PODSTAWIE POMIARÓW TYLKO JEDNEJ SKŁ ADOWEJ ODKSZTAŁ CENIA

WYZNACZANIE NAPRĘ ŻŃ ENA PODSTAWIE POMIARÓW TYLKO JEDNEJ SKŁ ADOWEJ ODKSZTAŁ CENIA MECHANIKA. TEORETYCZNA I STOSOWANA 1, 2 (1964) WYZNACZANIE NAPRĘ ŻŃ ENA PODSTAWIE POMIARÓW TYLKO JEDNEJ SKŁ ADOWEJ ODKSZTAŁ CENIA WOJCIECH SZCZEPIKJSKI (WARSZAWA) Dla peł nego wyznaczenia na drodze doś

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011 1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

i- i.a... (i) 1. Wstę p

i- i.a... (i) 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 2, 23 (1985) ANALIZA DRGAŃ PARAMETRYCZNYCH UKŁADÓW CIĄ GŁYCH PODDANYCH STAŁEMU OBCIĄ Ż ENI U POPRZECZNEMU Z ZASTOSOWANIEM METODY ASYMPTOTYCZNEJ I METODY ELEMENTÓW SKOŃ

Bardziej szczegółowo

REDUKCJA STOPNI SWOBODY UKŁADÓW DYSKRETNYCH JANUSZ BARAN, KRZYSZTOF MARCHELEK

REDUKCJA STOPNI SWOBODY UKŁADÓW DYSKRETNYCH JANUSZ BARAN, KRZYSZTOF MARCHELEK MECHANIKA TEORETYCZNA STOSOWANA, 9 (97) REDUKCJA STOPNI SWOBODY UKŁADÓW DYSKRETNYCH JANUSZ BARAN, KRZYSZTOF MARCHELEK (SZCZECIN) Przy modelowaniu maszyn za pomocą ukł adów dyskretnych bardzo waż ną rolę

Bardziej szczegółowo

POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA. 1. Wstę p

POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA. 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 4, 18 (1980) POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA (OPOLE) 1. Wstę p W pracy przedstawiono rozwią zanie

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

ANALIZA WYMUSZONYCH DRGAŃ WAŁU KORBOWEGO ZE Ś MIGŁEM PRZY ZASTOSOWANIU METODY ELEMENTÓW SKOŃ CZONYCH. 1. Wstę p

ANALIZA WYMUSZONYCH DRGAŃ WAŁU KORBOWEGO ZE Ś MIGŁEM PRZY ZASTOSOWANIU METODY ELEMENTÓW SKOŃ CZONYCH. 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 25, 1987 ANALIZA WYMUSZONYCH DRGAŃ WAŁU KORBOWEGO ZE Ś MIGŁEM PRZY ZASTOSOWANIU METODY ELEMENTÓW SKOŃ CZONYCH ZBIGNIEW DŻ YGADŁO WIESŁAW SOBIERAJ PIOTR ZALEWSKI Wojskowa

Bardziej szczegółowo

OSZACOWANIE ROZWIĄ ZAŃ RÓWNAŃ KANONICZNYCH METODY SIŁ W PRZYPADKU PRZYBLIŻ ONEGO WYZNACZANIA LICZB WPŁYWOWYCH. 1. Wstę p

OSZACOWANIE ROZWIĄ ZAŃ RÓWNAŃ KANONICZNYCH METODY SIŁ W PRZYPADKU PRZYBLIŻ ONEGO WYZNACZANIA LICZB WPŁYWOWYCH. 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 3, 9 (1971) OSZACOWANIE ROZWIĄ ZAŃ RÓWNAŃ KANONICZNYCH METODY SIŁ W PRZYPADKU PRZYBLIŻ ONEGO WYZNACZANIA LICZB WPŁYWOWYCH SZCZEPAN BORKOWSKI (GLIWICE) 1. Wstę p Zagadnienie

Bardziej szczegółowo

WIESŁAW OSTACHOWICZ, JANISŁAW TARNOWSKI (GDAŃ SK)

WIESŁAW OSTACHOWICZ, JANISŁAW TARNOWSKI (GDAŃ SK) MECHANIKA TEORETYCZNA I STOSOWANA 1, 17 (1979) ANALIZA DRGAŃ WAŁÓW WIRUJĄ CYCH OBCIĄ Ż ONYCH SIŁAMI OSIOWYMI WIESŁAW OSTACHOWICZ, JANISŁAW TARNOWSKI (GDAŃ SK) 1. Wstę p Jednym z podstawowych zadań zwią

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

MODELOWANIE PRZEKŁADNI PLANETARNYCH O DOWOLNEJ KONFIGURACJI MODELLING OF PLANETARY GEARS WITH AN ARBITRARY CONFIGURATION

MODELOWANIE PRZEKŁADNI PLANETARNYCH O DOWOLNEJ KONFIGURACJI MODELLING OF PLANETARY GEARS WITH AN ARBITRARY CONFIGURATION ZDZISŁAW RAK * MODELOWANIE PRZEKŁADNI PLANETARNYCH O DOWOLNEJ KONFIGURACJI MODELLING OF PLANETARY GEARS WITH AN ARBITRARY CONFIGURATION S t r e s z c z e n i e A b s t r a c t W niniejszym artykule przedstawiono

Bardziej szczegółowo

HYBRYDOWA METODA ELEMENTÓW SKOŃ CZONYCH W ZAGADNIENIU KONTAKTOWYM. 1. Wstę p

HYBRYDOWA METODA ELEMENTÓW SKOŃ CZONYCH W ZAGADNIENIU KONTAKTOWYM. 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA /2, (84) HYBRYDOWA METODA ELEMENTÓW SKOŃ CZONYCH W ZAGADNIENIU KONTAKTOWYM WIESŁAW OSTAOHOWICZ Politechnika Gdań ska. Wstę p W pracy przedstawiono metodę okreś lania nacisków

Bardziej szczegółowo

I Pracownia fizyczna ćwiczenie nr 16 (elektrycznoś ć)

I Pracownia fizyczna ćwiczenie nr 16 (elektrycznoś ć) BADANIE PĘTLI HISTEREZY DIELEKTRYCZNEJ SIARCZANU TRÓJGLICYNY Zagadnienia: 1. Pole elektryczne wewnątrz dielektryków. 2. Własnoś ci ferroelektryków. 3. Układ Sowyera-Towera. Literatura: 1. Sz. Szczeniowski,

Bardziej szczegółowo

ZASTOSOWANIE RÓŻ NIC SKOŃ CZONYCH DO TWORZENIA MACIERZY SZTYWNOŚ CI W METODZIE ELEMENTÓW SKOŃ CZONYCH NA PRZYKŁADZIE ZGINANEJ PŁYTY. 1.

ZASTOSOWANIE RÓŻ NIC SKOŃ CZONYCH DO TWORZENIA MACIERZY SZTYWNOŚ CI W METODZIE ELEMENTÓW SKOŃ CZONYCH NA PRZYKŁADZIE ZGINANEJ PŁYTY. 1. MECHANIKA TEORETYCZNA I STOSOWANA 4, 12 (1974) ZASTOSOWANIE RÓŻ NIC SKOŃ CZONYCH DO TWORZENIA MACIERZY SZTYWNOŚ CI W METODZIE ELEMENTÓW SKOŃ CZONYCH NA PRZYKŁADZIE ZGINANEJ PŁYTY KRZYSZTOF DEMS, JANUSZ

Bardziej szczegółowo

Scenariusz lekcji. Wojciech Dindorf Elżbieta Krawczyk

Scenariusz lekcji. Wojciech Dindorf Elżbieta Krawczyk Scenariusz lekcji Czy światło ma naturę falową Wojciech Dindorf Elżbieta Krawczyk? Doświadczenie Younga. Cele lekcji nasze oczekiwania: Chcemy, aby uczeń: postrzegał doś wiadczenie jako ostateczne rozstrzygnię

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

WYZNACZANIE LUZU OBWODOWEGO W ZAZĘBIENIU KÓŁ PRZEKŁADNI FALOWEJ

WYZNACZANIE LUZU OBWODOWEGO W ZAZĘBIENIU KÓŁ PRZEKŁADNI FALOWEJ ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 298, Mechanika 90 RUTMech, t. XXXV, z. 90 (4/18), październik-grudzień 2018, s. 481-489 Adam KALINA 1 Aleksander MAZURKOW 2 Stanisław WARCHOŁ 3 WYZNACZANIE LUZU

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

PRAKTYCZNE ZASTOSOWANIE ELEMEN TÓW ANALIZY M OD ALN EJ DO DYNAMICZNYCH BADAŃ OBRABIAREK. 1. Wprowadzenie

PRAKTYCZNE ZASTOSOWANIE ELEMEN TÓW ANALIZY M OD ALN EJ DO DYNAMICZNYCH BADAŃ OBRABIAREK. 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 3, 26 (1988) PRAKTYCZNE ZASTOSOWANIE ELEMEN TÓW ANALIZY M OD ALN EJ DO DYNAMICZNYCH BADAŃ OBRABIAREK WŁADYSŁAW LISEWSKI PAWEŁ GUTOWSKI Politechnika Szczeciń ska 1. Wprowadzenie

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji TOLERANCJE I POMIARY WALCOWYCH KÓŁ ZĘBATYCH

Katedra Technik Wytwarzania i Automatyzacji TOLERANCJE I POMIARY WALCOWYCH KÓŁ ZĘBATYCH Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: TOLERANCJE I POMIARY WALCOWYCH KÓŁ ZĘBATYCH 1. Cel ćwiczenia Zapoznanie studentów z narzędziami do pomiaru

Bardziej szczegółowo

MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI

MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI WOJCIECH BLAJER JAN PARCZEWSKI Wyż szaszkoł a Inż ynierskaw Radomiu Modelowano programowy

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika analityczna Nazwa w języku angielskim: Analytical Mechanics Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Specjalność

Bardziej szczegółowo

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006 Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy

Bardziej szczegółowo

Rys. 1. Rysunek do zadania testowego

Rys. 1. Rysunek do zadania testowego Test zaliczeniowy Zadanie testowe. Przeanalizuj rysunek 1., przedstawiający odwzorowanie pewnej sytuacji przestrzennej przy pomocy metody Monge a (rzutów prostokątnych na dwie wzajemnie prostopadłe rzutnie

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

+a t. dt (i - 1, 2,..., 3n), V=I

+a t. dt (i - 1, 2,..., 3n), V=I MECHANIKA TEORETYCZNA I STOSOWANA 1, 19 (1981) O WARIACYJNYM CHARAKTERZE ZASADY JOURDAINA I JEJ ZWIĄ ZKU Z OGÓLNYMI TWIERDZENIAMI DYNAMIKI N. CYGANOWA (MOSKWA) Zasada Jourdaina jest róż niczkową zasadą

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

SYSTEM PRZERWA Ń MCS 51

SYSTEM PRZERWA Ń MCS 51 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Zakład Cybernetyki i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA SYSTEM PRZERWA Ń MCS 51 Opracował: mgr inŝ. Andrzej Biedka Uwolnienie

Bardziej szczegółowo

Programowanie obrabiarek CNC. Nr H8

Programowanie obrabiarek CNC. Nr H8 1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr H8 Programowanie obróbki 5-osiowej (3+2) w układzie sterowania itnc530 Opracował: Dr inż. Wojciech

Bardziej szczegółowo

PL 215399 B1. POLITECHNIKA POZNAŃSKA, Poznań, PL 03.01.2011 BUP 01/11. RAFAŁ TALAR, Kościan, PL 31.12.2013 WUP 12/13

PL 215399 B1. POLITECHNIKA POZNAŃSKA, Poznań, PL 03.01.2011 BUP 01/11. RAFAŁ TALAR, Kościan, PL 31.12.2013 WUP 12/13 PL 215399 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215399 (13) B1 (21) Numer zgłoszenia: 388446 (51) Int.Cl. B23F 9/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

STATECZNOŚĆ DYNAMICZNA Ś MIGŁOWCA Z WIRNIKIEM PRZEGUBOWYM

STATECZNOŚĆ DYNAMICZNA Ś MIGŁOWCA Z WIRNIKIEM PRZEGUBOWYM MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 24, (1986) WIESŁAW ŁUCJANEK JANUSZ NARKIEWICZ Politechnika Warszawska KRZYSZTOF SIBILSKI WAT STATECZNOŚĆ DYNAMICZNA Ś MIGŁOWCA Z WIRNIKIEM PRZEGUBOWYM W pracy został

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

O PEWNYM UOGÓLNIENIU METODY ORTOGONALIZACYJNEJ. 1, Uwagi wstę pne

O PEWNYM UOGÓLNIENIU METODY ORTOGONALIZACYJNEJ. 1, Uwagi wstę pne MECHANIKA TEORETYCZNA I STOSOWANA 1, 3 (1965) O PEWNYM UOGÓLNIENIU METODY ORTOGONALIZACYJNEJ SYLWESTER KALISKI (WARSZAWA) 1, Uwagi wstę pne W problemach teorii drgań zasadniczą rolę odgrywają metody przybliż

Bardziej szczegółowo

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

USTAWA. z dnia 29 sierpnia 1997 r. Ordynacja podatkowa. Dz. U. z 2015 r. poz. 613 1

USTAWA. z dnia 29 sierpnia 1997 r. Ordynacja podatkowa. Dz. U. z 2015 r. poz. 613 1 USTAWA z dnia 29 sierpnia 1997 r. Ordynacja podatkowa Dz. U. z 2015 r. poz. 613 1 (wybrane artykuły regulujące przepisy o cenach transferowych) Dział IIa Porozumienia w sprawach ustalenia cen transakcyjnych

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia

Bardziej szczegółowo

Wzmacniacze. Rozdzia Wzmacniacz m.cz

Wzmacniacze. Rozdzia Wzmacniacz m.cz Rozdzia 3. Wzmacniacze 3.1. Wzmacniacz m.cz Rysunek 3.1. Za o enia projektowe Punkt pracy jest tylko jednym z parametrów opisuj cych prac wzmacniacza. W tym rozdziale zajmiemy si zaprojektowaniem wzmacniacza

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przekształcenia liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się

Bardziej szczegółowo

ANALIZA WYTRZYMAŁOŚ CIOWA PIONOWEJ PRZEPŁYWOWEJ WYTWORNICY PARY ELEKTROWNI JĄ DROWYCH MICHAŁ N I E Z G O D Z I Ń S K I, WACŁAW ZWOLIŃ SKI (ŁÓDŹ)

ANALIZA WYTRZYMAŁOŚ CIOWA PIONOWEJ PRZEPŁYWOWEJ WYTWORNICY PARY ELEKTROWNI JĄ DROWYCH MICHAŁ N I E Z G O D Z I Ń S K I, WACŁAW ZWOLIŃ SKI (ŁÓDŹ) MECHANIKA TEORETYCZNA I STOSOWANA 2, 19 ANALIZA WYTRZYMAŁOŚ CIOWA PIONOWEJ PRZEPŁYWOWEJ WYTWORNICY PARY ELEKTROWNI JĄ DROWYCH MICHAŁ N I E Z G O D Z I Ń S K I, WACŁAW ZWOLIŃ SKI (ŁÓDŹ) 1. Wprowadzenie

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

8. Zginanie ukośne. 8.1 Podstawowe wiadomości

8. Zginanie ukośne. 8.1 Podstawowe wiadomości 8. 1 8. ginanie ukośne 8.1 Podstawowe wiadomości ginanie ukośne zachodzi w przypadku, gdy płaszczyzna działania obciążenia przechodzi przez środek ciężkości przekroju pręta jednak nie pokrywa się z żadną

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas

Bardziej szczegółowo

MODELE OBLICZENIOWE I BADANIA DOŚ WIADCZALNE ZAWIESZENIA LOTNICZEGO SILNIKA TŁOKOWEGO. 1. Wstę p

MODELE OBLICZENIOWE I BADANIA DOŚ WIADCZALNE ZAWIESZENIA LOTNICZEGO SILNIKA TŁOKOWEGO. 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 MODELE OBLICZENIOWE I BADANIA DOŚ WIADCZALNE ZAWIESZENIA LOTNICZEGO SILNIKA TŁOKOWEGO MARIAN JEŻ Instytut Lotnictwa 1. Wstę p Obiektem pracy jest lotniczy

Bardziej szczegółowo

SYMULACJA NUMERYCZNA STEROWANEGO SAMOLOTU W RUCHU SPIRALNYM. 1. Wstę p

SYMULACJA NUMERYCZNA STEROWANEGO SAMOLOTU W RUCHU SPIRALNYM. 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) SYMULACJA NUMERYCZNA STEROWANEGO SAMOLOTU W RUCHU SPIRALNYM JERZY MARYNIAK ITLiMS Politechnika Warszawska JĘ DRZEJ TRAJER JMRiL Akademia Rolnicza Warszawa

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

WYZNACZANIE MODELU STEROWANIA SAMOLOTEM ZAPEWNIAJĄ CEGO Ś CISŁĄ REALIZACJĘ RUCHU PROGRAMOWEGO*

WYZNACZANIE MODELU STEROWANIA SAMOLOTEM ZAPEWNIAJĄ CEGO Ś CISŁĄ REALIZACJĘ RUCHU PROGRAMOWEGO* MECHANIKA TEORETYCZNA I STOSOWANA 3, 25, (1987) WYZNACZANIE MODELU STEROWANIA SAMOLOTEM ZAPEWNIAJĄ CEGO Ś CISŁĄ REALIZACJĘ RUCHU PROGRAMOWEGO* WOJCIECH BLAJER Wyż szaszkoł a Inż ynierska w Radomiu Praca

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n

Bardziej szczegółowo

1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q).

1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q). 1 WPROWADZENIE 1 Kody korekcyjne - zadania Agata Pilitowska 1 Wprowadzenie 1. Pokazać, że dla dowolnych wektorów c, f Z n 2, d(c, f ) = n (c i f i ) 2, i=1 wt(c + f ) = wt(c) + wt(f ) 2wt(cf ), wt(c +

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

Systemy liczbowe Plan zaję ć

Systemy liczbowe Plan zaję ć Systemy liczbowe Systemy liczbowe addytywne (niepozycyjne) pozycyjne Konwersja konwersja na system dziesię tny (algorytm Hornera) konwersja z systemu dziesię tnego konwersje: dwójkowo-ósemkowa, ósemkowa,

Bardziej szczegółowo

STATECZNOŚĆ SPIRALNA SAMOLOTU W RUCHU PRZESTRZENNYM Z UWZGLĘ DNIENIEM EFEKTÓW ELEMENTÓW WIRUJĄ CYCH ZESPOŁU NAPĘ DOWEGO*

STATECZNOŚĆ SPIRALNA SAMOLOTU W RUCHU PRZESTRZENNYM Z UWZGLĘ DNIENIEM EFEKTÓW ELEMENTÓW WIRUJĄ CYCH ZESPOŁU NAPĘ DOWEGO* MECHANIKA TEORETYCZNA 1 STOSOWANA 3-4, 23 (1985) STATECZNOŚĆ SPIRALNA SAMOLOTU W RUCHU PRZESTRZENNYM Z UWZGLĘ DNIENIEM EFEKTÓW ELEMENTÓW WIRUJĄ CYCH ZESPOŁU NAPĘ DOWEGO* JERZY MARYNIAK, WITOLD MOLICKJ

Bardziej szczegółowo

Projektowanie Systemów Elektromechanicznych. Przekładnie dr inż. G. Kostro

Projektowanie Systemów Elektromechanicznych. Przekładnie dr inż. G. Kostro Projektowanie Systemów Elektromechanicznych Przekładnie dr inż. G. Kostro Zębate: Proste; Złożone; Ślimakowe; Planetarne. Cięgnowe: Pasowe; Łańcuchowe; Linowe. Przekładnie Przekładnie Hydrauliczne: Hydrostatyczne;

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami

Bardziej szczegółowo

ZASTOSOWANIE WIELOMIANÓW HERMITE'A DO WYZNACZANIA MACIERZY SZTYW- NOŚ CI ELEMENTU TARCZY W METODZIE ELEMENTÓW SKOŃ CZONYCH. I.

ZASTOSOWANIE WIELOMIANÓW HERMITE'A DO WYZNACZANIA MACIERZY SZTYW- NOŚ CI ELEMENTU TARCZY W METODZIE ELEMENTÓW SKOŃ CZONYCH. I. MECHANIKA TEORETYCZNA 1 STOSOWANA 3, 9 (1971) ZASTOSOWANIE WIELOMIANÓW HERMITE'A DO WYZNACZANIA MACIERZY SZTYW- NOŚ CI ELEMENTU TARCZY W METODZIE ELEMENTÓW SKOŃ CZONYCH KRZYSZTOF D E M S (ŁÓDŹ) I. Wstę

Bardziej szczegółowo

Urządzenia do bezprzerwowego zasilania UPS CES GX RACK. 10 kva. Wersja U/CES_GXR_10.0/J/v01. Praca równoległa

Urządzenia do bezprzerwowego zasilania UPS CES GX RACK. 10 kva. Wersja U/CES_GXR_10.0/J/v01. Praca równoległa Urządzenia do bezprzerwowego zasilania UPS CES GX RACK 10 kva Centrum Elektroniki Stosowanej CES sp. z o. o. 30-732 Kraków, ul. Biskupińska 14 tel.: (012) 269-00-11 fax: (012) 267-37-28 e-mail: ces@ces.com.pl,

Bardziej szczegółowo

ANALIZA ROZKŁADU NAPRĘ Ż EŃ W SPOINIE KLEJOWEJ POŁĄ CZENIA ZAKŁADKOWEGO W ZAKRESIE ODKSZTAŁCEŃ PLASTYCZNYCH

ANALIZA ROZKŁADU NAPRĘ Ż EŃ W SPOINIE KLEJOWEJ POŁĄ CZENIA ZAKŁADKOWEGO W ZAKRESIE ODKSZTAŁCEŃ PLASTYCZNYCH MECHANIKA TEORETYCZNA I STOSOWANA 3, 26 (1988) ANALIZA ROZKŁADU NAPRĘ Ż EŃ W SPOINIE KLEJOWEJ POŁĄ CZENIA ZAKŁADKOWEGO W ZAKRESIE ODKSZTAŁCEŃ PLASTYCZNYCH JAN GODZIMIRSKI Wojskowa Akademia Techniczna,

Bardziej szczegółowo