STATECZNOŚĆ SPIRALNA SAMOLOTU W RUCHU PRZESTRZENNYM Z UWZGLĘ DNIENIEM EFEKTÓW ELEMENTÓW WIRUJĄ CYCH ZESPOŁU NAPĘ DOWEGO*
|
|
- Krystyna Jasińska
- 9 lat temu
- Przeglądów:
Transkrypt
1 MECHANIKA TEORETYCZNA 1 STOSOWANA 3-4, 23 (1985) STATECZNOŚĆ SPIRALNA SAMOLOTU W RUCHU PRZESTRZENNYM Z UWZGLĘ DNIENIEM EFEKTÓW ELEMENTÓW WIRUJĄ CYCH ZESPOŁU NAPĘ DOWEGO* JERZY MARYNIAK, WITOLD MOLICKJ (WARSZAWA) 1TLIMS Politechnika Warszawska 1, Wyprowadzenie równań mchu samolotu Ruch samolotu w przestrzeni opisano stosują c nastę pują ce układy odniesienia (rys. 1): OXYZ układ samolotowy" sztywno zwią zany z poruszają cym się samolotem, OX a Y a Z a układ prę dkoś ciowy" zwią zany z kierunkiem przepływu, OX g Y g Zg układ grawitacyjny zwią zany z poruszają cym się samolotem równoległy do ukł adu OX^Y x Z y. OX\ Y t Z, nieruchomy układ grawitacyjny zwią zany z ziemią. Dodatkowo wprowadzono ukł ad współrzę dnych CX r Y r Z r zwią zany z silnikiem. Począ tek C ukł adu umieszczony jest w ś rodku masy zespołu turbina sprę ż arka, oś X, skierowana ł ) Rys. 1. Praca przedstawiona na I Ogólnopolskiej Konferencji. Mechanika wlotniciwk. Warszawa I9.T.1984.
2 652 J. MARYNIAK, W. MOLICKI jest wzdłuż osi obrotu zespołu ku przodowi pł atowca, oś Z r leży w płaszczyź nie symetrii samolotu i jest skierowana ku spodowi pł atowca, zaś oś Y r tworzy z dwoma poprzednimi prawoskrę tny ukł ad kartezjań ski (rys. 2). Przyję to, że ś rodek masy zespołu turbina- spręż arka leży w odległoś ci od począ tku ukł adu OXYZ, a oś X, tworzy z osią X ką t <p r. Dla tak przyję tych układów współ rzę dnych macierz prę dkoś i cką towej Sl silnika w układzie OXYZ ma postać: SI = colfp+ ctvcoscv, Q, jr- ca r sinf/ ) r ], (i) Rys. 2. gdzie: <a r prę dkość ką towa zespołu wirują cego w ukł adzie CX r Y r Z r, P,Q,R prę dkoś i c ką towe samolotu w układzie OXYZ. Macierz prę dkośi c liniowych ś rodka masy zespołu wirują cego w układzie OXYZ ma postać: V = col[u, V- R, W+Q ], (2) gdzie: U, V, W prę dkoś ci ś rodka masy samolotu w układzie OXYZ. Samolot potraktowano jako ciał o o siedmiu stopniach swobody, bez uwzglę dniania drgań powierzchni sterowych. Jako siódmy stopień swobody przyję to ruch obrotowy zespołu turbina- sprę ż ark a wokół własnej osi. Dynamiczne równania ruchu samolotu w przestrzeni wyprowadzono stosują c równania Boltzmana- Hamela [2, 3] d l8t*\ 8T* V V"- 8T* At \ 8co (t ) ZJ ZJ 80,. - «= (3) gdzie: T* energia kinetyczna układu wyraż ona w quasi- współrzę dnych i quasi- prę d- koś ciach, Van trójwskaź nikowe symbole Boltzmanna, Q* siły uogólnione wyraż one w quasi- współ rzę dnych i ą uasi- prę dkoś ciach. Jako współrzę dne uogólnione przyję to: tfi ^i) Iz v x,?3 = zi odległoś ci ś rodka masy samolotu od począ tku układu współ rzę dnych OXxY^Z^, qx ~ $, q s - 6, q 6 = V / ką ty przechylenia, pochylenia i odchylenia samolotu mierzone od nieruchomego ukł adu współ rzę dnych zwią zanego z samolotem OX^Z, do ruchomego sztywno zwią zanego z samolotem układu OXYZ, 9i = 9V ką t obrotu zespołu wirują cego turbina- sprę ż arka.
3 STATECZNOŚĆ SPIRALNA SAMOLOTU Przyjmują c zależ nośi c(1-3) otrzymano [7] równania ruchu samolotu w locie przestrzennym uwzglę dniają ce oddział ywania elementów wirują cych zespoł u napę dowego: Um+QWm- RVm+R 2 m r +Q 2 m r = X*; (a) Vm- Rm r - (PW- RU)m- PQm r = Y*; (b) Wm+Qm r - (QU- PV)m- PRm T ~ Z*; (c) +h h J* P (coss - J co$ 2 <p r - J sin 2 (p r +m r x?)- PQ[J x: +(J xr - J )sin(p r cos(p r ] + +PRJ xy + 2" 30" J w(sin 3?>r+ cos 2 c? r sin (p r ) ~ L*; (d) Q(Jy+Jy r +2m r x 2 )+ + (Jx, ~Jz r ) sin cv cos <p r ]+ PQJ yz RQJ xy PR [J x ~J x - J X r(cos 2 f, + - sin 3 *?,) - Jz r (sin 2 (p r - cos 2 q> r )+ m r x 2 ]+ (PF- g (7) m r + J i ^ + i t f J + P j{ J (sin<pr+cos<p r sm<p r ) = M*; (e) ^(/,+ J zr cos z <p,+j sin 2 9? r + m r ) - P[J XI +(J - Jz r ) sin c> r cos <p r ]+ (4) - Q- 'yz - Vm t - h ~ Jx,($in 3 <p r +cos 2 c» r sin <p r )+ (Q PQ(J x - Jy+J cos 2 ( Pr +I sin 2 (p r - J yt - 2m r x 2 )+QR[J xz + + (J X r- T ir )sin<p f cos<p r ]~PRJ yz +(PW- UR)m r x t + - Qn - ^J (cos 3 ip r +sin 2 c3 r cos tp r ) = #*; (0 /i J (sin 2 y r + cos 2 c> r ) 2 - i?j (sin cp r + cos 2 p r sin y,)+ + PJ (cos 3 9J r + sin 2 9' r cosc' l.) = n*; (g) Dodatkowo uwzglę dniono: zwią zki kinematyczne prę dkoś i c liniowych + w(cos(^sin0 cos y>+sin <^> sin y>), I7cos0sinv+ F(sin0sinOsinv+ cos^cosf)+ (5) + w(cos <j) sin 6 sin y> - sin ^ cos y>), zwią zki kinematyczne prę dkośi c ką towych 0 = fl =
4 654 J. MARYNIAK, W. MOLICKI zmianę ką ta natarcia a, ką ta ś lizgu /?j prę dkoś i cliniowej samolotu v c, oraz gę stoś ic powietrza Q:,.. ;,. : a = ^ J L * ; /? = arcsinjl; V* = 2 + W 2 ; o= eocl+ Zj/ 44300) dla : 7t= - Prawe strony równań (4) okreś lono nastę pują co [4, 5] W y* A B Y X Z ~L* ' M* iv*. - <4,BW "L " M nj (8) gdzie Z, y, Z, L, M,N- ~- oznaczają siły i momenty dział ają ce na samolot. Wyraż eni a te wyprowadzone w ukł adzie prę dkoś ciowym" mają postać [8]: X - - P x +P s cos(<p r +<x) (P xh +P x0 )cos'e- P~ n sins- P s, tt s'm(fl 0 + Ó)coss- mgsino, Z = - P z - P s sin(<p r + oć )~P zh cos e + (P x + P xv )sin & + mg cos6 cos <j>, L = L / ll> +L al +L v + L r +L Q +Lri -. ^ M = M bli - P^X^H+P^Z AH +P xv sm(^- F)Z AV +M Q +M T, N = N Sv +N v +N r +N Q +N r, ABW oznacza macierz transformacji z układu prę dkoś ciowego" do układu samolotowego" i przedstawia się nastę pują co:. cosoccos/? cosasiii/ 5 siny? cos/ T 0 sinacos/? sin a sin /? sin cci cos a r 2 stała czasowa silnika turboodrzutowego a mają ca postać;, T 2 = f( ,703 Ma)- (2,978-1,961 Ma)/ " A + (1,82 + (10) gdzie Q o charakterystyka statyczna silnika Q o = / («): 2o= - 57, ^ = - ^, OD (12) T 0 stała czasowa T 0 =f(n),, r 0,094-0,0196 ( ~^\ + 0, ,2^ (13) A. 7j ciś nienie i temperatura powietrza na wysokoś ci H nad poziomem morza, Ma liczba Macha dla danej prę dkoś i c i wysokoś ci lotu.
5 STATECZNOŚĆ SPIRALNA SAMOLOTU Badanie statecznoś ci spiralnej samolotu w ruchu przestrzennym Otrzymauy ukł ad równań (4^7) zlinearyzowano stosując metodę mał ych zakł óceń wokół poł oż eni a równowagi. Otrzymano ukł ad trzynastu równań róż niczkowych pierwszego rzę du. Ukł ad ten poddano analizie modalnej w celu wnioskowania o jego statecznoś ci. Wyniki obliczeń numerycznych dla postaci ruchu nazywanego spiralą przedstawiono i)4 69 B i9 234 y Rys. 3., na rysunku 3 zmiana współ czynnika tł umienia w funkcji prę dkoś. ci Jako samolot testowy do obliczeń przyję to samolot TS- 1 ISKRA" wyposaż ony w silnik SO- 3, ze wzglę du na dostęp do niezbę dnych danych. Obliczenia wykonano w peł nym zakresie prę dkośic lotu. oraz dla trzech wybranych wysokoś ci lotu. Uwzglę dnienie w modelu samolotu elementów wirują cych zespoł u napę dowego w zdecydowany sposób zmieniło jakoś ciowo i iloś ciowo rozwią zania równań ruchu przestrzennego samolotu, wpł ywając na pogorszenie statecznoś ci ruchu spiralnego".
6 656 J. MARYNIAK, W. MOLICKI Literatura 1. B. ETKIN, Dynamics of Atmospheric Flight, J. Wiley, New York J J. MARYNIAK, Dynamiczna teoria obiektów ruchomych. Prace naukowe Mechanika nr. 32, Politechnika Warszawska, Warszawa R. GuTOWSKi, Mechanika Analityczna, PWN,' Warszawa I. W. OSTOSŁAWSKI, Aerodinamilca samoliota. GIOP, Moskwa W. FISZDON, Mechanika Lotu, t.l, 2, PWN, Łódź Warszawa F. LENORT, Próba okreś leniamodelu matematycznego silnika turboodrzutowego jako obiektu regulacji. Prace ILOT nr 68, WNT, Warszawa W. MOLICKI, Modelowanie własnoś cidynamicznych samolotu w locie przestrzennym z uwzglę dnieniem mas wirują cych. XXII Sympozjon Modelowanie w mechanice zbiór referatów (s ) Gliwice PTMTS Z. GORAI, Obliczenia sterownoś ci, równowagi i statecznoś cisamolotu w zakresie poddź wię kowym.politechnika Warszawska skrypt (w druku). P e 3 IO M e CIIHPAJIBHAfl yctoa^ihboctb CAMOJIETA B IIPOCTPAHCTBEHHOM flbkdkehhh 3#<&EKTA BPAmATEJIBHLIX 3JIEMEHTOB CHJIOBOfł YCTAHOBKH B pa6oie o6cymfleho crmpajibiryio ycroitajiboctb camoneia B npoctpahctbehhom ppmktsiw. HHaMH^ecKyio Moflejii, camojieta c CHJIOBOH yciahobkoh. IlpeflCTaBneHo pe3yjifctattt peiuemm fljin cnhpajiłhoii yctoirthbocni. Summary SPIRAL STABE.ITY OF AIRPLANE IN A SPACE MOTION WITH THE EFFECT OF POWER UNIT SPIN ELEMENTS In the paper, the problem of spiral stability in a space motion in presented. Dynamic model of an airplane with power unit is proposed. Solution of the spiral stability motions have been obtained by means of a digital computer. Praca została złoż ona25 grudnia 1984 roku
SYMULACJA NUMERYCZNA STEROWANEGO SAMOLOTU W RUCHU SPIRALNYM. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) SYMULACJA NUMERYCZNA STEROWANEGO SAMOLOTU W RUCHU SPIRALNYM JERZY MARYNIAK ITLiMS Politechnika Warszawska JĘ DRZEJ TRAJER JMRiL Akademia Rolnicza Warszawa
SYSTEM SYMULACJI TRENAŻ ERA LOTU, NAPROWADZANIA I WALKI POWIETRZNEJ SAMOLOTU
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 SYSTEM SYMULACJI TRENAŻ ERA LOTU, NAPROWADZANIA I WALKI POWIETRZNEJ SAMOLOTU JERZY MARYNIAK Instytut Techniki Lotniczej i Mechaniki Stosowane) PW W opracowaniu
MODELOWANIE CYFROWE PROCESU STEROWANIA SAMOLOTU W RUCHU SPIRALNYM. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) MODELOWANIE CYFROWE PROCESU STEROWANIA SAMOLOTU W RUCHU SPIRALNYM JĘ DRZEJ TRAJER IMRiL Akademia Rolnicza w Warszawie 1. Wstę p Poniż ej przedstawiono model
ż (0 = Rz(0+ Sm(0, ( 2 )
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 PRAWA STEROWANIA JAKO WIĘ ZY NIEHOLONOMICZNE AUTOMATYCZNEGO UKŁADU STEROWANIA Ś MIGŁOWCEM JERZY MARYNIAK Instytut Techniki Lotniczej i Mechaniki Stosowanej
USTALONY KORKOCIĄ G SAMOLOTU, WARUNKI RÓWNOWAGI. i. Wstę p
MECHANIKA TEORETYCZNA 1 STOSOWANA 1/ 2, 22 (1984) USTALONY KORKOCIĄ G SAMOLOTU, WARUNKI RÓWNOWAGI WOJCIECH BLAJER Politechnika Warszawska JERZY MARYMIAK Politechnika Warszawska i. Wstę p W pracy przedstawiono
WPŁYW RAKIETOWEGO UKŁADU HAMUJĄ CEGO NA RUCH ZASOBNIKA LOTNICZEGO*) 1. Wstę p
MECHANIKA TEORETYCZNA f STOSOWANA 1/ 2, 2,(1986) WPŁYW RAKIETOWEGO UKŁADU HAMUJĄ CEGO NA RUCH ZASOBNIKA LOTNICZEGO*) JERZY MAUYNIAK Politechnika Warszawska KAZIMIERZ MICHALEWICZ ZYGMUNT WINCZURA Instytut
MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI WOJCIECH BLAJER JAN PARCZEWSKI Wyż szaszkoł a Inż ynierskaw Radomiu Modelowano programowy
MODEL AERODYNAMICZNY I OPIS MATEMATYCZNY RUCHU WYDŁUŻ ONEGO POCISKU CIĘ Ż KIEGO* 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 3.4, 23 0985) MODEL AERODYNAMICZNY I OPIS MATEMATYCZNY RUCHU WYDŁUŻ ONEGO POCISKU CIĘ Ż KIEGO* JÓZEF GACEK (WARSZAWA) Wojskowa Akademia Techniczna 1. Wprowadzenie Przedmiotem
W KORKOCIĄ GU* 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3-4, 13 (1985) MODELOWANIE MATEMATYCZNE STEROWANEGO RUCHU SAMOLOTU W KORKOCIĄ GU* WOJCIECH BLAJER, (RADOM) WSI Radom JERZY MARYNIAK (WARSZAWA) Politechnika Warszawska
WYZNACZANIE MODELU STEROWANIA SAMOLOTEM ZAPEWNIAJĄ CEGO Ś CISŁĄ REALIZACJĘ RUCHU PROGRAMOWEGO*
MECHANIKA TEORETYCZNA I STOSOWANA 3, 25, (1987) WYZNACZANIE MODELU STEROWANIA SAMOLOTEM ZAPEWNIAJĄ CEGO Ś CISŁĄ REALIZACJĘ RUCHU PROGRAMOWEGO* WOJCIECH BLAJER Wyż szaszkoł a Inż ynierska w Radomiu Praca
MODELOWANIE MATEMATYCZNE AUTOMATYCZNIE STEROWANEGO Ś MIGŁOWCA W RUCHU PRZESTRZENNYM. 1. Wstę p
MECHANIKA TEORETYCZNA 1 STOSOWANA 3-4, 23 (1985) 1 MODELOWANIE MATEMATYCZNE AUTOMATYCZNIE STEROWANEGO Ś MIGŁOWCA W RUCHU PRZESTRZENNYM KRZYSZTOF JANKOWSKI JERZY MARYNIAK (WARSZAWA) Politechnika Wavsza
Wykład 3. Ruch w obecno ś ci wię zów
Wykład 3 Ruch w obecno ś ci wię zów Wię zy Układ nieswobodnych punktów materialnych Układ punktów materialnych, których ruch podlega ograniczeniom wyraŝ onym przez pewne zadane warunki dodatkowe. Wię zy
DYNAMIKA RUCHU FOTELA ODRZUCANEGO WZGLĘ DEM SAMOLOTU W LOCIE SYMETRYCZNYM* 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA j/ 2, 24, (1986) DYNAMIKA RUCHU FOTELA ODRZUCANEGO WZGLĘ DEM SAMOLOTU W LOCIE SYMETRYCZNYM* CZESŁAW SZEMDZIELORZ WAT 1. Wstę p Przedmiotem analizy jest ruch fotela odrzucanego
STATECZNOŚĆ DYNAMICZNA PODŁUŻ NA SZYBOWCA W ZESPOLE HOLOWNICZYM JERZY MARYNIAK (WARSZAWA) 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 5 :1967) STATECZNOŚĆ DYNAMICZNA PODŁUŻ NA SZYBOWCA W ZESPOLE HOLOWNICZYM JERZY MARYNIAK (WARSZAWA) 1. Wstę p W pracach zwią zanych z zagadnieniem holowania szybowców
PŁYNIĘ CIE KOŁNIERZA PRZY KSZTAŁTOWANIU WYTŁOCZKI Z NIEJEDNORODNEJ BLACHY ANIZOTROPOWEJ. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 1,19 (1981) PŁYNIĘ CIE KOŁNIERZA PRZY KSZTAŁTOWANIU WYTŁOCZKI Z NIEJEDNORODNEJ BLACHY ANIZOTROPOWEJ TADEUSZ SOŁKOWSKI (KRAKÓW) 1. Wstę p Istnieje grupa specjalnych sposobów
SYMULACJA CYFROWA LOTU SAMOLOTU TS- 1 ISKRA" W JĘ ZYKU MACROASSEMBLER*' 1. Cel pracy
MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) SYMULACJA CYFROWA LOTU SAMOLOTU TS- 1 ISKRA" W JĘ ZYKU MACROASSEMBLER*' DANUTA FARYŃ SKA ŁUCJA SOBOLEWSKA ZBIGNIEW ZAGDAŃ SKI Instytut Techniczny Wojsk Lotniczych
RÓWNOWAGA I STATECZNOŚĆ PODŁUŻ NA SKOCZKA NARCIARSKIEGO W LOCIE* 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 12 (1974) RÓWNOWAGA I STATECZNOŚĆ PODŁUŻ NA SKOCZKA NARCIARSKIEGO W LOCIE* JERZY MARYNIAK I BOGDAN KRASNOWSKI (WARSZAWA) 1. Wstę p W niniejszej pracy przedstawiono
IDENTYFIKACJA PARAMETRYCZNA MODELU MATEMATYCZNEGO SAMOLOTU. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 3, 25, (1987) IDENTYFIKACJA PARAMETRYCZNA MODELU MATEMATYCZNEGO SAMOLOTU WŁADYSŁAW JAROMINEK Polska Akademia Nauk, Warszawa TADEUSZ STEFAŃ SKI Politechnika Ś wię tokrzyska,kielce
STATECZNOŚĆ DYNAMICZNA Ś MIGŁOWCA Z WIRNIKIEM PRZEGUBOWYM
MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 24, (1986) WIESŁAW ŁUCJANEK JANUSZ NARKIEWICZ Politechnika Warszawska KRZYSZTOF SIBILSKI WAT STATECZNOŚĆ DYNAMICZNA Ś MIGŁOWCA Z WIRNIKIEM PRZEGUBOWYM W pracy został
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8
Wykład 7 i 8 Zagadnienie Keplera Przybli Ŝ enie małych drgań Ruch w potencjale U(r)=-α/r RozwaŜ my ruch punktu materialnego w polu centralnym, o potencjale odwrotnie proporcjonalnym do odległo ś ci r od
MODELOWANIE DYNAMIKI STEROWANEGO OBIEKTU LATAJĄ CEGO KLASY ZIEMIA- POWIETRZE. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 MODELOWANIE DYNAMIKI STEROWANEGO OBIEKTU LATAJĄ CEGO KLASY ZIEMIA- POWIETRZE JAN NICZYPORUK ALEKSANDER WIELGUS Wojskowa Akademia Techniczna 1. Wstę p W
INSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI
MECHANIKA TEORETYCZNA I STOSOWANA 3, 10 (1972) PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI KAROL H. BOJDA (GLIWICE) W pracy wykorzystano wł asnoś ci operacji T a [1] do rozwią zania równania
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia II stopnia. Dynamika lotu śmigłowca Rodzaj przedmiotu: Język polski
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia II stopnia Przedmiot: Dynamika lotu śmigłowca Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MBM S 1 1-0_1 Rok: 1 Semestr: Forma studiów:
ANALIZA NUMERYCZNA PARAMETRÓW LOTU I STEROWANIA SAMOLOTU W USTALONYM RUCHU SPIRALNYM
MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) ANALIZA NUMERYCZNA PARAMETRÓW LOTU I STEROWANIA SAMOLOTU W USTALONYM RUCHU SPIRALNYM JERZY MARYNIAK ITLiMS Politechnika Warszawska JĘ DRZEJ TRAJER IMRiL Akademia
WPŁYW ZJAWISKA ODWIJANIA PRZEWODU KIEROWANIA I NIEKTÓRYCH PARAMETRÓW GEOMETRYCZNYCH RAKIETY NA JEJ STATECZNOŚĆ DYNAMICZNĄ
MECHANIKA TEORETYCZNA I STOSOWANA 1, 18 (1980) WPŁYW ZJAWISKA ODWIJANIA PRZEWODU KIEROWANIA I NIEKTÓRYCH PARAMETRÓW GEOMETRYCZNYCH RAKIETY NA JEJ STATECZNOŚĆ DYNAMICZNĄ TADEUSZ KUŹ MICEWICZ, JERZY MARYNIAK
SYMULACJA STEROWANEGO RUCHU SAMOLOTU PODCZAS STARTU I LĄ DOWAN IA. Streszczenie
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 SYMULACJA STEROWANEGO RUCHU SAMOLOTU PODCZAS STARTU I LĄ DOWAN IA JANUSZ GAJDA RYSZARD VOGT Politechnika Warszawska Streszczenie Przedstawiono model systemu
Zadanie 21. Stok narciarski
Numer zadania Zadanie. Stok narciarski KLUCZ DO ZADA ARKUSZA II Je eli zdaj cy rozwi e zadanie inn, merytorycznie poprawn metod otrzymuje maksymaln liczb punktów Numer polecenia i poprawna odpowied. sporz
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
MODELOWANIE SERWOMECHANIZMU HYDRAULICZNEGO NA MASZYNIE CYFROWEJ. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 25, 1987 MODELOWANIE SERWOMECHANIZMU HYDRAULICZNEGO NA MASZYNIE CYFROWEJ WŁADYSŁAW JAROMINEK Polska Akademia Nauk, Warszawa TADEUSZ STEFAŃ SKI Politechnika Ś wię
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
WAHANIA Ś MIGŁA OGONOWEGO NA ODKSZTAŁCALNEJ BELCE OGONOWEJ KADŁUBA Ś MIGŁOWCA. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 25, 1987 WAHANIA Ś MIGŁA OGONOWEGO NA ODKSZTAŁCALNEJ BELCE OGONOWEJ KADŁUBA Ś MIGŁOWCA WIESŁAW LEŚ NIEWSKI Instytut Lotnictwa, Warszawa JERZY MARYNIAK JTLiMS, Politechnika
ANALIZA DOKŁADNOŚ CI PROWADZENIA WYPORNOŚ CIOWYCH OBIEKTÓW NAWODNYCH PO ZADANEJ TRAJEKTORII W RÓŻ NYCH WARUNKACH HYDROMETEOROLOGICZNYCH.
MECHANIKA TEORETYCZNA i STOSOWANA 4, TA, (1986). ANALIZA DOKŁADNOŚ CI PROWADZENIA WYPORNOŚ CIOWYCH OBIEKTÓW NAWODNYCH PO ZADANEJ TRAJEKTORII W RÓŻ NYCH WARUNKACH HYDROMETEOROLOGICZNYCH ZYGMUNT KITOWSKI
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy
ZMODYFIKOWANA METODA PROPORCJONALNEGO NAPROWADZANIA POCISKÓW W POZIOMEJ PŁASZCZYŹ NIE ZBLIŻ ENIA
MECHANIKA TEORETYCZNA 1 STOSOWANA 3-4, 23 (1985) ZMODYFIKOWANA METODA PROPORCJONALNEGO NAPROWADZANIA POCISKÓW W POZIOMEJ PŁASZCZYŹ NIE ZBLIŻ ENIA MIROSŁAW GLAPSKI (WARSZAWA) Wojskowa Akademia Techniczna
Schemat ukł adu pokazano na rys. 1. Na masę m podwieszoną na sprę ż yni e o sztywnoś ci c działa siła okresowa P(t) = P o
MECHANIKA TEORETYCZNA I STOSOWANA 3 10 (1972) STATYSTYCZNA ANALIZA UKŁADU WIBROUDERZENIOWEGO WŁODZIMIERZ GAWROŃ SKI (GDAŃ SK) Waż niejsze oznaczenia jakobian (wyznacznik funkcyjny) M x wartość ś rednia
WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU. 1. Wstęp
MECHANIKA TEORETYCZNA I STOSOWANA 3 4 22 (1984) WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU JERZY MARYNIAK KAZIMIERZ MICHALEWICZ ZYGMUNT WINCZURA Politechnika Warszawska
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Z poprzedniego wykładu:
Z poprzedniego wykładu: Człon: Ciało stałe posiadające możliwość poruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stopni swobody) Niższe i wyższe pary
S.A RAPORT ROCZNY Za 2013 rok
O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c
Badanie silnika asynchronicznego jednofazowego
Badanie silnika asynchronicznego jednofazowego Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady funkcjonowania silnika jednofazowego. W ramach ćwiczenia badane są zmiany wartości prądu rozruchowego
Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych
Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
DYNAMIKA SZTYWNEJ PŁYTY SPOCZYWAJĄ CEJ NA SPRĘ Ż YSTO- PLĄ STYCZNY M PODŁOŻU ZE ZMIENNĄ GRANICĄ PLASTYCZNOŚ CI CZĘ ŚĆ II. SPRĘ Ż YSTE ODCIĄ Ż ENI E
MECHANIKA TEORETYCZNA I STOSOWANA 1, 10 (1972) DYNAMIKA SZTYWNEJ PŁYTY SPOCZYWAJĄ CEJ NA SPRĘ Ż YSTO- PLĄ STYCZNY M PODŁOŻU ZE ZMIENNĄ GRANICĄ PLASTYCZNOŚ CI CZĘ ŚĆ II. SPRĘ Ż YSTE ODCIĄ Ż ENI E. JERZY
METODYKA WYZNACZANIA PARAMETRÓW RUCHU USTALONEGO Ś MIGŁOWCA NA PRZYKŁADZIE LOTU POZIOMEGO I ZAWISU. 1. Wstę p
Mli CHAN IK A TEORETYCZNA I STOSOWANA 3-4, 23 (1985) METODYKA WYZNACZANIA PARAMETRÓW RUCHU USTALONEGO Ś MIGŁOWCA NA PRZYKŁADZIE LOTU POZIOMEGO I ZAWISU KRZYSZTOF JANKOWSKI (WARSZAWA) Politechnika Warszawska
WARUNEK OSCYLACYJNOŚ CI WAHAŃ RAKIETY JAKO KRYTERIUM DOBORU DŁUGOŚ CI WYRZUTNI. 1. Wstę p
MECHANIKA TEORETYCZNA 1 STOSOWANA 1/2, 25, 1987 WARUNEK OSCYLACYJNOŚ CI WAHAŃ RAKIETY JAKO KRYTERIUM DOBORU DŁUGOŚ CI WYRZUTNI STANISŁAW DUBIEL RYSZARD KURNATOWSKI Wojskowa Akademia Techniczna 1. Wstę
Teoria maszyn mechanizmów
Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii
NUMERYCZNE I ORGANIZACYJNE ASPEKTY OBLICZEŃ STATECZNOŚ CI SAMOLOTU* I. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3-4,23(1985) NUMERYCZNE I ORGANIZACYJNE ASPEKTY OBLICZEŃ STATECZNOŚ CI SAMOLOTU* ZDOBYSŁAW GORAJ (WARSZAWA) I. Wstę p Uzyskanie ś wiadectwa typu (certyfikatu) dla statku
W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie
SYNTEZA GROWEGO SYSTEMU NAPROWADZANIA SAMOLOTU NA SAMOLOT- CEL W PŁASZCZYŹ NIE PODŁUŻ NEJ METODĄ GIER ELEMENTARNYCH
MECHANIKA TEORETCZNA I STOSOWANA 1/2, 25, 1987 SYNTEZA GROWEGO SYSTEMU NAPROWADZANIA SAMOLOTU NA SAMOLOT- CEL W PŁASZCZYŹ NIE PODŁUŻ NEJ METODĄ GIER ELEMENTARNYCH JERZY GAŁAJ JERZY MARYNIAK Instytut Techniki
Napęd pojęcia podstawowe
Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) moment - prędkość kątowa Energia kinetyczna Praca E W k Fl Fr d de k dw d ( ) Równanie ruchu obrotowego (bryły sztywnej) d ( ) d d d
Wektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA
Zał. nr 5 do SIWZ SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA prowadzonego w trybie przetarg nieograniczony na usługa przeprowadzenia szkoleń CNC oraz CAE w ramach Centrum Transferu Technologii Zadanie nr Nazwa
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Zadania kinematyki mechanizmów
Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki
ROZPRASZANIE Ś WIATŁA PRZY SKOŚ NYM PRZEŚ WIETLANIU W ZASTOSOWANIU DO ANALIZY NAPRĘ Ż EŃ W SZKLE HARTOWANYM 1 *
MECHANIKA TEORETYCZNA I STOSOWANA 3, 17 (1979) ROZPRASZANIE Ś WIATŁA PRZY SKOŚ NYM PRZEŚ WIETLANIU W ZASTOSOWANIU DO ANALIZY NAPRĘ Ż EŃ W SZKLE HARTOWANYM 1 * STANISŁAW MAZURKIEWICZ, LESZEK KUC, MAREK
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
OPTYMALIZACJA POŁOŻ ENIA PODPÓR BELKI SZTYWNO- PLASTYCZNEJ OBCIĄ Ż ONEJ IMPULSEM PRĘ DKOŚ CI. 1, Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 4, lfi (978) OPTYMALIZACJA POŁOŻ ENIA PODPÓR BELKI SZTYWNO- PLASTYCZNEJ OBCIĄ Ż ONEJ IMPULSEM PRĘ DKOŚ CI JAAN LELLEP (WARSZAWA), Wstę p Optymalizacji poł oż enia podpory
Ksztaªt orbity planety: I prawo Keplera
V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety
ANALIZA MOŻ LIWOŚ I CZMNIEJSZENIA NIEBEZPIECZNEJ STREFY H-V W ZAWISIE I LOCIE PIONOWYM Ś MIGŁOWCA
MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 25, 1987 ANALIZA MOŻ LIWOŚ I CZMNIEJSZENIA NIEBEZPIECZNEJ STREFY H-V W ZAWISIE I LOCIE PIONOWYM Ś MIGŁOWCA CEZARY KAMIŃ SKI JANUSZ NARKIEWICZ Politechnika Warszawska
Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y
Cel modelowania neuronów realistycznych biologicznie:
Sieci neuropodobne XI, modelowanie neuronów biologicznie realistycznych 1 Cel modelowania neuronów realistycznych biologicznie: testowanie hipotez biologicznych i fizjologicznych eksperymenty na modelach
ANALIZA WŁASNOŚ CI WIBROIZOLATORÓW AKTYWNYCH TYPU PODUSZKA POWIETRZN A. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 4, 25, (1987) ANALIZA WŁASNOŚ CI WIBROIZOLATORÓW AKTYWNYCH TYPU PODUSZKA POWIETRZN A ANDRZEJ GOŁAŚ " JANUSZ KOWAL MAREK SZEPSKI Akademia Górniczo Hutnicza, Kraków v...:.
+a t. dt (i - 1, 2,..., 3n), V=I
MECHANIKA TEORETYCZNA I STOSOWANA 1, 19 (1981) O WARIACYJNYM CHARAKTERZE ZASADY JOURDAINA I JEJ ZWIĄ ZKU Z OGÓLNYMI TWIERDZENIAMI DYNAMIKI N. CYGANOWA (MOSKWA) Zasada Jourdaina jest róż niczkową zasadą
STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA
MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA JERZY M A R Y N I A K,
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc
PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych
40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA
ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA Celem tego zadania jest podanie prostej teorii, która tłumaczy tak zwane chłodzenie laserowe i zjawisko melasy optycznej. Chodzi tu o chłodzenia
Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Prof. dr hab. inż. Janusz Frączek Instytut
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne
UPROSZCZONA ANALIZA STATECZNOŚ CI PODŁUŻ NEJ SZYBOWCA W LOCIE HOLOWANYM. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 1, 5(1967) UPROSZCZONA ANALIZA STATECZNOŚ CI PODŁUŻ NEJ SZYBOWCA W LOCIE HOLOWANYM JERZY MARYNIAK (WARSZAWA) 1. Wstę p Loty holowane szybowców są obecnie szeroko stosowane.
WGŁĘ BIANIE NARZĘ DZIA Z PERIODYCZNYM ZARYSEM KLINOWYM W OŚ RODEK PLASTYCZNY. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 2, 18 (1980) WGŁĘ BIANIE NARZĘ DZIA Z PERIODYCZNYM ZARYSEM KLINOWYM W OŚ RODEK PLASTYCZNY STANISŁAW O K O Ń SKI (KRAKÓW) 1. Wprowadzenie Potrzeba rozwią zania zagadnienia
SIŁY TARCIA COULOMBA PODCZAS WIROWANIA*) ALFRED ZMITROWICZ (GDAŃ. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 4, 16 (1978) SIŁY TARCIA COULOMBA PODCZAS WIROWANIA*) ALFRED ZMITROWICZ (GDAŃ SK) 1. Wstę p Dwa stykają ce się ciała mają zbiory punktów leż ą e c jednocześ nie na obu
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
ZASTOSOWANIE PROCESÓW MARKOWA DO MODELOWANIA I BADANIA UKŁADU MECHANICZNEGO TOR- POJAZD SZYNOWY. Streszczenie
MECHANIKA TEORETYCZNA I STOSOWANA 4, 25, (987) ZASTOSOWANIE PROCESÓW MARKOWA DO MODELOWANIA I BADANIA UKŁADU MECHANICZNEGO TOR- POJAZD SZYNOWY WŁODZIMIERZ CHOROMAŃ JERZY KISILOWSKI BOGDAN RACIBORSKI SKI
POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 4, 18 (1980) POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA (OPOLE) 1. Wstę p W pracy przedstawiono rozwią zanie
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n
WIESŁAW OSTACHOWICZ, JANISŁAW TARNOWSKI (GDAŃ SK)
MECHANIKA TEORETYCZNA I STOSOWANA 1, 17 (1979) ANALIZA DRGAŃ WAŁÓW WIRUJĄ CYCH OBCIĄ Ż ONYCH SIŁAMI OSIOWYMI WIESŁAW OSTACHOWICZ, JANISŁAW TARNOWSKI (GDAŃ SK) 1. Wstę p Jednym z podstawowych zadań zwią
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia
MODELOWANIE SAMOLOTU JAKO ZAMKNIĘ TEGO SYSTEMU STEROWANIA. Streszczenie
MECHANIKA TEORETYCZNA 1 STOSOWANA 1/2, 25, 19S7 MODELOWANIE SAMOLOTU JAKO ZAMKNIĘ TEGO SYSTEMU STEROWANIA CEZARY SZCZEPAŃ RYSZARD VOGT SKI Politechnika Warszawska Streszczenie W pracy przedstawiono metodę
UCHWAŁA N r XX X/306 l 2ot3. Rady Miejskiej w Brzozowie. z dnia 25 kwietnia 2OI3 r. Rada Miejska w Brzozowie. uchwala, co nastę puje: Rozdział l
lą &i;a* Ą iłj:> K& \ru 8HZt} i# WIE UCHWAŁA N r XX X/306 l 2ot3 Rady Miejskiej w Brzozowie z dnia 25 kwietnia 2OI3 r. w sprawie nadania statutu Zespotowi Ekonomiczno - Administracyjnemu Szkót w Brzozowie
DYNAMIKA NIEAUTONOMICZNEG O PRZESTRZENNEG O RUCHU SAMOLOTU Z ODKSZTAŁCALNYMI UKŁADAMI STEROWANIA* 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA /2, 24, (986) DYNAMIKA NIEAUTONOMICZNEG O PRZESTRZENNEG O RUCHU SAMOLOTU Z ODKSZTAŁCALNYMI UKŁADAMI STEROWANIA* ZBIGNIEW DŻ YGADŁO ADAM KRZYŻ ANOWSKI WAT. Wstę p Samolot
UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia
MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia 6, [m] rozpię toś ć skrzydeł
PRAKTYCZNE ZASTOSOWANIE ELEMEN TÓW ANALIZY M OD ALN EJ DO DYNAMICZNYCH BADAŃ OBRABIAREK. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 3, 26 (1988) PRAKTYCZNE ZASTOSOWANIE ELEMEN TÓW ANALIZY M OD ALN EJ DO DYNAMICZNYCH BADAŃ OBRABIAREK WŁADYSŁAW LISEWSKI PAWEŁ GUTOWSKI Politechnika Szczeciń ska 1. Wprowadzenie
DYNAMIKA RAM WERSJA KOMPUTEROWA
DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000
WIESŁAW W. ŁUCJANEK (WARSZAWA) 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 2, 6 (1968) LABORATORYJNE METODY POMIARU POCHODNYCH AERODYNAMICZNYCH WIESŁAW W. ŁUCJANEK (WARSZAWA) 1. Wstę p Ustawiczny postę p w technice lotów, zarówno konwencjonalnych
Programowanie obrabiarek CNC. Nr H8
1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr H8 Programowanie obróbki 5-osiowej (3+2) w układzie sterowania itnc530 Opracował: Dr inż. Wojciech
PAKIET MathCad - Część III
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad
Przekształcenia wykresów funkcji
Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Jerzy Rutkowski Teoria Niech f : R R będzie dowolną funkcją i niech liczby a, k R spełniają warunki: a > 0 i k 0 Związek między funkcją
Chemiateoretyczna. Monika Musiał. Elementy teorii grup
Chemiateoretyczna Monika Musiał Elementy teorii grup Grup a G nazywamy zbiór elementów {A,B,C,...} o nastȩpuja cych własnościach: zdefiniowane jest działanie przyporza dkowuja ce każdej parze elementów