10 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I
|
|
- Piotr Owczarek
- 7 lat temu
- Przeglądów:
Transkrypt
1 10 K A TEDRA FZYK STOSOWANEJ P R A C O W N A F Z Y K Ćw. 10. Wyznaczane mmentu bezwładnśc był neegulanych Wpwadzene Pzez byłę sztywną zumemy cał, któe pd wpływem dzałana sł ne zmena sweg kształtu, tzn. dległść dwóch dwlnych punktów teg cała pzstaje stała. Każdy uch tej były mże być pzedstawny jak złżene dwóch uchów pstych uchu pstępweg uchu btweg. W uchu pstępwym wszystke punkty cała zakeślają take same ty az mają jednakwe pędkśc pzyspeszena. Dlateg ps takeg uchu były sztywnej spwadza sę d psu uchu punktu matealneg, np. śdka masy cała. Wekt płżena śdka masy zdefnwany jest wzem: m s =, (1) m gdze cał pdzelne jest na n małych częśc masach m wektach płżena. Gdy lczba częśc n zmeza d neskńcznśc, wówczas wzó pzybea pstać: dm s =. () dm Najczęścej sptykanym pzypadkem uchu btweg były jest uch wkół stałej s btu d takej sytuacj zwykle będą dnszne dalsze zważana. Wówczas wszystke punkty cała puszają sę p kęgach, któych śdk leżą na jednej pstej zwanej są btu, zaś pmene wdzące punktów w takm samym czase zakeślają jednakwe kąty. Z defncj welkśc kątwych wynka, że ówneż pędkśc kątwe pzyspeszena kątwe punktów są take same. Natmast pędkśc lnwe punktów zależą d ch dległśc d s btu. Rys.1. Welkśc lnwe kątwe w uchu btwym były. Pzez pędkść kątwą zumemy szybkść zmany kąta zakeślneg pzez pmeń wdzący punktu. Jest t welkść wektwa keunku zgdnym z są btu:
2 dα ω =. (3) Gdy pędkść kątwa ne jest stała w czase, t szybkść jej zmany psuje pzyspeszene kątwe, czyl stsunek zmany pędkśc kątwej d czasu tej zmany: dω ε =. (4) Zwązk pmędzy welkścam lnwym welkścam kątwym keślają ównana: v = ω, (5) = ω, (6) gdze: v pędkść lnwa punktu; a s pzyspeszene styczne punktu. a s D psu dynamk były sztywnej wpwadzamy nwe pjęca. Aby spwdwać uch btwy były ptzebna jest sła, ale sttna jest ne tylk jej watść, lecz także keunek dzałana punkt pzyłżena. Na pzykład sła ównległa d s btu ne spwduje zmany w uch były. Mment sły F względem s btu defnwany jest jak lczyn wektwy wekta wdząceg punktu pzyłżena sły tej sły F: Watść mmentu sły wyns: M F =. (7) M = snφ F = F, (8) gdze jest amenem sły ównym dległśc pstej dzałana sły d s btu (ys. ). Rys.. Mment sły M jest pstpadły d sły F jej wekta wdząceg. W uchu btwym były ważną lę dgywa zmeszczene masy wkół s btu, c jest keślane pzez mment bezwładnśc. Dla układu punktów matealnych masach m leżących w óżnych dległścach d s btu mment bezwładnśc jest ówny: = m. (9) W pzypadku cała sztywneg, któe chaakteyzuje sę cągłym zkładem masy, cał dzelmy na neskńczene małe częśc sumwane zastępujemy całkwanem: = dm. (10) Mmenty bezwładnśc wybanych był egulanych względem ch s symet zestawne są w tabel 1.
3 Tabela 1. Mmenty bezwładnśc nektóych był sztywnych względem s pzechdzącej pzez śdek masy. Cał sztywne Oś btu Mment bezwładnśc Kula pmenu R Oś pzechdząca pzez śdek mr 5 Walec pmenu R Walec pmenu R długśc L Pdłużna ś symet 1 mr Oś pstpadła d pdłużnej s m R m + symet 4 1 L Obęcz pmenu R Oś bęczy mr Cenk pęt długśc L Symetalna, pstpadła d pęta 1 ml 1 Zwązek pmędzy mmentem bezwładnśc względem s pzechdzącej pzez śdek masy a mmentem bezwładnśc względem nnej ównległej d nej s keśla twedzene Stenea: gdze: m masa cała, d dległść mędzy dwema sam. = + m d, (11) Mment bezwładnśc cała zależy d wybu s btu. Ose, względem któych mment bezwładnśc pzybea watśc ekstemalne nazywa se głównym sam bezwładnśc, a dpwadające m mmenty głównym mmentam bezwładnśc (jak w tabel 1). W pzypadku gdy ś btu jest wybana dwlne (np. skśne d głównej s bezwładnśc) t sytuacja ulega kmplkacj. Mment bezwładnśc ne jest wówczas welkścą skalaną, lecz welkścą tenswą wyażaną za pmcą macezy. Mment pędu punktu matealneg mase m wektze wdzącym puszająceg se z pędkścą v względem s btu dległej keślany jest wzem: L = m. (1) W uchu punktu p kęgu (wekt v jest pstpadły d wekta ) wekt mmentu pędu jest skewany zgdne z są btu, zaś jeg watść jest ówna: 3 v L = m v = m ω. (13) Dla bacającej sę były mment pędu jest sumą mmentów pędu wszystkch jej punktów matealnych, na któe zstała pdzelna (keunek zwt wektów pędkśc kątwej ω jest tak sam): L = L = mω = ω m = ω, (14) c mżna zapsać: L ω =. (15) Zatem mment pędu były L ówna sę lczynw jeg mmentu bezwładnśc pędkśc kątwej ω. Zależnść pwyższa jest słuszna gdy cał baca sę względem jednej ze swch s głównych, b wówczas mment bezwładnśc jest skalaem, a wekty L ω są ównległe. Dla s ukśnych na gół mamy d czynena z tensem bezwładnśc neównległścą wektów L ω. O skutkach dzałana sł w uchu pstępwym mżemy wnskwać psługując se dugą zasadą dynamk Newtna: F = m a. W uch btwym psługując se upzedn zdefnwanym pjęcam mżna wykazać, że duga zasada dynamk pzyjmuje pstać:
4 M = ε, (16) c znacza, że mment sły dzałającej na byłę sztywną jest ówny lczynw mmentu bezwładnśc były jej pzyspeszena kątweg. Stsując pnższe pzekształcene: dω d( ω) dl M = ε = = =, (17) tzymujemy nną pstać dugej zasady dynamk dla uchu btweg dl M =. (18) Zwązek ten jest słuszny dla uchu swbdneg cała sztywneg. Pdczas uchu wkół stałej s btu na uch były wpływa tylk składwa mmentu sły ównległa d s btu (M z ), natmast składwa pstpadła d s (M xy ) usłuje bócć (zmenć keunek) s btu. Wynka z teg pstać dugej zasady dynamk dla uchu wkół stałej s btu: dlz M z =. (19) Mment sł dzałających na cał lczny względem stałej s btu (M z ) jest ówny szybkśc zman mmentu pędu cała lczneg względem tej samej s btu (L z ). Obacające sę cał psada enegę knetyczną uchu btweg nawet wówczas gdy śdek masy cała sę ne pzemeszcza. Mżna ją wyznaczyć sumując enege knetyczne pszczególnych punktów były (E ): E k = E = mv = m ω = ω m = ω, (0) 1 E k = ω. (1) Zatem enega knetyczna uchu btweg były jest ówna płwe lczynu jej mmentu bezwładnśc kwadatu pędkśc kątwej. Z uwag na t, że pmędzy welkścam lnwym kątwym psującym uch pstępwy pstlnwy uch btwy były sztywnej wkół stałej s stneje pewna analga, wat zestawć je w tabel. Tabela. Pównane psu uchu pstlnweg uchu btweg Ruch pstlnwy 4 Ruch btwy Dga lnwa s Dga kątwa α Pędkść lnwa ds dα v = Pędkść kątwa ω = Pzyspeszene lnwe dv dω a = Pzyspeszene kątwe ε = Masa m Mment bezwładnśc m = Pęd p = m v Mment pędu L = ω Sła F Mment sły M = F dp dl zas. dynamk F = ma = zas. dynamk M = ε = 1 1 Enega knetyczna Ek = mv Enega knetyczna Ek = ω
5 Metda pmau Celem ćwczena jest dśwadczalne wyznaczene mmentu bezwładnśc były neegulanej. Wykzystuje sę d teg wahadł tsyjne, w któym dknuje sę pmaów był znanym neznanym mmence bezwładnśc. Wahadł tsyjne stanw pęt spężysty, któeg jeden knec zamcwany jest na stałe, zaś d dugeg pzymcwana jest była mmence bezwładnśc (ys. 3). Oś symet były jest pnwa pkywa sę z są symet pęta. Rys. 3. Wahadł tsyjne: U uchwyt, D dut, W - walec. Wahadł skęcne newelk kąt puszczne wyknuje dgana hamnczne wkół s symet. Okes dgań takeg wahadła wyaża sę wzem: T = π, () D gdze: - mment bezwładnśc były; D - mment keujący wahadła spężysteg, stały dla daneg pęta. Zatem jeśl na pęce az zamcujemy np. walec znanym mmence bezwładnśc ( = m /), zaś za dugm azem badaną byłę, t będzemy w stane blczyć mment bezwładnśc badanej były. Okesy dgań walca badanej były wynszą dpwedn: T = π, D Pzez pdzelene stnam pdnesene d kwadatu tzymamy: T T = 5 T = π. (3) D. (4) Uwzględnając fakt, że dla walca = m /, tzymujemy wzó na mment bezwładnśc badanej były: 1 T = m d. (5) 8 T 0
6 Wyknane ćwczena 1. Za pmcą wag labatyjnej wyznaczyć masę m walca użyteg w ćwczenu. Śedncę walca d zmezyć w klku mejscach suwmaką.. Zamcwać walec na uchwyce pęta. 3. Wpawć układ w dgana tsyjne skęcając dut newelk kąt. 4. Zmezyć czas t klkudzesęcu (n) dgań. Pma pwtózyć klkaktne. Okes dgań wyznaczyć dzeląc czas pzez lczbę cykl (T = t /n) 5. Zdjąć walec w jeg mejsce umeścć byłę neegulaną. 6. Wyknać pmay czasu t jak w punktach Mment bezwładnśc badanej były neegulanej blczyć ze wzu (5) 8. Nepewnść pmau wyznaczyć metdą óżnczkwą pzyjmując = f(m,d,t,t ). Tabela pmawa: m [g] d [cm] n t [s] T [s] n t [s] T [s] Zagadnena d klkwum: 1. Ruch pstępwy btwy były sztywnej.. Welkśc knematyczne służące d psu uchu p pstej p kęgu. 3. Mment sły, mment bezwładnśc, mment pędu. 4. Duga zasada dynamk uchu btweg były. 5. Pównane psu uchu pstlnweg uchu btweg. 6. Dgana tsyjne. Wyznaczane dśwadczalne mmentu bezwładnśc był z wykzystanem dgań tsyjnych. Bblgafa: 1. D. Hallday, R. Resnck, J. Walke, Pdstawy fzyk, Wydawnctw Naukwe PWN, Waszawa 003, tm 1.. J. Oea, Fzyka, Wydawnctw Naukw-Technczne, Waszawa 1993, tm J. Massalsk, M. Massalska, Fzyka dla nżyneów, WNT, Waszawa 008, tm 1. 6
9 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I
9 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 9. Spawdzene dugej zasady dynamk uchu obotowego Wpowadzene Pzez byłę sztywną ozumemy cało, któe pod wpływem dzałana sł ne zmena swego kształtu,
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Fizyka 7. Janusz Andrzejewski
Fzyka 7 Janusz Andzejewsk Poblem: Dlaczego begacze na stadone muszą statować z óżnych mejsc wbegu na 400m? Janusz Andzejewsk Ruch obotowy Cało sztywne Cało, któe obaca sę w tak sposób, że wszystke jego
Obroty. dθ, cząstka W Y K Ł A D VIII. Prędkość kątowa i przyspieszenie kątowe.
Wykład z fzyk, Pot Posmykewcz 84 W Y K Ł A D VIII Oboty. Ruch obotowy jest wszędze wokół nas; od atomów do galaktyk. Zema obaca sę wokół własnej os. Koła, pzekładne, slnk, śmgła, CD, łyŝwaka wykonująca
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blk 6: Pęd. Zasada zachwana pędu. Praca. Mc. ZESTAW ZADAŃ NA ZAJĘCIA Uwaga: w pnższych zadanach przyjmj, że wartść przyspeszena zemskeg jest równa g 10 m / s. PĘD I ZASADA ZACHOWANIA PĘDU 1. Płka mase
POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA
POLE MAGNETYCZNE: PRAWO GAUSSA, -S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA Wpwadzenie Ple magnetyczne, jedna z pstaci pla elmg: wytwazane pzez zmiany pla elektyczneg w czasie,
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach
BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa
3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne
POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki.
POLE MAGNETYCZNE Paw Ampea Kieunek wekta eguła pawej ęki. l Cykulacją wekta p kęgu ds ds π 4πε c Mżna wykazać, że związek ten jest słuszny dla kntuu dwlneg kształtu bejmująceg pzewdnik. ds Rys. 6.. Całkę
POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w
POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.
Satelita telekomunikacyjny na orbicie okołoziemskiej
Satelita telekmunikacyjny na bicie kłziemskiej Paweł Kułakwski Ojcwie łącznści satelitanej Pawa Keplea: 1. Planety puszają się p bitach eliptycznych, a Słńce znajduje się w jednym z gnisk tych elips. (160).
Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił.
ykład z fzyk. Pot Pomykewcz 40 Y K Ł A D 5 Pa enega. Pa enega odgywają waŝną olę zaówno w fzyce jak w codzennym Ŝycu. fzyce ła wykonuje konketną pacę, jeŝel dzała ona na pzedmot ma kładową wzdłuŝ pzemezczena
Wykład 15 Elektrostatyka
Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.
INSTRUKCJA DO ĆWICZENIA NR 1
KATEDA EHANK STOSOWANEJ Wydział echaniczny POLTEHNKA LUBELSKA NSTUKJA DO ĆWZENA N PZEDOT TEAT OPAOWAŁ EHANKA UKŁADÓW EHANZNYH Badania analityczne układu mechaniczneg jednym stpniu swbdy D inż. afał usinek.
Pole elektryczne w próżni
Kuala Lumul, Malesia, ebuay 04 W- (Jaszewicz według Rutwskieg) 9 slajdów Ple elektyczne w óżni LKTROSTTYK zagadnienia związane z ddziaływaniem ładunków elektycznych w sczynku 3/9 L.R. Jaszewicz Pdstawwe
W-13 (Jaroszewicz) 19 slajdów. w próżni
Hawa, USA, August 00 W-13 asewc 19 slajdów Ple magnetcne w póżn Ple magnetcne magnetcna składwa sł enta Ładunek elektcn w plu elektmagnetcnm - ckltn Paw Ampea pstać óżnckwa Natężene ptencjał pla magnetcneg
ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE
ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE Wpwadzenie Ple magnetyczne występuje wkół magnesów twałych, pzewdników z pądem, uchmych ładunków elektycznych a także wkół
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Rysunek 9-13 jest to pokazane na rysunku 9-14.W rezultacie, jeŝeli obroty odbywają się w r
Wykład z zyk, Pot Posmykewcz 9-5 96 Własnośc wektoowe obotów. Aby zaznaczyć keunek obotów względem ustalonej os moŝna wpowadzć plus lub mnus pzed oznaczenem pędkośc kątowej, analogczne jak to mało mejsce
obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3
TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej
Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy
Modelowanie przekładni i sprzęgieł
Jakub Wercak delwane przekładn sprzęgeł Człwek- najlepsza nwestycja Prjekt współfnanswany przez Unę Eurpejską w ramach Eurpejskeg Funduszu Spłeczneg delwane przekładn sprzęgeł del funkcjnalny elektryczneg
Inercjalne układy odniesienia
Inecjalne ukłay onesena I II zasaa ynamk Newtona są spełnone tylko w pewnej klase ukłaów onesena. Nazywamy je necjalnym ukłaam onesena. Kyteum ukłau necjalnego: I zasaa jeżel F 0, to a 0. Jeżel stneje
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
ZASADA ZACHOWANIA PĘDU
ZASADA ZACHOWANIA PĘDU; DYNAMIKA RUCHU OBROTOWEGO PRZYPOMNIENIE: Ale dv ZASADA ZACHOWANIA PĘDU dv d a ( V) Jeśl na cało dzałają sły, to cało a pzyśpeszene popocjonalne do całkowtej dzałającej sły: p V
Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zagadnienia 1. Mateatyczne pdstawy etd hdwlanych 2. Watść cechy ilściwej i definicje paaetów genetycznych 3. Metdy szacwania paaetów genetycznych 4. Watść hdwlana cechy
ELEKTRYCZNOŚĆ i MAGNETYZM
ELEKTRYCZNOŚĆ i MAGNETYZM ELEKTROTATYKA zagadnienia związane z ddziaływaniem ładunków elektycznych w spczynku Pdstawwe pjęcia elektstatyki siły elektstatyczne wywłane są ładunkiem elektycznym ładunek elementany
Przykład 2.1. Wyznaczanie prędkości i przyśpieszenia w ruchu bryły
Przykłd 1 Wyzncznie prędkści i przyśpieszeni w ruchu bryły Stżek kącie rzwrci twrzących i pdstwie, której prmień wynsi tczy się bez pślizgu p płszczyźnie Wektr prędkści śrdk pdstwy m stłą długść równą
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana
Układy punktów materialnych i zasada zachowania pędu.
Wykład z fzyk. Pot Posmykewcz 68 W Y K Ł A D VII Układy punktów matealnych zasada zachowana pędu. Do tej poy taktowaly cała take jak samochód, aketę, czy człoweka jako punkty matealne (cząstk) stosowaly
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Moment pędu punktu materialnego i układu punktów materialnych, moment siły Dynamika ruchu obrotowego bryły
Moment ędu untu matealnego uładu untów matealnych, moment sły Dynama uchu obotowego były x Moment ędu untu matealnego L. O L α. α α A Oeślamy go względem ustalonego untu O v L mv -weto oeślający jego ołożene
RUCH OBROTOWY BRYŁY SZTYWNEJ
RUCH OBROTOWY BRYŁY SZTYWNE RUCH OBROTOWY BRYŁY SZTYWNE Cało Doskonale Sztywne (Była Sztywna) model cała zeczywstego układ n oddzaływujących cząstek któych wzajemne odległośc ne ulegają zmane Cało wykonuje
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
. Ilorazy amplitud wyznacza się zazwyczaj z kątów ψ r. t ΙΙ. = 2 2 r
ELIPSOMETRIA Celem elipsmetii jest wyznaczenie stałych ptycznych i stuktualnych cienkich wastw i płaskich pwiezchni pzez pmia elipsy playzacji światła dbiteg lub pzepuszczneg. Pzy baku dwójłmnści i aktywnści
Novosibirsk, Russia, September 2002
Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego
Programowanie wielokryterialne
Prgramwane welkryteralne. Pdstawwe defncje znaczena. Matematyczny mdel sytuacj decyzyjnej Załóżmy, że decydent dknując wybru decyzj dpuszczalnej x = [ x,..., xn ] D keruje sę szeregem kryterów f,..., f.
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Indukcja elektromagnetyczna Indukcyjność Drgania w obwodach elektrycznych
ndukcja eektomagnetyczna ndukcyjność Dgana w obwodach eektycznych Pawo ndukcj eektomagnetycznej Faadaya > d zewnętzne poe magnetyczne skeowane za płaszczyznę ysunku o watośc osnącej w funkcj czasu. ds
Zbigniew Osiak ELEKTRYCZNOŚĆ
Zbgnew Osak LKTRYCZNOŚĆ Zbgnew Osak LKTRYCZ OŚĆ STŁ POL LKTRYCZ PRÓŻ I KO D STOR PŁSKI DILKTRYKI PRĄD LKTRYCZ Y STŁY MTLCH OODY PRĄDU STŁGO Mad, mjej cóce pśwęcam Cpght b Zbgnew Osak selke pawa asteżne.
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
LABORATORIUM OBRÓBKI SKRAWANIEM
AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technlgii Maszyn i Autmatyzacji Ćwiczenie wyknan: dnia:... Wyknał:... Wydział:... Kierunek:... Rk akadem.:... Semestr:... Ćwiczenie zaliczn: dnia:
Zasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
Procent prosty Gdy znamy kapitał początkowy i stopę procentową
cet psty Gdy zay aptał pczątwy stpę pcetwą F = + I aptał ńcwy, pczątwy, dset I = I = stpa pcetwa (w stsuu czy) F = ( + ) aledaze dsetwe 360/360, 365/365, 360/365, 365/360 es wyaży w latach (dla óżych esów
Spis treści I. Ilościowe określenia składu roztworów strona II. Obliczenia podczas sporządzania roztworów
Sps teśc I. Iloścowe okeślena składu oztwoów stona Ułaek wagowy (asowy ocent wagowy (asowy ocent objętoścowy Ułaek olowy 3 ocent olowy 3 Stężene olowe 3 Stężene pocentowe 3 Stężene noalne 4 Stężene olane
Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
1. MECHANIKA. (1.1.1) i. 2/ Suma zewnętrznych momentów sił działających na ciało wynosi zero (1.1.2). (1.1.2)
Mechania. MECHANIKA Mechania - t idee dnszące się d zzumienia i pisu wszelieg uchu. Wpwadzne tu pjęcia i wielści dają pstawy innym działm fizyi az mechanice technicznej. Mechania nie jest jednlitą dziedziną,
cz. 1. dr inż. Zbigniew Szklarski
Wykład 1: lektrstatyka cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektrn ma masę m e ładunek -e i Każdy prtn ma masę m p ładunek
LABORATORIUM AKUSTYKI. Interferencja i dyfrakcja fal akustycznych
LABORATORIUM AKUSTYKI ĆICZENIE NR Itefeeca dyfakca fal akustyczych Cel ćwczea Celem ćwczea est dśwadczale zae zawsk falwych: tefeec ugęca fal akustyczych a stuktuach Układ mawy 8 7 6 kma bezechwa 5 3 4
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
6. POWIERZCHNIOWE MOMENTY BEZWŁADNOŚCI
6. POWERZCHNOWE MOMENTY BEZWŁADNOŚC Zadanie 6. Dla figury przedstawinej na rysunku 6.. wyznaczyć płżenie głównh centralnh si bezwładnści i kreślić względem nich główne centralne mmenty bezwładnści. Rys.6..
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
PODSTAWY FIZYKI DLA ELEKTRONIKÓW
WOJSKOWA AKADEMIA TECHNICZNA Antni Rgalski PODSTAWY FIZYKI DLA ELEKTRONIKÓW WARSZAWA 00 SPIS TREŚCI PRZEDMOWA 9 Rzdział. WPROWADZENIE 3.. Czym jest fizyka? 3.. Wstęp matematyczny 4... Pchdna funkcji 4...
MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO- i HYDROAKUSTYKI 3a. Równanie zasięgu w echolokacji ultradźwiękowej
MAEAŁY OMOCCZE DO WYKŁADU Z BO- HYDOAKUSYK 3a. ównane zasęgu w echlkacj ultaźwękwej S. Zasęg systemy hylkacyjneg (efncja) Zasęg: ległść, wyżej któej zm sygnału użyteczneg jest zbyt mały, aby bnk mógł g
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA
Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie
Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu
Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Drgania układu o wielu stopniu swobody
Drgana układu welu stpnu swbd Drgana własne Zasada d laberta Zasada d leberta: w dnesenu d knstrukcj, znajdującej sę pd wpłwe sł zennch w czase, żna stswać zasad statk pd warunke, że uwzględn sę sł bezwładnśc.
Geodezyjne metody wyznaczania przemieszczeń i odkształceń obudowy szybów w ZG Polkowice-Sieroszowice
WARSZTATY nt. Zagrżena naturalne w górnctwe Meczysław JÓŹWIK Akadema Górncz-Hutncza, Kraków Mat. Symp. Warsztaty str. 55-65 Gedezyjne metdy wyznaczana przemeszczeń dkształceń budwy szybów w ZG Plkwce-Serszwce
Opracowanie pytań na egzamin Fizyka dla elektroników 1
Opacowane pytań na egzamn Fzyka dla elektonków 1 Powadzący: d hab nż. Gzegoz Haań (wesja okojona, po konsultacjach 1 Inecjalne nenecjalne układy odnesena 1.1 *** Inecjalny układ odnesena jego zwązek z
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?
PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy
p Z(G). (G : Z({x i })),
3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
INDUKCJA ELEKTROMAGNETYCZNA
INDUKJA ELEKTROMAGNETYZNA W 83 ku, p dziesięciu latach wytwałych pób, M. Faadaywi udał się wykazać i keślić w jaki spsób zmienne ple magnetyczne pwduje pwstanie pla elektyczneg. Wyknał ekspeyment, któy
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego
5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.
ELEKTROSTATYKA. Ładunek elektryczny. Siła oddziaływania między elektronem a protonem znajdującymi się w odległości równej promieniowi atomu wodoru: 2
LKTROSTATYKA Oddziaływania elektmagnetyczne: zjawiska elektyczne, pmieniwanie elektmagnetyczne i ptyka, pwiązane z mechaniką kwantwą. Ładunek elektyczny Siła ddziaływania między elektnem a ptnem znajdującymi
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
M. Guminiak - Analiza płyt cienkich metodą elementów brzegowych Moment zginający w punkcie B [M xb /pl ]
M. Guminiak Analiza płyt cienkich metdą elementów brzegwych... 44 600 500 400 300 200 100 Mment zginający w punkcie B [M xb /pl 2 10 4 ] 700 600 500 400 300 200 100 Mment zginający w punkcie B [M yb /pl
22. PARAMETRY GEOMETRYCZNE FIGUR PŁASKICH
Ddatek. PRMETRY GEOMETRYCZNE FIGUR PŁSKICH 1. PRMETRY GEOMETRYCZNE FIGUR PŁSKICH.1. DEFINICJE Rzdzał. dtyczy fgur płaskch równmernym rzkładze masy (ρ cnst). Rzważane fgury reprezentują zazwyczaj przekrje
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Wykład 4: Termochemia
Wykład 4: Termchemia Układ i tczenie Energia wewnętrzna, praca bjętściwa i entalpia Praw Hessa Cykl kłwy Standardwe entalpie twrzenia i spalania Energie wiązań chemicznych Wydział Chemii UJ Pdstawy chemii
Dynamika bryły sztywnej
W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o. oet bewładośc Dyaka cała tywego uch łożoy cała tywego 3/4 L.. Jaoewc j j j j j
POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA
Ćwczene O5 POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA 1. Cel zakres ćwczena Celem ćwczena jest poznane metod pomaru współczynnków odbca przepuszczana próbek płaskch 2. Ops stanowska laboratoryjnego
r śm równa się wypadkowej sile działającej na
Wykład z fzyk. Pot Posykewcz 74 F wyp dp dt 8- Duga zasada dynak Tak węc: Wypadkowa sła dzałająca na punkt atealny jest ówna szybkośc zany pędu cząstk. W zeczywstośc pewotne sfoułowane dugej zasady dynak
L=1cm Zaprojektować wstępnie przekroje prętów. Obliczyć zaznaczone przemieszczenia od obciążenia siłami. oraz
WYZNACZANIE PRZEMIEZCZEŃ katwnica ił zmian temeatu zemiezczenia dó i błęd mntażu- 0 OBLICZENIE PRZEMIEZCZEŃ W KRAOWNICY PŁAKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet katwnica jak na unku Lcm -0 C Wznaczć
Wstęp do mechaniki. Wektory. Mnożenie wektorów... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek
Wstęp do mechank dr nż. Ireneusz Owczarek CNMF PŁ reneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/owczarek 1 dr nż. Ireneusz Owczarek Wstęp do mechank Wektory Algebra wektorów przedstawa sę (na płaszczyźne
będzie momentem Twierdzenie Steinera
Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej
Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
= = = A z powyższego: K
Janusz B. ępka Ruch absolutny względny X.7. System helocentyczny Janusza B. ępk. Zauważmy, że według teo geocentycznej oaz helocentycznej, odpowedno Zema lub Słońce są absolutne neuchome w osmose. Z waunku
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny