Pole elektryczne w próżni

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pole elektryczne w próżni"

Transkrypt

1 Kuala Lumul, Malesia, ebuay 04

2 W- (Jaszewicz według Rutwskieg) 9 slajdów Ple elektyczne w óżni LKTROSTTYK zagadnienia związane z ddziaływaniem ładunków elektycznych w sczynku

3 3/9 L.R. Jaszewicz Pdstawwe jęcia elektstatyki siły elektstatyczne wywłane są ładunkiem elektycznym ładunek elementany e = C ładunek unktwy, liniwy, wiezchniwy i bjętściwy w układzie zamkniętym całkwity ładunek zstaje stały aw Culmba 4 k gdzie 0 = C /(Nm ) t zenikalnść dielektyczna óżni k l S

4 4/9 L.R. Jaszewicz Ple elektyczne Natężenie la elektyczneg [N/C] lub [/m] Natężenie la d ładunku unktweg Q gdzie ' ' 4 Ple d n ładunków unktwych 4 n j Q j j Ple d ładunku złżneg z gęstścią x y z,, dxdydz 4, j jest wektem jednstkwym skiewanym d ładunku Q d unktu P(x, y, z) n j j x,y,z Q Q Q 3 Q 3 P ' P

5 5/9 L.R. Jaszewicz negia tencjalna Ple elektstatyczne jest lem zachwawczym tzn. ds ds 0 W B negia tencjalna t aca jaką muszą wyknać siły zewnętzne, aby zenieść ładunek z nieskńcznści d daneg unktu la U ds negia tencjalna ładunku unktweg umieszczneg w lu ładunku Q (t adialny więc ds = d) U Q, óżnimienne t U<0 Q d 4 4 ds Q zy zsuwaniu siły zew. wyknują acę t U wzasta ds 0 U B aw aadaya dla la elektsta -tyczneg

6 6/9 L.R. Jaszewicz Siła a enegia tencjalna W U B B U B d d B du B B du d U U B du d gdy le nie ma symetii sfeycznej t: gad U U x i U y j U z k składwa siły w danym kieunku jest stsunkiem zmiany enegii tencjalnej zy zemieszczeniu w tym kieunku d watści teg zemieszczenia ze znakiem minus n. U x 3y 4xi 3j

7 7/9 L.R. Jaszewicz Ptencjał la elektstatyczneg Ptencjał elektyczny keślamy jak enegię tencjalną jednstkweg ładunku U wlt = J/C Ptencjał elektyczny jest t aca jaką należy wyknać aby zenieść jednstkwy ładunek z nieskńcznści na dległść d daneg ładunku Q ds 4 Q

8 8/9 L.R. Jaszewicz Różnica tencjałów naięcie elektyczne +d ds -d d d B B ds gad wiezchnie ekwitencjalne stały tencjał =cnst =0 d 0 i x czyli y z d wiezchnie ekwitencjalne są stadłe d linii sił la gad j k

9 9/9 L.R. Jaszewicz Stumień la elektyczneg S S stumień t ilczyn natężenia la zez wiezchnię S Scs [m] j j S j S ds S j stumień keśla liczbę linii sił la zechdzących zez daną wiezchnię

10 0/9 L.R. Jaszewicz Paw Gaussa stumień natężenia la elektyczneg zez dwlną, zamkniętą wiezchnię ówny jest całkwitemu ładunkwi zamkniętemu w tej wiezchni dzielnemu zez n i= i w zyadku ładunku gęstści bjętściwej S ds d

11 Wywadzenie awa Gaussa Otczmy ładunek unktwy kulą mieniu ds Rzatzymy dwlną wiezchnię, któa zawiea kulę waz z ładunkiem i udwdnimy, że całkwity stumień zez tę wiezchnię jest identyczny jak stumień zez wiezchnię kulistą a cs R a cs R a d a a d,a,a, d d a R a R k d R R cs, /9 L.R. Jaszewicz

12 /9 L.R. Jaszewicz lgytm wyznaczania natężenia la z awa Gaussa wybieamy wiezchnię Gausswską: stadłą lub ównległą d tak aby był stałe na tej wiezchni bliczamy stumień keślamy ładunek zawaty wewnątz tej wiezchni stsujemy aw Gaussa bliczamy watść la h b h b h h liniwy zkład ładunku h

13 39 L.R. Jaszewicz PRZYKŁD - nieskńczna wiezchnia metalwa gęstści wiezchniwej ładunku ds S S S S 0

14 4/9 L.R. Jaszewicz Równania tencjału la elektyczneg óżniczkwe aw Gaussa dw. ws. div d d div ds 0, dla Q na zewną tz Q, dla Q wewną tz S S Twiedzenie Gaussa- Ostgadskieg S ds div d Paw Gaussa w staci óżniczkwej gad x y z 0, dla ładunku na zewnatz, dla ładunku wewnatz S S () 0 / 0 Cała elektstatyka z matematyczneg unktu widzenia, jest badaniem związań ównania (). Mając keślny tencjał jak związania teg ównania, mżna natychmiast keślić z zależnści = -gad. Jeśli znamy zkład ładunków (x,y,z) t związanie ównania () swadza się d znalezienia całki bjętściwej

15 5/9 L.R. Jaszewicz Dil elektyczny Dil elektyczny t układ dwóch ładunków jednakwej watści, lecz zeciwnych znakach, zsuniętych na dległść d d mment dilwy Qd z dbieństwa tójkątów d d 4 Q k 3 k 3 d

16 6/9 L.R. Jaszewicz x d z + - UWG: P(z,y,z) 3 8 / x x x... y ( x, y, z) 4 z d / x y ( / ) z d x y stsując zwinięcie dwumianwe teg wyażenia w szeeg według tęg małej wielkści d i dzucając wyższe tęgi d tzymamy z d / z zd // (zd/ ) ( x, y, z ) x x y z d zd y z t (z ) x y zd zd z d x y zd ( / ) ( / ) Stsując z klei zwinięcie dwumianwe wyażenia zd zd / zd. z ( d / ) x y zd zd 3 4 4

17 7/9 L.R. Jaszewicz a) b) z ( x, y, z) 4 d P 3 z cs ( x, y, z) = d e 4 0 Ptencjał dila maleje, w kieunku d si, jak /, dczas gdy dla ładunku unktweg tencjał malał jak /. Ple elektyczne dila maleje więc jak / 3. cs gdzie e e

18 Definiując elektyczny mment dilwy jak wekt, watści bezwzględnej =d, kieunku zgdnym z sią dila i skiewany d ładunku - d + mżemy naisać, że: a) b) P z ( ) 4 e 4 3 e z z z 3 4 z z 3 5 z 4 0 3cs 3 x 4πε 3zx, 5 y 4πε 3zy 5 z csθ; x y sinθ x y 4πε 3z 5 x y czyli 4πε 3csΘsinΘ 3 z

19 Kuala Lumul, Malesia, ebuay 04

ELEKTRYCZNOŚĆ i MAGNETYZM

ELEKTRYCZNOŚĆ i MAGNETYZM ELEKTRYCZNOŚĆ i MAGNETYZM ELEKTROTATYKA zagadnienia związane z ddziaływaniem ładunków elektycznych w spczynku Pdstawwe pjęcia elektstatyki siły elektstatyczne wywłane są ładunkiem elektycznym ładunek elementany

Bardziej szczegółowo

POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA

POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA POLE MAGNETYCZNE: PRAWO GAUSSA, -S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA Wpwadzenie Ple magnetyczne, jedna z pstaci pla elmg: wytwazane pzez zmiany pla elektyczneg w czasie,

Bardziej szczegółowo

ELEKTROSTATYKA. Ładunek elektryczny. Siła oddziaływania między elektronem a protonem znajdującymi się w odległości równej promieniowi atomu wodoru: 2

ELEKTROSTATYKA. Ładunek elektryczny. Siła oddziaływania między elektronem a protonem znajdującymi się w odległości równej promieniowi atomu wodoru: 2 LKTROSTATYKA Oddziaływania elektmagnetyczne: zjawiska elektyczne, pmieniwanie elektmagnetyczne i ptyka, pwiązane z mechaniką kwantwą. Ładunek elektyczny Siła ddziaływania między elektnem a ptnem znajdującymi

Bardziej szczegółowo

E r. Cztery fundamentalne oddziaływania: 1. Grawitacyjne 2. Elektromagnetyczne 3. Słabe jądrowe 4. Silne Elektromagnetyzm , Q.

E r. Cztery fundamentalne oddziaływania: 1. Grawitacyjne 2. Elektromagnetyczne 3. Słabe jądrowe 4. Silne Elektromagnetyzm , Q. Cztey fundamentalne ddziaływania: 1. Gawitacyjne. Elektmagnetyczne 3. Słabe jądwe 4. Silne Elektmagnetyzm Elektycznść E, Q Magnetyzm B, Q M Równania Maxwella Wykład 6 015/16 1 ELEKTROSTATYKA Wykład 6 015/16

Bardziej szczegółowo

Cztery fundamentalne oddziaływania

Cztery fundamentalne oddziaływania Cztey fundamentalne ddziaływania:. Gawitacyjne. lektmagnetyczne 3. Słabe 4. Silne jądwe lektmagnetyzm lektycznść, Q Magnetyzm B, Q M Równania Maxwella Wykład - Fizyka II 00/ LKTROSTATYKA Wykład - Fizyka

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 1: lektrstatyka cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektrn ma masę m e ładunek -e i Każdy prtn ma masę m p ładunek

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE

ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE Wpwadzenie Ple magnetyczne występuje wkół magnesów twałych, pzewdników z pądem, uchmych ładunków elektycznych a także wkół

Bardziej szczegółowo

LABORATORIUM SILNIKÓW SPALINOWYCH Materiały pomocnicze

LABORATORIUM SILNIKÓW SPALINOWYCH Materiały pomocnicze Oacwał: Adam Ustzycki Kateda Silników Salinwy i Tantu LABORATORIUM SILNIKÓW SPALINOWYCH Mateiały mcnicze Temat: Bilans cielny silnika Bilans cielny silnika jest t zestawienie zdziału cieła dwadzneg d silnika

Bardziej szczegółowo

cz.1 dr inż. Zbigniew Szklarski

cz.1 dr inż. Zbigniew Szklarski ykład : Gawitacja cz. d inż. Zbiniew Szklaski szkla@ah.edu.l htt://laye.uci.ah.edu.l/z.szklaski/ Doa do awa owszechneo ciążenia Ruch obitalny lanet wokół Słońca jak i dlaczeo? Reulane, wieloletnie omiay

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA INDUKJA ELEKTROMAGNETYZNA W 83 ku, p dziesięciu latach wytwałych pób, M. Faadaywi udał się wykazać i keślić w jaki spsób zmienne ple magnetyczne pwduje pwstanie pla elektyczneg. Wyknał ekspeyment, któy

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

PODSTAWY FIZYKI DLA ELEKTRONIKÓW

PODSTAWY FIZYKI DLA ELEKTRONIKÓW WOJSKOWA AKADEMIA TECHNICZNA Antni Rgalski PODSTAWY FIZYKI DLA ELEKTRONIKÓW WARSZAWA 00 SPIS TREŚCI PRZEDMOWA 9 Rzdział. WPROWADZENIE 3.. Czym jest fizyka? 3.. Wstęp matematyczny 4... Pchdna funkcji 4...

Bardziej szczegółowo

Ś Ą ć ć ć ń ę ę ń ę ę ń ę Ęć Ź Ó ń ę ń ę ę ę ę ę ć Ź ń ć ń Ń ńć ń ń Ś ć Ń Ść ń Ść ę Ść Ź ń Ś ć ń ć ń Ó ć Ź ń ę Ó ć ę ę ń ę ć ę ę Ó ń Ż ę ć ę ę ę Ś ć ę ę Ś Ę ę ń ń ń ę Ó Ć Ę Ć ć ę ć ć ę Ó ć ę Ó Ń ć ę Ś

Bardziej szczegółowo

POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki.

POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki. POLE MAGNETYCZNE Paw Ampea Kieunek wekta eguła pawej ęki. l Cykulacją wekta p kęgu ds ds π 4πε c Mżna wykazać, że związek ten jest słuszny dla kntuu dwlneg kształtu bejmująceg pzewdnik. ds Rys. 6.. Całkę

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

Prawo Gaussa. Potencjał elektryczny.

Prawo Gaussa. Potencjał elektryczny. Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII

Wymagania edukacyjne z matematyki w klasie VII Wymagania edukacyjne z matematyki w klasie VII Ocenę niedstateczną tzymuje uczeń, któy: nie anwał mateiału gamweg na zimie wymagań kniecznych nie tafi wyknać stych leceń wymagających zastswania dstawwych

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1.

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1. Wykład 9 7. Pojemność elektyczna 7. Pole nieskończonej naładowanej wastwy z σ σładunek powiezchniowy S y ds x S ds 8 maca 3 Reinhad Kulessa Natężenie pola elektycznego pochodzące od nieskończonej naładowanej

Bardziej szczegółowo

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW 4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póna Matua z OPERONEM Fizyka i astnia Pzi zszezny Listad 0 W ni niej szy sce a cie ce nia nia za dań twa tyc są e zen t wa ne zy kła d we aw ne d wie dzi. W te - g ty u za

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

L=1cm Zaprojektować wstępnie przekroje prętów. Obliczyć zaznaczone przemieszczenia od obciążenia siłami. oraz

L=1cm Zaprojektować wstępnie przekroje prętów. Obliczyć zaznaczone przemieszczenia od obciążenia siłami. oraz WYZNACZANIE PRZEMIEZCZEŃ katwnica ił zmian temeatu zemiezczenia dó i błęd mntażu- 0 OBLICZENIE PRZEMIEZCZEŃ W KRAOWNICY PŁAKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet katwnica jak na unku Lcm -0 C Wznaczć

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E = 3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izyka 1- Mechanika Wykład 5.XI.017 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Ruch po okęgu - bezwładność Aby ciało pozostawało w uchu po okęgu

Bardziej szczegółowo

Teoria Względności. Czarne Dziury

Teoria Względności. Czarne Dziury Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

Pola siłowe i ich charakterystyka

Pola siłowe i ich charakterystyka W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic

Bardziej szczegółowo

Pola elektryczne i magnetyczne

Pola elektryczne i magnetyczne Pola elektyczne i magnetyczne Zadania z ozwiązaniami Pojekt współfinansowany pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego Zadanie 1 Cząstka alfa (jądo atomu helu) ma masę m = 6.64*1 7

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

Wybrane zagadnienia z elektryczności

Wybrane zagadnienia z elektryczności Wybane zaganienia z elektyczności Pomia łaunku elektycznego oświaczenie Millikana atomize płaszczyzna (+) bateia kople oleju mikoskop F el F g płaszczyzna (-) F g F el mg mg e.6 0 9 C Łaunek elektyczny

Bardziej szczegółowo

Tłumik rezystancyjny o minimalnych stratach ( dopasowany dzielnik napięcia )

Tłumik rezystancyjny o minimalnych stratach ( dopasowany dzielnik napięcia ) Tłumi ezystancyjny minimalnych statach ( daswany dzielni naięcia ) in I I e(t) U U Niesymetyczny in I / I e(t) U U / Symetyczny Dane jetwe: in [Ω], [Ω] Szuane: [Ω], [Ω], [db] Waune daswania eneetyczne

Bardziej szczegółowo

Elektrostatyka. A. Sieradzki IF PWr. Ogień Świętego Elma

Elektrostatyka. A. Sieradzki IF PWr. Ogień Świętego Elma A. Sieadzki I PW Elektostatyka Wykład Wocław Univesity of Technology 3-3- Ogień Świętego Elma Ognie świętego Elma (ognie św. Batłomieja, ognie Kastoa i Polluksa) zjawisko akustyczno-optyczne w postaci

Bardziej szczegółowo

Siły centralne, grawitacja (I)

Siły centralne, grawitacja (I) Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,

Bardziej szczegółowo

Zjawisko indukcji. Magnetyzm materii.

Zjawisko indukcji. Magnetyzm materii. Zjawisko indukcji. Magnetyzm mateii. Wykład 6 Wocław Univesity of Technology -04-0 Dwa symetyczne pzypadki PĘTLA Z PĄDEM MOMENT SIŁY + + POLE MAGNETYCZNE POLE MAGNETYCZNE P A W O I N D U K C J I MOMENT

Bardziej szczegółowo

Coba, Mexico, August 2015

Coba, Mexico, August 2015 Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

3.GRAWITACJA 3.1. Wielkości charakteryzujące pole grawitacyjne. Siły Centralne F21

3.GRAWITACJA 3.1. Wielkości charakteryzujące pole grawitacyjne. Siły Centralne F21 .GAWITACJA.. Wielkości chaakteyzujące ole awitacyjne. iły Centalne C F ˆ Dla oddziaływań awitacyjnych stała C: C Gm m Nm dzie G 6,67* - k Dla oddziaływań elektostatycznych stała C: q q C 4πε o Oddziaływanie

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 1

INSTRUKCJA DO ĆWICZENIA NR 1 KATEDA EHANK STOSOWANEJ Wydział echaniczny POLTEHNKA LUBELSKA NSTUKJA DO ĆWZENA N PZEDOT TEAT OPAOWAŁ EHANKA UKŁADÓW EHANZNYH Badania analityczne układu mechaniczneg jednym stpniu swbdy D inż. afał usinek.

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia

Bardziej szczegółowo

Pole magnetyczne prąd elektryczny

Pole magnetyczne prąd elektryczny Pole magnetyczne pąd elektyczny Czy pole magnetyczne może wytwazać pąd elektyczny? Piewsze ekspeymenty dawały zawsze wynik negatywny. Powód: statyczny układ magnesów. Michał Faaday piewszy zauważył, że

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku

Bardziej szczegółowo

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 8

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 8 WYKŁAD 8 8. RUCH WÓD GRUNTOWYCH 8.1. Właściwści gruntu, praw Darcy Ruch wód gruntwych w śrdku prwatym nazywamy filtracją. D śrdków prwatych zaliczamy grunt, skały, betn itp. Wda zawarta w gruncie występuje

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Enegetyczny Podstawy elektotechniki Pof. d hab. inż. Juliusz B. Gajewski, pof. zw. PW Wybzeże S. Wyspiańskiego 7, 5-37 Wocław Bud. A4 Staa kotłownia, pokój 359 Tel.: 7 3 3 Fax: 7 38

Bardziej szczegółowo

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E Równania Mawella a fale świetlne Wykład 3 Fale wyaŝone pzez zespolone amplitudy wektoowe Pola zespolone, a więc i ich amplitudy są teaz wektoami: % % Równania Mawella Wypowadzenie ównania falowego z ównań

Bardziej szczegółowo

DYNAMIKA WÓD PODZIEMNYCH

DYNAMIKA WÓD PODZIEMNYCH DYNAMIKA WÓD PODZIEMNYCH ównanie Benullieg Spadek hydauliczny Współczynnik filtacji Paw Dacy`eg Pędkść filtacji, pędkść skuteczna Dpływ d wu Dpływ d studni zpatujemy 2 schematy: Dpływ z wastwy wdnśnej

Bardziej szczegółowo

magnetyzm ver

magnetyzm ver e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony Pan z stny www.sqdia. KRYTERIA OCENIANIA ODPOWIEDZI Póna Matua z OPERONEM Fizyka i astnia Pzi zszzny Listad 0 W ni nij szy sc a ci c nia nia za dań twa tyc są zn t wa n zy kła d w aw n d wi dzi. W t -

Bardziej szczegółowo

Lp. Nazwa zamówienia według grupy robót CPV Kod grupy robót Tory Odwodnienie Trakcja

Lp. Nazwa zamówienia według grupy robót CPV Kod grupy robót Tory Odwodnienie Trakcja ćś ż ę ą ą ś ż ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ś ą ą ę ± Ω Ω ą ą ą ą ś ć Ω ± ± ą ą ą ą ą ść ą ść ń ż ń ń

Bardziej szczegółowo

ROZDZIAŁ 2. Elektrotechnika podstawowa 23

ROZDZIAŁ 2. Elektrotechnika podstawowa 23 lektotechnika podstawowa 3 ROZDZIAŁ lektostatyka. Kondensatoy + Nieuchome (niezmienne) ładunki elektyczne ozmieszczone w śodowisku dielektycznym są źódłami pola elektostatycznego. W paktyce model taki

Bardziej szczegółowo

CZAS ZDERZENIA KUL SPRAWDZENIE WZORU HERTZA

CZAS ZDERZENIA KUL SPRAWDZENIE WZORU HERTZA Ćwiczenie Nr CZAS ZDRZNIA KUL SPRAWDZNI WZORU HRTZA Literatura: Opracwanie d ćwiczenia Nr, czytelnia FiM LDLandau, MLifszic Kurs fizyki teretycznej, tm 7, Teria sprężystści, 9 (dstępna w biblitece FiM,

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =? PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej

Atom wodoru w mechanice kwantowej Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego

Bardziej szczegółowo

Część I Pole elektryczne

Część I Pole elektryczne Mateiały pomocnicze dla studentów Studiów Zaocznych Wydz Mechatoniki semest II Część I Pole elektyczne Ładunek elektyczny Q wytwaza pole elektyczne, do opisu któego możemy wykozystać dwie wielkości: natężenie

Bardziej szczegółowo

6. POWIERZCHNIOWE MOMENTY BEZWŁADNOŚCI

6. POWIERZCHNIOWE MOMENTY BEZWŁADNOŚCI 6. POWERZCHNOWE MOMENTY BEZWŁADNOŚC Zadanie 6. Dla figury przedstawinej na rysunku 6.. wyznaczyć płżenie głównh centralnh si bezwładnści i kreślić względem nich główne centralne mmenty bezwładnści. Rys.6..

Bardziej szczegółowo

Ł Ł Ś Ó ć ć ć Ą Ć ć ć Ł Ś Ą Ó Ń Ą ź ź ź Ń ć ć Ł ć Ł Ł Ł Ś Ó Ń ć ć Ł ć Ł ć ć Ś Ł ć Ą Ą ź ź ź ć ć ć Ńć ć Ś Ś Ś Ń Ą ć ć ć ć ć Ń Ą Ł ź ź Ą ź ź ć ć ź ć Ą ć ć ć ź ź ź Ą ź ź ź ź ź ź ć ć ć ć ć ć ć Ą ć ć ź ć ć

Bardziej szczegółowo

XIX. PRAWO COULOMBA Prawo Coulomba

XIX. PRAWO COULOMBA Prawo Coulomba XIX PRAWO COULOMBA 191 Pawo Coulomba Wielkość oddziaływania cząstki z otaczającymi ją obiektami zależy od jej ładunku elektycznego, zwykle oznaczanego pzez Ładunek elektyczny może być dodatni lub ujemny

Bardziej szczegółowo

cz.2 dr inż. Zbigniew Szklarski

cz.2 dr inż. Zbigniew Szklarski Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Wykład 4: Termochemia

Wykład 4: Termochemia Wykład 4: Termchemia Układ i tczenie Energia wewnętrzna, praca bjętściwa i entalpia Praw Hessa Cykl kłwy Standardwe entalpie twrzenia i spalania Energie wiązań chemicznych Wydział Chemii UJ Pdstawy chemii

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe Pzygotowanie do Egzaminu Potwiedzającego Kwalifikacje Zawodowe Powtózenie mateiału Opacował: mg inż. Macin Wieczoek Jednostki podstawowe i uzupełniające układu SI. Jednostki podstawowe Wielkość fizyczna

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

DEMODULACJA AM /wkładki DA091B, DDA2/

DEMODULACJA AM /wkładki DA091B, DDA2/ DEMODULACJA AM /wkładki DA09B, DDA/ WSTĘP Tematem ćwiczenia są zagadnienia związane z dbiem infmacji pzesyłanej na dległść za pmcą fali nśnej. Badany jest -- pd kątem zasad pacy i właściwści - układ demdulata

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

OSCYLATOR HARMONICZNY

OSCYLATOR HARMONICZNY OSCYLTOR HRMONICZNY Dgania swobone oscylaoa haonicznego negia oencjalna sęŝysości Dgania łuione oscylaoa haonicznego Dgania wyuszone oscylaoa haonicznego Rezonans aliuowy Rezonans ocy Doboć ukłau gającego

Bardziej szczegółowo

PODSTAWY OBLICZEŃ CHEMICZNYCH DLA MECHANIKÓW

PODSTAWY OBLICZEŃ CHEMICZNYCH DLA MECHANIKÓW PODSTAWY OBLICZEŃ CHEMICZNYCH DLA MECHANIKÓW Opracwanie: dr inż. Krystyna Mskwa, dr Wjciech Slarski. Chemiczne jednstki masy. W chemii stsuje się względne wartści mas atmów i cząsteczek dniesine d /2 masy

Bardziej szczegółowo

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018 Geodezja fizyczna Siła gawitacji. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 23 paździenika 2018 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika 2018 1 / 24

Bardziej szczegółowo

Magnetyzm cz.ii. Indukcja elektromagnetyczna Równania Maxwella Obwody RL,RC

Magnetyzm cz.ii. Indukcja elektromagnetyczna Równania Maxwella Obwody RL,RC Magnetyzm cz.ii Indukcja elektromagnetyczna Równania Mawella Obwody RL,RC 1 Indukcja elektromagnetyczna Prawo indukcji Faraday a Co się stanie gdy przewodnik elektryczny umieścimy w zmiennym polu magnetycznym?

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

( ) 2. 4πε. Prawo Coulomba

( ) 2. 4πε. Prawo Coulomba Pawo Coulomba. Cztey identyczne ładunki dodatnie q umieszczono w wiezchołkach kwadatu o boku a. W śodku symetii kwadatu umieszczono ładunek ujemny taki, Ŝe cały układ pozostaje w ównowadze. Znaleźć watość

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Ó Ź Ż ś Ż Ż ś Ść ś Ó Ż ść Ż Ż ś ś ŚÓ Ż Ż Ż ś Ż Ś ś Ż ś Ż ś ś ś Ó Ż ś ś Ó Ż Ó Ó ś ść ŚÓ Ż Ż ś ś ś ś Ż Ż Ó Ż Ż ś Ż ś ść Ż Ż ś Ż Ż ś Ż Ś Ó Ó ś Ś Ż Ź Ł ć ć Ż Ó ż ś ś ś Ż ś ś ć Ź ś Ó ś śó Ó śó ś Ż Ż ż śćś Ś

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz

OSERWACJE POLA MAGNETYCZNEGO Pole magnetyczne wytwozone jest np. pzez magnes stały......a zauważyć je można np. obsewując zachowanie się opiłków żelaz POLE MAGNETYCZNE 1. Obsewacje pola magnetycznego 2. Definicja pola magnetycznego i siła Loentza 3. Ruch ładunku w polu magnetycznym; synchoton 4. Siła działająca na pzewodnik pądem; moment dipolowy 5.

Bardziej szczegółowo