Warunki równowagi i rozkład kanoniczny. H0 E 1 EL 8E 1 < W i HE i L ~ E i W 2 E - E 1 W 1 E 1. iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = E

Wielkość: px
Rozpocząć pokaz od strony:

Download "Warunki równowagi i rozkład kanoniczny. H0 E 1 EL 8E 1 < W i HE i L ~ E i W 2 E - E 1 W 1 E 1. iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = E"

Transkrypt

1 Warunki równowagi i rozkład kanoniczny. W HEL = W 1 HE 1 L W 2 HE - E 1 L 8E 1 < H0 E 1 EL W i HE i L ~ E i N W 2 E - E 1 W 1 E 1 iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = 0 E 1 = E

2 W 2 HE - E 1 L W 1 HE 1 L ma bardzo ostre maksimum dla pewnego podziału: E 1 = E * 1, E 2 = E - E * 1. PokaŜemy obecnie, Ŝe ten podział odpowiada równowadze pomiędzy podukładami. E * 1 określone jest przez warunek : W 1 HE 1 L W 2 HE 2 L = max przy E 1 + E 2 = E = const lub równowaŝnie S 1 HE 1 Lêk B S 2 HE 2 Lêk B 1 HE 1 L+S 2 HE 2 LDêk B = max î S 1 HE 1 L + S 2 HE 2 L = max przy E 1 + E 2 = E = const

3 ZauwaŜmy równieŝ, Ŝe W 1 HE * 1 L W 2 HE - E * 1 L W HEL i j E k D y z W 1 HE * 1 L W 2 HE - E * 1 L { lub Odległość między poziomami N a Maksymalna ilość moŝliwych wartości E 1 ln W 1 HE 1 * L + ln W 2 HE - E 1 * L ln W HEL a ln N + ln W 1 HE 1 * L + ln W 2 HE - E 1 * L

4 Tzn. w granicy termodynamicznej; w równowadze: ln W HEL > ln W 1 HE * 1 L + ln W 2 HE - E * 1 L tzn. S = S 1 + S 2 : addytywność entropii liczonej dla E * * 1, E - E 1 To co pokazaliśmy moŝna streścić następująco: 9 W HEL> W 1 HE 1 * L W 2 H E 2 * L S HEL> S 1 H E 1 * L + S 2 H E 2 * L gdzie E 1 * maksymalizuje wyraŝenie 9 W 1 HE 1 L W 2 H E 2 L S 1 H E 1 L + S 2 H E 2 L przy ograniczeniu E 1 + E 2 = const

5 mamy więc S 1 H E 1 L + S 2 H E 2 L = max przy E 1 + E 2 = const = E fi d@ S 1 H E 1 L + S 2 H E 2 LD = 0 przy d E 1 + de 2 = 0 î i j k S 1 E 1 ƒ E * 1=E 1 - S 2 E 2 ƒ E * 2=E 2 y z de 1 = 0 " de 1 { Ω Ω Ø Ø 1 1 T 1 T 2 î T 1 = T 2 Odtworzyliśmy więc warunki równowagi układ-otoczenie(podukład) w przypadku osłony adiabatycznej

6 Podobnie moŝna wyprowadzić warunki równowagi w przypadku, gdy istnieje moŝliwość wymiany cząstek oraz gdy ścianki są ruchome. wtedy partycja równowagowa określona jest przez E 1 = E 1 *, E 2 = E 2 * = E - E 1 *, N 1 = N 1 *, N 2 = N 2 * = N - N 1 *, V 1 = V 1 *, V 2 = V 2 * = V -V 1 * î T 1 = T 2, m 1 = m 2, p 1 = p 2 - dodatkowo pokazaliśmy wcześniej addytywność entropii dla stanu równowagi

7 Wzrost entropii przy zdąŝaniu układów do równowagi Mamy dwa oddzielne podukłady ' 1' i ' 2 ' z partycjami IE 0 1, N 0 1, V 0 1 M oraz IE 0 2, N 0 2, V 0 2 M, które są róŝne od partycji równowagowej : HE 1 *, N 1 *, V 1 *, E 2 *, N 2 *, V 2 * L Jeśli teraz pozwolim y na wym ianę energii, cząstek oraz na zm iany objętości wtedy system jako całość osiągnie stan równowagi. W tym nowym stanie równowagowym entropia całego układu spełnia następujący związek : S 1+2 HE, V, NL = S 1 HE 1 *, N 1 *, V 1 * L + S 2 HE 2 *, N 2 *, V 2 * L S 1 IE 1 0, N 1 0, V 1 0 M + S 2 IE 2 0, N 2 0, V 2 0 M = S pocz S końcowa S początkowa

8 E(i) : i-zbiór liczb kw. charakteryzujący mikrostan układu Otoczenie- termostat układ Otoczenie izolacja adiabatyczna: DQ =0 E c = const Układ moŝe wymieniać energię z otoczeniem Policzymy prawdopodobieństwo P(i) tego, Ŝe układ znajduje się w mikrostanie o energii E(i). 12

9 Zanim przystąpimy do rachunków posłuŝymy się przykładem = 12 Białe kostki: termostat Czerwona kostka: układ Wynik na kostce czerwonej monitorujemy jedynie wtedy gdy suma wszystkich oczek = reprezentuje tutaj stałość energii U+O. Pytamy o częstość wystąpienia 1,2,3,4,5,6 na k. cz. P H1L = 2 25 P H2L = P H5L = P H6L = 5 25 P HiL = W O HE C - E HiLL W O+U HE C L

10 P HiL = W O HE C - E HiLL W O+U HE C L S O HE C -E HiLL- S O+U HE C L = k B Wzór wynika z częstościowej def. prawdopodobieństwa i z załoŝenia równego, a priori prawdopodobieństwa wszystkich mikrostanów U + O (załoŝenie moleku- -larnego chaosu). ZałóŜmy obecnie, Ŝe w równowadze średnia energia układu wynosi UH EL, a otoczenia E C - U. Przy tym podpodziale S O+U HE C L = S O HE C - UL + S U HUL Hpatrz poprzednie rozwaŝanial Podobnie, e S O HE C - E HiLL = S O H E C - U + U - E HiL L = Hrozwijamy wokół połoŝenia równowagi L = S O HE C - UL + S O e ƒ e=e C-U HU - E HiLL +

11 UWAGA: opuszczone wyrazy znikają w granicy termodynamicznej ( wziętej po M-cząstkach całości tj. U+O; Termostat ma nieskończenie więcej stopni swobody niŝ układ- z definicji-: S O+U HE C L = S O HE C - UL + S U HUL S O HE C - E HiLL = S O HE C - UL + S O e ƒ e=e C-U HU - E HiLL = S O HE C - UL + U - E HiL T O P HiL = W O HE C - E HiLL W O+U HE C L = S O HE C -E HiLL- S O+U HE C L k B U - E HiL (wyraŝenie pod eksponentą) T O - S U HUL

12 Stąd P HiL = S O HE C -E HiLL- S O+U HE C L k B = U- T O S U HE U L k B T O â - E HiL k B T O H'L ślad po termostacie pozostał jedynie jako T O H+ warunki term alizacjil H''L czynnik 1 k B T O występuje tak często, Ŝe pomija się ' O' oraz oznacza 1 k B T O przez b : 1 k B T O 1 k B T b U- T O S U HE U L = F Hrównowagowypotencjał Helmholtza ukł.l

13 P HiL = bf - b E HiL ó Hpełni rolę niezaleŝnej od stanu układu stałej normalizacyjnej rozkładu L P HiL = 1 = bf - b E HiL stąd dalej Z F-cja rozdziału rozkładu kanonicznego bf Z = 1 î F = - b -1 ln Z

14 Rozkład kanoniczny podsumowanie : P i = Z -1 - b E HiL, b = Z = - b E HiL 1 k B T F = U - TS = - b -1 ln Z + warunki termalizacji

15 Średnia energia U dana jest przez: U = E HiL P HiL = E HiL Z -1 - b E HiL = Z -1 E HiL - b E HiL = Z -1i j - k b - b E HiLy z { = Z -1i j - k b Z y z = - { ln ZD = F - T H Fê TL = H F + TSL Hco bardzo dobrze znamyl

16 Model dwustanowy liczony rozkładem kanonicznym + E 0 HN + - cząstekl - E 0 HN - - cząstekl E = E O s, gdzie s = ± 1; s: stopień swobody parametry - -zujący stan pojedynczej cząstki Z = - b E HiL 8 i< = 8 s 1, s 2,..., s N < s a = ± 1 =... = 8s 1 = ±1< 8s 2 = ±1< 8s N = ±1< E HiL E Hs 1, s 2,..., s N L = E O a=1,..,n s a S

17 stąd Z = 8s 1 = ±1< 8s 2 = ±1<... 8s N = ±1< e - b E O Hs 1 + s s N L = = i j k8s 1 = ±1< e -b E O s 1 y z { i j k 8s 2 = ±1< y e - b E O s 2 z... i j { k 8s N = ±1< y e - b E O s N z { = Z 1 N gdzie Z 1 = 8s 1 = ±1< e -b E O s 1 = e - be O + e be 0 = 2 coshhb E O L

18 Zatem Z coshhb E O LD N i mamy F = -k B T N ln@2 coshhb E O LD U = - Z -1 b Z = -N E O tanh HbE O L itd. Otrzymalismy wzory identyczne z mikrokanonicznymi poza ujemną temperaturą- bowiem tutaj T jest temperaturą otoczenia; Musimy dołączyć warunek termalizacji- w przeciwnym razie nie mamy równowagi

19 Wielki rozkład kanoniczny Otoczenie- termostat Otoczenie układ E C = const N C = const V C = const Układ moŝe wymieniać energię i cząstki z otoczeniem P Hi, NL = W O HE C - E Hi, NLL W O+U HE C, N C L S O HE C -E Hi,NL, N C - NL- S O+U HE C,N C L = k B 24

20 P Hi, NL = W O HE C - E Hi, NLL W O+U HE C, N C L S O HE C -E Hi,NL, N C - NL- S O+U HE C,N C L = k B ZałóŜmy, Ŝe w równowadze U+O: energia układu: U energia otoczenia: E C - U liczba cząstek w ukł. N U liczba cząstek w otoczeniu: N C - N U S O+U H E C, N C L = S O HE C -U, N C - N U L + S U HU, N U L Jak poprzednio, rozwijamy entropię otoczenia wokół stanu równowagi: S O HE C -E Hi, NL, N C - NL = S O H E C - U + U - E Hi, NL, N C - N U + N U - NL

21 S O HE C -E Hi,NL, N C - NL- S O+U HE C,N C L k B S O HE C - E Hi, NL, N C - NL = S O H E C - U + U - E Hi, NL, N C - N U + N U - NL S O+U H E C, N C L = S O HE C - U, N C - N U L + S U HU, N U L S O HE C - E Hi, NL, N C - NL = S O HE C - U, N C - N U L + 1 T O + S O e ƒ e=e C-U, h=n C -N U HU - E Hi, NLL - m O T O + S O h ƒ e=e C-U, h=n C -N U HN U - NL = S O HE C - U, N C - N U L + U - E Hi, NL T O - m O T O HN U - NL

22 S O HE C -E Hi,NL, N C - NL - S O+U HE C,N C L P Hi, NL = k B S O HE C - E Hi, NL, N C - NL - S O+U H E C, N C L = U - E Hi, NL T O - m O T O HN U - NL - S U HU, N U L i wstawiając do wyjściowego rozkładu otrzymamy: P Hi, NL = U- T O S U HE U L- m O N U k B T O â - E Hi,NL-m O N k B T O = Z -1 - E Hi,NL-m O N k B T O U - T O S U HE U L - m O N U = F - G = X = -p O V U HponiewaŜ wielkości określone są w równowadze - opuszczamy indeks ' O'L

23 P Hi, NL = U- T O S U HE U L- m O N U k B T O â - E Hi,NL-m O N k B T O = Z -1 - E Hi,NL-m O N k B T O U - T O S U HE U L - m O N U = F - G = X = -p O V U HponiewaŜ wielkości określone są w równowadze - opuszczamy indeks ' O'L Rozkład wielki kanoniczny: P Hi, NL = - bpv - b@e Hi,NL -mnd = Z -1 - b@e Hi,NL -mnd Z = - b@e Hi,NL-mND = 8i, N< 8N< b mn - b E Hi,NL X = -pv = - b -1 ln Z + warunki termalizacji

24 Rozkład izobaryczno-izotermiczny Rozkład izobaryczno - izotermiczny : Dopuszczamy zmianę objętości (N=const) P Hi, VL = b@u- T O S U HE U L + p O V U D - b@e Hi,VL +p O VD = bg - b@e Hi,VL + pvd = Z -1 - b@e Hi,VL + pvd Z = V - b@e Hi,NL + pvd = V - b pv - b E Hi,VL G = - b -1 ln Z (wyprowadzić) + warunki termalizacji

25 Czy moŝna wyeliminować wszystkie ograniczenia i pozwolić na: wymianę energii, wymianę cząstek i fluktuację objętości? Odpowiedź: Taka procedura nie prowadzi do nowego rozkładu bowiem T, m oraz p nie są niezaleŝne!

26 P Hi, NL = b@u- T O S U HE U L - m O N U D P Hi, VL = b@u- T O S U HE U L + p O V U D -b@e Hi,VL - m O ND -b@e Hi,VL +p O VD P Hi, N, VL = b@u- T O S U HE U L - m O N U + p O V U D -b@e Hi,N,VL - m O N + p O VD P Hi, N, VL = -b@e Hi,VL - m O N + p O VD V N - b@e Hi, N, VL - m O N + p O VD = 1 Hodpowiednik relacji Gibbsa - DuhemaL

27 Związek między rozkładem kanonicznym i mikrokanonicznym W W HE, V, NL = df E HiL = E 1 = d H E - E HiL L î Z = - b E HiL = EO d HE - E HiLL - b E E = i = EO j k ZHT, V, NL = d HE - E HiLL y z - b E E = { EO W HE, N, VL -b E E EO W HE, N, VL - b E E Htr. Laplace' a rozkładu mikrol

28 Przykład: Klasyczny gaz doskonały N E H = j=1 p j2 2 m p j Hp x,j, p y,j, p z,j L Z HN, V, TL = 1 h 3 N N! 3 p p N 3 r r N e - b H = V N h 3 N N! e - p m k B T 3 p 1... e - p N 2 2 m k B T 3 p N = VN N! i j k H2 p mk B TL 3ê2 h 3 y z { N = V N N! H2 pl 3 Nê2 l 3 N

29 Z HN, V, TL = VN N! ih2 p mk B TL 3ê2 j k h 3 y z { N H1L Energia swobodna: F = -k B T ln Z = -k B T i jn ln V + 3 N k 2 ln 2 pmk B T - ln N! y z h 2 { > -k B T i jn ln V + 3 N k 2 ln 2 pmk B T - N ln N + N y z h 2 { = -k B T N i j ln V k N + H2L równanie stanu: 3 2 ln 2 pmk B T + 1 y z h 2 { p = - i j F k V y z { T,N = Nk B T V î pv = N k B T

30 F > -k B T N i j ln V k N ln 2 pmk B T + 1 y z h 2 { H3L entropia: S = - i j F k T y z { V,N = k B N i j ln V k N ln 2 pmk B T y z h 2 2{ H4L energia wewnętrzna: U = F + TS = 3 2 N k B T i j 3 k 2 pvy z HU nie zaleŝy od VL { H5L C V = i j U k T y z { V = 3 2 N k B (niezgodne z III zasadą t. -nieuwzględnienie efektów kwantowych)

Warunki równowagi. Rozkłady: kanoniczny, wielki kanoniczny, izobaryczno-izotermiczny

Warunki równowagi. Rozkłady: kanoniczny, wielki kanoniczny, izobaryczno-izotermiczny Warunki równowagi. Rozkłady: kanoniczny, wielki kanoniczny, izobaryczno-izotermiczny 1 Niestety, rachunki przy użyciu rozkładu mikrokanonicznego nie są łatwe. Wprowadzimy teraz inne rozkłady, przy pomocy

Bardziej szczegółowo

Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny

Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny 1 Rozkład Mikrokanoniczny (przypomnienie) S= k B ln( (E,V,{x i },{N j }) ) Z fenomenologii: Niestety, rachunki przy użyciu rozkładu mikrokanonicznego

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego i Fermiego

Statystyka nieoddziaływujących gazów Bosego i Fermiego Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna

WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna (Zadaniem Fizyki Statystycznej jest zrozumienie własności (równowagowych i nierównowagowych materii w oparciu o oddziaływania międzymolekularne)

Bardziej szczegółowo

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

II Zasada Termodynamiki c.d.

II Zasada Termodynamiki c.d. Wykład 5 II Zasada Termodynamiki c.d. Pojęcie entropii i temperatury absolutnej II zasada termodynamiki dla procesów nierównowagowych Równania Gibbsa dla procesów quasistatycznych Równania Eulera Relacje

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny , granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe. P. F. Góra

Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe. P. F. Góra Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Zespół kanoniczny Zespół mikrokanoniczny jest (przynajmniej w warstwie

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Teoria kinetyczno cząsteczkowa

Teoria kinetyczno cząsteczkowa Teoria kinetyczno cząsteczkowa Założenie Gaz składa się z wielkiej liczby cząstek znajdujących się w ciągłym, chaotycznym ruchu i doznających zderzeń (dwucząstkowych) Cel: Wyprowadzić obserwowane (makroskopowe)

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne

Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne WYKŁAD 23 1 Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne (Birkhoff, Ter Haar) Hipoteza semi-ergodyczna

Bardziej szczegółowo

Agata Fronczak Elementy fizyki statystycznej

Agata Fronczak Elementy fizyki statystycznej Agata Fronczak Elementy fizyki statystycznej Skrypt do wykładu i ćwiczeń rachunkowych dla kierunku Fotonika (rok III, semestr 5) na Wydziale Fizyki PW Warszawa 2016 Spis treści 1. Termodynamika klasyczna,

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Ogólny schemat postępowania

Ogólny schemat postępowania Ogólny schemat postępowania 1. Należy zdecydować, który rozkład prawdopodobieństwa chcemy badać. Rozkład oznaczamy przez P; zależy od zespołu statystycznego. 2. Narzucamy warunek równowagi szczegółowej,

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Wykład 3. Zerowa i pierwsza zasada termodynamiki:

Wykład 3. Zerowa i pierwsza zasada termodynamiki: Wykład 3 Zerowa i pierwsza zasada termodynamiki: Termodynamiczne funkcje stanu. Parametry extensywne i intensywne. Pojęcie równowagi termodynamicznej. Tranzytywność stanu równowagi i pojęcie temperatury

Bardziej szczegółowo

Elementy fizyki statystycznej

Elementy fizyki statystycznej 5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy

Bardziej szczegółowo

Zasady Termodynamiki

Zasady Termodynamiki Zasady Termodynamiki I-sza zasada termodynamiki: - bilans energii w procesie przejścia układu ze stanu A do stanu B - identyfikacja kanałów przekazu B A W oparciu o I-szą zasadę wiemy, Ŝe Przekaz moŝe

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

Co to jest model Isinga?

Co to jest model Isinga? Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym

Bardziej szczegółowo

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0

Bardziej szczegółowo

Wykład 4. II Zasada Termodynamiki

Wykład 4. II Zasada Termodynamiki Wykład 4 II Zasada Termodynamiki Ogólne sformułowanie: istnienie strzałki czasu Pojęcie entropii i temperatury absolutnej Ćwiczenia: Formy różniczkowe Pfaffa 1 I sza Zasada Termodynamiki: I-sza zasada

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina

Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Silnie zwyrodniały gaz bozonów o niezerowej masie spoczynkowej Gdy liczba cząstek nie jest zachowywana, termodynamika nieoddziaływujących

Bardziej szczegółowo

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[

Bardziej szczegółowo

ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę

ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę ń ę ś Ą Ń ó ę ą ń ą ś Ł ń ń ź ń ś ó ń ę ę ę Ń ą ą ń ą ź ą ź ń ć ę ó ó ę ś ą ść ńś ś ę ź ó ń ó ń ę ń ą ń ś ę ó ó Ę ó ń ę ń ó ń ń ń ą Ę ą ź ą ą ń ó ą ę ó ć ą ś ę ó ą ń ś ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

N a l e W y u n i k a ć d ł u g o t r w a ł e g o k o n t a k t u p o l a k i e r o w a n y c h p o w i e r z c h n i z w y s o k i m i t e m p e r a

N a l e W y u n i k a ć d ł u g o t r w a ł e g o k o n t a k t u p o l a k i e r o w a n y c h p o w i e r z c h n i z w y s o k i m i t e m p e r a J L G 3 6 6 P A W I L O N O G R O D O W Y J L G 3 6 6 I N S T R U K C J A M O N T A V U I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y z a z a k u p p a w i l o n u o g

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 0-4 Warszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mail: stach@unipress.waw.pl,

Bardziej szczegółowo

Statystyki kwantowe. P. F. Góra

Statystyki kwantowe. P. F. Góra Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny Ćwiczenia nr 0 Wielki rozkład kanoniczny Jest to rozkład prawdopodobieństwa dla układu o zmiennej liczbie cząstek N. Liczbę cząstek możemy potraktować jako dodatkową liczbą kwantową układu. ψ jest to stan

Bardziej szczegółowo

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata. Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Obraz statyczny układu

Obraz statyczny układu Termodynamika Obraz statyczny układu energia kinetyczna E k = mv 2 / 2 energia wewnetrzna energia powierzchniowa inne energie U inne parametry: T, m, P, V, S... Ep= mgh energia potencjalna STAN I PRZEMIANA

Bardziej szczegółowo

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] } Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[

Bardziej szczegółowo

Fizyka statystyczna. This Book Is Generated By Wb2PDF. using

Fizyka statystyczna.  This Book Is Generated By Wb2PDF. using http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?

Bardziej szczegółowo

Klasyczna mechanika statystyczna Gibbsa I

Klasyczna mechanika statystyczna Gibbsa I Wykład III Mechanika statystyczna Klasyczna mechanika statystyczna Gibbsa I Wstępne uwagi Materia nas otaczająca, w szczególności gazy będące centralnym obiektem naszego zainteresowania, zbudowane są z

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

4 Przekształcenia pochodnych termodynamicznych

4 Przekształcenia pochodnych termodynamicznych 4 Przekształcenia pochodnych termodynamicznych 4.1 Relacje Maxwella Pierwsza zasada termodynamiki może być zapisana w postaci niezależnej od reprezentacji jako warunek znikania formy Pfaffa: Stąd musi

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna W8 40 Równanie Van der Waalsa Temperatura krytyczna Stopień suchości ci Przemiany pary 1 p T 1 =const T 2 =const 2 Oddziaływanie międzycz dzycząsteczkowe jest odwrotnie proporcjonalne do odległości (liczonej

Bardziej szczegółowo

r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC

r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC VIII.1 Pojęcia mikrostanu i makrostanu układu N punktów materialnych. Prawdopodobieństwo termodynamiczne. Entropia. VIII. Rozkład Boltzmanna VIII.3 Twierdzenie o wiriale Jan Królikowski Fizyka IBC 1 Uwagi

Bardziej szczegółowo

3 Potencjały termodynamiczne i transformacja Legendre a

3 Potencjały termodynamiczne i transformacja Legendre a 3 Potencjały termodynamiczne i transformacja Legendre a literatura: Ingarden, Jamiołkowski i Mrugała, Fizyka Statystyczna i ermodynamika, 9 W.I Arnold, Metody matematyczne mechaniki klasycznej, 14 3.1

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) ZaleŜność stosunku R od temperatury dla gazu doskonałego

Bardziej szczegółowo

Druga zasada termodynamiki

Druga zasada termodynamiki Waldemar Ufnalski Wprowadzenie do termodynamiki chemicznej Wykład 4 Druga zasada termodynamiki. Carnot L. Boltzmann 1 Wykład 4 4.1. Fakty doświadczalne i sformułowanie drugiej zasady termodynamiki 2 Wszystkie

Bardziej szczegółowo

ĺ ą Ł ĺĺ ĺ ĺĺĺ ĺ ĺ ę Żĺ ĺĺĺĺ ę ĺ ĺ ĺĺ ĺ ą ę ś Ść Ą ę ę ś ś ś ę ý ś ż ę ś ý ę ę ń ę ą Ż ę ę ý ś ń ą ĺ ż ż ś ć ż Ż ś ć ś ś ś ą ę ś ę ę Ś ęś ś ś ś ę ęć ż

ĺ ą Ł ĺĺ ĺ ĺĺĺ ĺ ĺ ę Żĺ ĺĺĺĺ ę ĺ ĺ ĺĺ ĺ ą ę ś Ść Ą ę ę ś ś ś ę ý ś ż ę ś ý ę ę ń ę ą Ż ę ę ý ś ń ą ĺ ż ż ś ć ż Ż ś ć ś ś ś ą ę ś ę ę Ś ęś ś ś ś ę ęć ż Ą ą ą ż ą ę ń ĺ Ą ą ĺ ń ą ú ĺ ń ĺ Ż ĺ ĺ Ą ę ś ę ę ń ĺ ĺ ĺ ĺ ą ĺ ń ś đ ę ą ĺ ń ą Ż ę ĺ ż í ĺĺ ż ę ĺ ĺ ĺ Ź ę ĺ Ż Ż ĺ ĺ ą Ł ĺĺ ĺ ĺĺĺ ĺ ĺ ę Żĺ ĺĺĺĺ ę ĺ ĺ ĺĺ ĺ ą ę ś Ść Ą ę ę ś ś ś ę ý ś ż ę ś ý ę ę ń ę ą Ż

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron

Bardziej szczegółowo

Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć

Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć ń Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć Í ń Ó Ń Ń Ń Ó ľ ęż Ń Á ęż Ń Ą ę Ż ć ę ę Ż ć ę ć Ś ę ę Ś Ż Ż Ż Ż ę ę Ż ń Ż ń ę ę ć Ś ę Ż ć Ż ć Ż Ż ć ń Ż ľ ę ę ę ę Ś ę ę ľ ę Ę Ĺ Í ľ ď ý Ę ń ľ ę ń Ó Ń ć Í ô Ó ľ ü

Bardziej szczegółowo

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin Biofizyka wykład: dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Biofizyka - wykłady Biotechnologia III rok Tematyka (15 godz.): dr hab. Jerzy Nakielski dr Joanna Szymanowska-Pułka dr

Bardziej szczegółowo

n p 2 i = R 2 (8.1) i=1

n p 2 i = R 2 (8.1) i=1 8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Fizyka statystyczna Potencjały termodynamiczne i warunki równowagi Geometria Drugiej Zasady Termodynamiki

Fizyka statystyczna Potencjały termodynamiczne i warunki równowagi Geometria Drugiej Zasady Termodynamiki Fizyka statystyczna Potencjały termodynamiczne i warunki równowagi Geometria Drugiej Zasady Termodynamiki P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Energia wewnętrzna jako funkcja jednorodna

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

1 Rachunek prawdopodobieństwa

1 Rachunek prawdopodobieństwa 1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const

Bardziej szczegółowo

Politechnika Wrocławska Katedra Fizyki Teoretycznej. Katarzyna Sznajd-Weron. Fizyka Statystyczna

Politechnika Wrocławska Katedra Fizyki Teoretycznej. Katarzyna Sznajd-Weron. Fizyka Statystyczna Politechnika Wrocławska Katedra Fizyki Teoretycznej Katarzyna Sznajd-Weron Fizyka Statystyczna Skrypt dla studentów Wrocław 2016 2 Spis treści 1 Elementy termodynamiki 1 1.1 Wielkości termodynamiczne..........................

Bardziej szczegółowo

Teoria kinetyczna gazów

Teoria kinetyczna gazów Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29

Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29 Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...

Bardziej szczegółowo

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny. Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich

Bardziej szczegółowo

Wstęp do Fizyki Statystycznej

Wstęp do Fizyki Statystycznej Wstęp do Fizyki Statystycznej Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 października 2016 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 października 2016

Bardziej szczegółowo

Ć Ę Ę ż ŁĄ

Ć Ę Ę ż ŁĄ Ó Ń Ń Ń Ą Ę Ź ŚĘ Ś Ć Ę Ę ż ŁĄ ż Ą Ś Ą Ś ź ż ź Ś Ę Ę ź Ą Ę ż Ą ż ż ż Ą Ś ż ż ż ć ż ż ć ż ż ć ć ż ż Ą ż ż ż Ę Ę Ę ż Ś ż Ą Ę Ź Ą ż Ą Ę ż ż Ś ż ż ż ż Ł Ę ć ż Ś ż ż ż ż ż Ś Ę ż ż Ę Ę ż Ę ć ż ż ż Ś ż ż ć ż Ę

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład I - 1 Sprawy formalne 2 Fizykochemiczne podstawy inżynierii procesowej Sprawy formalne: Forma: Wykład w postaci prezentacji komputerowych Przeznaczenie:

Bardziej szczegółowo

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w Wykład z fizyki, Piotr Posmykiewicz 7 P dt dt + nrdt i w rezultacie: nr 4-7 P + Dla gazu doskonałego pojemność cieplna przy stałym ciśnieniu jest większa od pojemności cieplnej przy stałej objętości o

Bardziej szczegółowo

Maszyny cieplne i II zasada termodynamiki

Maszyny cieplne i II zasada termodynamiki Maszyny cieplne i II zasada termodynamiki Maszyny cieplne, chłodnie i pompy tlenowe II zasada termodynamiki Cykl Carnot a Entropia termodynamiczna definicja II zasada termodynamiki i entropia Cykle termodynamiczne.

Bardziej szczegółowo

9.1 Rozkład kanoniczny dla układów kwantowych

9.1 Rozkład kanoniczny dla układów kwantowych 9 Rozkład kanoniczny 9.1 Rozkład kanoniczny dla układów kwantowych Jest to funkcja rozkładu w stanie równowagi termodynamicznej, dla układu mogącego wymieniać ciepło z otoczeniem. Układ znajduje się w

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:

Bardziej szczegółowo

Zarządzenia i informacje 1.1. Zarządzenia

Zarządzenia i informacje 1.1. Zarządzenia C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d 2 0 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e j Z H

Bardziej szczegółowo