Fizyka statystyczna doskona ego gazu bozonów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka statystyczna doskona ego gazu bozonów"

Transkrypt

1 Fizyka statystyczna doskonaego gazu bozonów Kazimierz Rzewski Centrum Fizyki Teoretycznej PAN oraz Uniwersytet Kardynaa Stefana Wyszyskiego w Warszawie

2 Fizyka statystyczna doskonaego gazu bozonów Kazimierz Rzewski Centrum Fizyki Teoretycznej PAN oraz Uniwersytet Kardynaa Stefana Wyszyskiego w Warszawie

3 Fizyka statystyczna doskonaego gazu bozonów Kazimierz Rzewski Centrum Fizyki Teoretycznej PAN oraz Uniwersytet Kardynaa Stefana Wyszyskiego w Warszawie

4 jak zimny musi by gaz by objawiy si wasnoci kwantowe? dugo fali de Brogliea = h p warunek krytyczny typowe parametry: = odlego pomidzy atomami temperatura<1mikrokelvin atoms gsto< cm 3

5 jak zimny musi by gaz by objawiy si wasnoci kwantowe? dugo fali de Brogliea = h p warunek krytyczny typowe parametry: = odlego pomidzy atomami temperatura<1mikrokelvin atoms gsto< cm 3

6 jak zimny musi by gaz by objawiy si wasnoci kwantowe? dugo fali de Brogliea = h p warunek krytyczny typowe parametry: = odlego pomidzy atomami temperatura<1mikrokelvin atoms gsto< cm 3

7 jak zimny musi by gaz by objawiy si wasnoci kwantowe? dugo fali de Brogliea = h p warunek krytyczny typowe parametry: = odlego pomidzy atomami temperatura<1mikrokelvin atoms gsto< cm 3 to jest wysoka temperatura!

8 Dlaczego gaz czstek kwantowych zachowuje si inaczej ni gas klasyczny? Bo czstki kwantowe s nierozrónialne!

9 Dlaczego gaz czstek kwantowych zachowuje si inaczej ni gas klasyczny? Bo czstki kwantowe s nierozrónialne! czstki klasyczne: dwa sposoby

10 Dlaczego gaz czstek kwantowych zachowuje si inaczej ni gas klasyczny? Bo czstki kwantowe s nierozrónialne! czstki klasyczne: dwa sposoby

11 Dlaczego gaz czstek kwantowych zachowuje si inaczej ni gas klasyczny? Bo czstki kwantowe s nierozrónialne! czstki klasyczne: dwa sposoby czstki kwantowe: jeden sposób

12 dwa rodzaje czstek kwantowych bozony fermiony spin bozony/fermiony parzysta/nieparzysta liczba

13 dwa rodzaje czstek kwantowych bozony fermiony spin bozony/fermiony parzysta/nieparzysta liczba

14 atomy w puapce w T=0 fermiony bozony

15 atomy w puapce w T=0 atomy s bozonami lub fermionami w zalenoci od liczby neutronów w jdrze fermiony bozony

16 Zespoy termodynamiczne 1. Zespó mikrokanoniczny Brak wymiany ciepa Brak wymiany czstek (N,E) degeneracja Zwizek z termodynamik: entropia: 2. Zespó kanoniczny temperatura: S=kln 1 kt = ln[(n,e)] E Temperatura wyznaczona przez termostat Brak wymiany czstek = exp[h] Z(N,T) <E>= lnz(n,t) Z(N,T)=Tr[exp(-H)]

17 3. Wielki zespó kanoniczny: exp[h +µn] (T,µ) = = exp[ Kontakt z rezerwuarem ciepa i rezerwuarem czstek (T,µ)=Tr[exp(-H+µN)] <N >=z z ln aktywno: z=exp[µ] Zwizki midzy sumami statystycznymi Z(N,T)=Tr[exp(-H)] Z(N,)= (z,)= E N=0 exp[e]( N,E) z N Z(N,)

18 najprostszy przykad: dwa atomy w jednowymiarowym potencjale harmonicznym; zespó kanoniczny = 1 Z() n 1,n 2 n 1+n 2 n 1,n 2 ><n 1,n 2 =exp[/kt] klasyczne bozony fermiony 0n,n < 1 2 0n 1 n 2 < 0n <n < 1 2 Z c = n=0 n 2 = n 2 n 1 =0 1 ( 1) Z 2 b = n 2 n 1 = n 2 =0 = n 2 1 n 1 =0 Z f = n 2 n 1 = = n 2 =0 1 ( )(1 2 )

19 rednie obsadzenie poziomu podstawowego... W(n 1,n 2 )= n 1+n 2 Z() klasyczne bozony fermiony P c (2)=W c (0,0)=(1) 2 P b (2)=W b (0,0)= P f (2)=0 P c (1)=2 W(0,n) = n=1 =2(1) P c (0)= 2 =(1)(1 2 ) P b (1)= W b (0,n) = n=1 =(1 2 ) P b (0)= 2 P f (1)= W f (0,n) = n=1 =1 2 P f (0)= 2 <N 0 >=2P(2)+1P(1)+0P(0) <N 0 > c =2(1) <N 0 > b =(2)(1 2 ) <N 0 > f =1 2

20 rola statystyki... dwa atomy 2 <N 0 > klasyczne fermiony bozony

21 N atomów Z c = 1 1 N Z b = N 1 N 1 Z 1 k f = N1 k=1 k=1 1 k <N 0 > c =N(1)...

22 NUMBER OF PARTICLES <n 0 > dramatyczna rónica... n 0 <n 0 > n 0 N=1000 bosons classical kt

23 Ksikowa teoria BEC jest oparta na wielkim zespole kanonicznym bo znamy ogóln posta wielkiej sumy statystycznej dla nieoddziaujcych bozonów (dla fermionów te): i=0 N = n i i=0 0 E = n i i n i liczba atomów o energii i i jednoczstkowe poziomy energii = n 0 =0n 1 =0 n i =0 i= exp[ n i ( i µ)] i=0 1 2 bozony = i fermiony = {1+zexp[ i ]} i 1 1zexp[ i ]

24 Oscylator harmoniczny 3D energie jednoczstkowe: j =j stopie degeneracji: (j+1)(j+2) 2 (,z) = j =0 1 1z j (j +1)(j +2) 2 =exp[ kt ]

25 Znamy asymptotyczne wyraenie na wielk sum statystyczn: g n (z)= ln= k=1 j=0 (j+1)(j+2) 2 =ln(1z)+ 1 2 ln[1z j ] ln(1z) 1 2 dx x 2 ln(1z x )= 0 z k x 2 kx dx= k k=1 =ln[1z]+ g 4 (z) [ln] 3 z k k n g n (1)=(n) z dg n (z) dz 0 =g n1 (z)

26 warunek krytyczny ln=ln[1z]+ g 4(z) [ln] 3 =exp[/kt] <N >=z ln z = z 1z + kt 3 g 3 (z) <N 0 > <N ex > <N 0 > =N1 (3) N kt 3 temperatura krytyczna T c = k N (3) 1 3

27 Wielki zespó kanoniczny jest chory. Przewiduje absurdalne fluktuacje liczby atomów w kondensacie: na chwil przywrócimy energi stanu podstawowego <N 0 >= 1 ln = 1 (ln(1ze 0 )...) 0 0 = ze0 1ze 0 2 N 0 =<N 2 0 ><N 0 > 2 = 1 <N 0 > = 0 ze 0 (1ze 0 )2 std N 0 <N 0 > =1+ 1 <N 0 > W dowiadczeniu (niemal) doskonaa izolacja Zespómikrokanoniczny

28 Jednowymiarowy oscylator harmoniczny 0 2 E n =(n+1/2) 1 N ex ex(n ex,e) P(NN ex )= 1/7 2/7 2/7 1/7 1/7 <N 0 >= (1*4 + 2*3 + 2*2 + 1*1 + 1*0)/7=15/7 (N 5,5)=7

29 Srinivasa Ramanujan Godfrey Harold Hardy D (N) 1 4N 3 exp[ 2N/3]

30 Zespó Demona Maxwella: atomy wzbudzone: okrelona energia nieokrelona liczba czstek Y(z,E) = N ex =1 z N ex ex(n ex,e) Gdybymy znali Y: (N,E) =Y(1,E), N >E <N ex >=N <N 0 >= z ln[y(z,e)] z=1 (N ex ) 2 = z z 2 ln[y(z,e)] z=1

31 Jak wyglda funkcja tworzca wzgldem energii? ex (z,) = E Y(z,E) = j =1 1 1z j (j +1)(j +2) 2 Nie ma wkadu od stanu podstawowego! ln[ ex (z,)] g 4(z) [ln] 3 Y(z,E) = 1 2i ex (z,) d E +1

32 obsadzenie kondensatu w funkcji temperatury 1000 NUMBER OF C CONDENSED ATOMS N= T/T c <N 0 > =N1 (3) N kt 3

33 Fluktuacje gazu doskonaego w 3D puapce harmonicznej N=1000 grand canonical N 0 20 canonical 10 microcanonical T/T c 2 N 0 = kt 3 (2) 32 (3) 4(4)

34 Zespó Demona Maxwella stosuje si do rónych potencjaów puapki i w rónych wymiarach. Ukazao si wiele prac na temat fluktuacji w gazie sabo oziaujcym. Nie nadaj si na seminarium na temat cisych wyników! P. Navez, D. Bitouk, M. Gajda, Z. Idziaszek, and K. Rzewski, Fourth Statistical Ensemble for the Bose-Einstein Condensate, Phys. Rev. Lett. 79, (1997)

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego i Fermiego

Statystyka nieoddziaływujących gazów Bosego i Fermiego Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,

Bardziej szczegółowo

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony

Bardziej szczegółowo

Rzadkie gazy bozonów

Rzadkie gazy bozonów Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni

Bardziej szczegółowo

Zadania z Fizyki Statystycznej

Zadania z Fizyki Statystycznej Zadania z Fizyki Statystycznej 1. Wyznaczyć skok wartości pochodnej ciepła właściwego w temperaturze krytycznej dla gazu bozonów, w temperaturze w której pojawia się konensacja [1].. Wyznaczyć równanie

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Szczegółowy wgląd w proces chłodzenia jedno-wymiarowego gazu bozonów

Szczegółowy wgląd w proces chłodzenia jedno-wymiarowego gazu bozonów Szczegółowy wgląd w proces chłodzenia jedno-wymiarowego gazu bozonów Piotr Deuar (IF PAN) Emilia Witkowska, Mariusz Gajda (IF PAN) Kazimierz Rzążewski (CFT PAN) Cover of Phys. Rev. Lett., 1 Apr 2011 E.

Bardziej szczegółowo

Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29

Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29 Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina

Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Silnie zwyrodniały gaz bozonów o niezerowej masie spoczynkowej Gdy liczba cząstek nie jest zachowywana, termodynamika nieoddziaływujących

Bardziej szczegółowo

Fizyka statystyczna. This Book Is Generated By Wb2PDF. using

Fizyka statystyczna.  This Book Is Generated By Wb2PDF. using http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?

Bardziej szczegółowo

Chłodzenie jedno-wymiarowego gazu bozonów

Chłodzenie jedno-wymiarowego gazu bozonów Chłodzenie jedno-wymiarowego gazu bozonów Piotr Deuar (IF PAN) Emilia Witkowska, Mariusz Gajda (IF PAN) Kazimierz Rzążewski (CFT PAN) Cover of Phys. Rev. Lett., 1 Apr 2011 E. Witkowska, PD, M. Gajda, K.

Bardziej szczegółowo

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię

Bardziej szczegółowo

ELEMENTY FIZYKI STATYSTYCZNEJ

ELEMENTY FIZYKI STATYSTYCZNEJ ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). 15.1. Termodynamiczny opis układu Opis

Bardziej szczegółowo

Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe. P. F. Góra

Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe. P. F. Góra Fizyka statystyczna Zespół kanoniczny i wielki zespół kanoniczny Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Zespół kanoniczny Zespół mikrokanoniczny jest (przynajmniej w warstwie

Bardziej szczegółowo

Termodynamiczny opis układu

Termodynamiczny opis układu ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). Termodynamiczny opis układu Opis termodynamiczny

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny Ćwiczenia nr 0 Wielki rozkład kanoniczny Jest to rozkład prawdopodobieństwa dla układu o zmiennej liczbie cząstek N. Liczbę cząstek możemy potraktować jako dodatkową liczbą kwantową układu. ψ jest to stan

Bardziej szczegółowo

Komputerowe modelowanie zjawisk fizycznych

Komputerowe modelowanie zjawisk fizycznych Komputerowe modelowanie zjawisk fizycznych Ryszard Kutner Zakład Dydaktyki Fizyki Instytut Fizyki Doświadczalnej, Wydział Fizyki Uniwersytet Warszawski IX FESTIWAL NAUKI WARSZAWA 2005 BRAK INWESTYCJI W

Bardziej szczegółowo

Zadania z zyki statystycznej

Zadania z zyki statystycznej Zadania z zyki statystycznej 14 stycznia Zadanie 7.1 (Rozdziaª 5.4 w [4], zadanie 6.11 w [1] ) Wykorzystuj c przybli»enie ±redniego pola wyznacz równania uwikªane opisuj ce ±redni warto± spinu < s > przy

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Statystyki kwantowe. P. F. Góra

Statystyki kwantowe. P. F. Góra Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny , granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany

Bardziej szczegółowo

Cząstki Maxwella-Boltzmanna (maxwellony)

Cząstki Maxwella-Boltzmanna (maxwellony) TiFS, Ćwiczenia nr 4 Cząstki Maxwella-Boltzmanna (maxwellony) Jeśli do wielkiej sumy statystycznej zastosuje się klasyczną poprawkę na niezrozróżnialność cząstek to w wyniku otrzymuje się własności cząstek,

Bardziej szczegółowo

w rozrzedzonych gazach atomowych

w rozrzedzonych gazach atomowych w rozrzedzonych gazach atomowych Anna Okopińska Instytut Fizyki S P IS T RE Ś C I I WSTĘP II. TEORIA ZDEGENEROWANYCH GAZÓW DOSKONAŁYCH III. WŁASNOŚCI MATERII W NISKICH TEMPERATURACH IV. METODY CHŁODZENIA

Bardziej szczegółowo

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0

Bardziej szczegółowo

Chemia teoretyczna I Semestr V (1 )

Chemia teoretyczna I Semestr V (1 ) 1/ 6 Chemia Chemia teoretyczna I Semestr V (1 ) Osoba odpowiedzialna za przedmiot: dr hab. inż. Aleksander Herman. 2/ 6 Wykład Program Podstawy mechaniki kwantowej Ważne problemy modelowe Charakterystyka

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1).

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1). kwiecień 9 Ćwiczenia IV Zadania Zadanie Obliczyć kanoniczna sum e statystyczna funkcj e podzia lu, energi e swobodna i ciep lo w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly Rozwiazanie :

Bardziej szczegółowo

Fizyka statystyczna Gaz Bosego w wielkim zespole kanonicznym. P. F. Góra

Fizyka statystyczna Gaz Bosego w wielkim zespole kanonicznym. P. F. Góra Fizyka statystyczna Gaz Bosego w wielkim zespole kanonicznym P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Operator gęstości W przypadku klasycznym chcieliśmy znać gęstość stanów układu. W przypadku

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

1 Rachunek prawdopodobieństwa

1 Rachunek prawdopodobieństwa 1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const

Bardziej szczegółowo

Ogólny schemat postępowania

Ogólny schemat postępowania Ogólny schemat postępowania 1. Należy zdecydować, który rozkład prawdopodobieństwa chcemy badać. Rozkład oznaczamy przez P; zależy od zespołu statystycznego. 2. Narzucamy warunek równowagi szczegółowej,

Bardziej szczegółowo

Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny

Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny 1 Rozkład Mikrokanoniczny (przypomnienie) S= k B ln( (E,V,{x i },{N j }) ) Z fenomenologii: Niestety, rachunki przy użyciu rozkładu mikrokanonicznego

Bardziej szczegółowo

Fizyka Wyk ad W8 1. Fizyka Statystyczna

Fizyka Wyk ad W8 1. Fizyka Statystyczna Fizyka Wykad W8 Fizyka Statystyczna W dotychczas zrealizowanym kursie fizyki skupilimy si na ukadach fizycznych o niewielkiej liczbie stopni swobody tj. liczbie zmiennych niezalenych potrzebnych do opisania

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,

Bardziej szczegółowo

Fizyka statystyczna A. 2 Tydzień I, 1-7/10/ Warunki zaliczenia. 3 Tydzień II, 8-14/10/ Wykład. 2.2 Zadania na ćwiczenia

Fizyka statystyczna A. 2 Tydzień I, 1-7/10/ Warunki zaliczenia. 3 Tydzień II, 8-14/10/ Wykład. 2.2 Zadania na ćwiczenia Fizyka statystyczna A sem. zimowy 2015-16 Krzysztof Byczuk Instytut Fizyki Teoretycznej, Wydział Fizyki, UW byczuk@fuw.edu.pl www.fuw.edu.pl/byczuk 11-01-2015 1 Warunki zaliczenia Część praktyczna: 1.

Bardziej szczegółowo

Ń Ż Ó Ó Ó Ż Ę Ó Ś Ó Ę Ś Ś Ó ż Ó Ó Ż Ś Ś Ó Ó Ś Ś Ś Ó Ść Ó ż Ść Ę Ó Ń Ś Ó Ś Ó Ż Ż Ż ć Ż Ó Ó Ż Ś Ó Ś ć Ń ć Ó Ó Ś ż Ś Ż Ż Ść Ó Ś ż ćż ć Ó Ż Ś Ć Ó Ż Ó Ó Ż Ś Ó Ó Ś Ó ż Ó Ż Ź Ś ż Ń Ó Ó Ś ż Ś Ó Ó Ś ż Ś Ś Ś Ć Ż

Bardziej szczegółowo

Elementy fizyki statystycznej

Elementy fizyki statystycznej 5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną

Bardziej szczegółowo

n p 2 i = R 2 (8.1) i=1

n p 2 i = R 2 (8.1) i=1 8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

Najzimniejsze atomy. Tadeusz Domański. Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie.

Najzimniejsze atomy. Tadeusz Domański. Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie. Odolanów, 10 lipca 2008 r. Najzimniejsze atomy Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman Referat be dzie dotyczyć : kondensacji i nadciekłości

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Gazy kwantowe. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Gazy kwantowe. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Cele Cele Wyznaczenie średniego obsadzenia średniej energii równania stanu dla nieodziałujących gazów kwantowych fermionowego (gaz elektronowy w ciele stałym) bozonowego (kondensaty)

Bardziej szczegółowo

Nadpłynny gaz, ciecz i ciało stałe

Nadpłynny gaz, ciecz i ciało stałe Nadpłynny gaz, ciecz i ciało stałe Nadpłynność Nadpłynność powstaje wskutek kondensacji Bosego - Einsteina bozonów: hel 4 (1938), gazy atomowe (np. Rb, Na, 1995), kryształ helu 4? S. N. Bose A. Einstein

Bardziej szczegółowo

ń Ą ń Ę ńę Ę Ń Ńń ó ń Ę ń ń ń ń ń ń ó ó Ę ń ó ó ó ó Ę ó Ę ó Ń ó ó Ę ń ó ó ó ń Ę ńńó Ę ó ń ń Ć ń ń ó Ę ć ó ó ó Ę Ę Ł Ę Ę ó ół ń ó ń ŚĆ ń Ę ó Ę ó ó ó ń ć Źń ń ó Ę ó ó ŚĆ ń ó źń ó Ą ó ń ń ó ć ń ó ń Ń ć ó

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS)

OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS) Załącznik nr 2 do zarządzenia Nr 33/2012 z dnia 25 kwietnia 2012 r. OPIS PRZEDMIOTU/MODUŁU KSZTAŁCENIA (SYLABUS) 1. Nazwa przedmiotu/modułu w języku polskim Fizyka statystyczna 2. Nazwa przedmiotu/modułu

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 9 Reakcje jądrowe Reakcje jądrowe Historyczne reakcje jądrowe 1919 E.Rutherford 4 He + 14 7N 17 8O + p (Q = -1.19 MeV) powietrze błyski na ekranie

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Problemy i rozwiązania

Problemy i rozwiązania Problemy i rozwiązania Znakomita większość układów, które badamy liczy sobie co najmniej mol cząsteczek >> 10 23 Typowy krok czasowy symulacji to 10-15 s natomiast zjawiska, które zachodzą wokół nas trwają

Bardziej szczegółowo

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata. Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

Semestr I. Astrofizyka I 60 60 12 egzamin AST Wybrane zagadnienia fizyki współczesnej (Lista F)*) Analiza numeryczna (Lista N)**) 30 30 6 egzamin NUM

Semestr I. Astrofizyka I 60 60 12 egzamin AST Wybrane zagadnienia fizyki współczesnej (Lista F)*) Analiza numeryczna (Lista N)**) 30 30 6 egzamin NUM B3. Program studiów liczba punktów konieczna dla uzyskania kwalifikacji (tytułu zawodowego) określonej dla rozpatrywanego programu kształcenia - 120 łączna liczba punktów, którą student musi uzyskać na

Bardziej szczegółowo

Wykład 15 Rozpraszanie światła Ramana i luminescencja

Wykład 15 Rozpraszanie światła Ramana i luminescencja Wykład 5 Rozpraszanie światła Ramana i luminescencja Zjawisko rozpraszania Ramana jest związane z niesprężystym rozpraszaniem padającego fotonu o częstości ν na cząsteczce, wskutek czego foton zmienia

Bardziej szczegółowo

Astrofizyka teoretyczna II. Równanie stanu materii gęstej

Astrofizyka teoretyczna II. Równanie stanu materii gęstej Astrofizyka teoretyczna II Równanie stanu materii gęstej 1 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects by Stuart L. Shapiro, Saul A. Teukolsky " Rozdziały 2, 3 i 8 2 Odkrycie

Bardziej szczegółowo

Wykład 38 Rozpraszanie światła Ramana i luminescencja

Wykład 38 Rozpraszanie światła Ramana i luminescencja Wykład 38 Rozpraszanie światła Ramana i luminescencja Zjawisko rozpraszania Ramana jest związane z niesprężystym rozpraszaniem padającego fotonu o częstości ν na cząsteczce, wskutek czego foton zmienia

Bardziej szczegółowo

Cia!a sta!e. W!asno"ci elektryczne cia! sta!ych. Inne w!asno"ci

Cia!a sta!e. W!asnoci elektryczne cia! sta!ych. Inne w!asnoci Cia!a sta!e Podstawowe w!asno"ci cia! sta!ych Struktura cia! sta!ych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencja! kontaktowy

Bardziej szczegółowo

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE

Bardziej szczegółowo

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017 Wykład 1 Termodynamika (1) Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka Biofizyka 1 Zaliczenie Aby zaliczyć przedmiot należy: uzyskać pozytywną ocenę z laboratorium

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

Od termodynamiki klasycznej do nieekstensywnej

Od termodynamiki klasycznej do nieekstensywnej Od termodynamiki klasycznej do nieekstensywnej Rafał Topolnicki rtopolnicki@o2.pl KNF Migacz Uniwersytet Wrocławski Wrocław, 27 maja 2010 Od termodynamiki klasycznej do nieekstensywnej Wrocław, 27 maja

Bardziej szczegółowo

Wykłady z Fizyki. Kwanty

Wykłady z Fizyki. Kwanty Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Modele jądra atomowego

Modele jądra atomowego Modele jądra atomowego Model to uproszczona wersja teoretycznego opisu, która: 1.) Tworzona jest biorąc pod uwagę tylko wybrane fakty doświadczalne 2.) Przewiduje dalsze fakty, które mogą być doświadczalnie

Bardziej szczegółowo

Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź

Bardziej szczegółowo

ń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń

Bardziej szczegółowo

Ą Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć

Bardziej szczegółowo

Ń Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó

Bardziej szczegółowo

Ą ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź

Bardziej szczegółowo

Atom dwupoziomowy w niezerowej temperaturze

Atom dwupoziomowy w niezerowej temperaturze Seminarium CFT p. 1/24 Atom dwupoziomowy w niezerowej temperaturze Tomasz Sowiński 1 paździenika 2008 Seminarium CFT p. 2/24 Atom dwupoziomowy Hamiltonian Ĥ = Ĥ0 + ĤI Ĥ 0 = mσ z + 0 dk k a (k)a(k), Ĥ I

Bardziej szczegółowo

Mini-quiz 0 Mini-quiz 1

Mini-quiz 0 Mini-quiz 1 rawda fałsz Mini-quiz 0.Wielkości ekstensywne to: a rędkość kątowa b masa układu c ilość cząstek d temeratura e całkowity moment magnetyczny.. Układy otwarte: a mogą wymieniać energię z otoczeniem b mogą

Bardziej szczegółowo

Elementy mechaniki kwantowej S XX

Elementy mechaniki kwantowej S XX kierunek studiów: FIZYKA specjalność: FIZYKA s I WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS1 Karta przedmiotu Przedmiot grupa ECTS Elementy mechaniki kwantowej S XX Formy zajęć wykład konwersatorium seminarium

Bardziej szczegółowo

Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne

Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne WYKŁAD 23 1 Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne (Birkhoff, Ter Haar) Hipoteza semi-ergodyczna

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Ł ń ń ć ź Ą ć Ń ć Źń Ą ć ź ź ń ź ń ń ń Ą ń ź Ą ć Ą ń Ą ń ń Źń ń ć ń ń ć ń ć ń ź ź ź ź ć Źń ń Ń ć ć ć ń ć ń ź ń ć Ł ć ć Ł Ń ć Ń ć ń ć ć ć ź ć ć ńń ź ź ć ń ć ć Źń ń ź ć ń ń źć ć ń ć ń ć ć ń ń ć ć ź ń ć ć

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Fizyka Statystyczna 1

Fizyka Statystyczna 1 Uniwersytet Wrocławski Instytut Fizyki Teoretycznej Katarzyna Weron Fizyka Statystyczna 1 Skrypt dla studentów Wrocław, maj 2010 2 Spis treści 1 Elementy termodynamiki 1 1.1 Wielkości termodynamiczne..........................

Bardziej szczegółowo

2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Równania kinetyczne prostych reakcji.

Równania kinetyczne prostych reakcji. Szybko reakcji chemicznej definiowana jest jako ubytek stenia substratu lub przyrost stenia produktu w jednostce czasu. W definicjach szybkoci innych zjawisk wana jest wielko okrelajca kinetyk w danej

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle

Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle Marcela Trybuła Władysław Gąsior Alain Pasturel Noel Jakse Plan: 1. Materiał badawczy 2. Eksperyment Metodologia 3. Teoria Metodologia

Bardziej szczegółowo

Fizyka statystyczna w wysokoenergetycznych zderzeniach jądrowych II

Fizyka statystyczna w wysokoenergetycznych zderzeniach jądrowych II Fizyka statystyczna w wysokoenergetycznych zderzeniach jądrowych II Viktor Begun UJK, Kielce, Polska (8) Enrico Fermi Ctr., Włochy (2) FIAS, Frankfurt, Niemcy (8) BITP, Kijów, Ukraina (37) Podstawy teorii

Bardziej szczegółowo

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Fizyka klasyczna - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Zaczniemy historię od optyki W połowie XiX wieku Maxwell wprowadził

Bardziej szczegółowo

Unifikacja elektro-s!aba

Unifikacja elektro-s!aba Unifikacja elektro-s!aba! Potrzeba unifikacji! Warunki unifikacji elektro-s!abej! Model Weinberga-Salama! Rezonans Z 0! Liczenie zapachów neutrin (oraz generacji) D. Kie!czewska, wyk!ad 7 1 Rozwa"my proces:

Bardziej szczegółowo

Bozon. Właściwości bozonów [edytuj] Z Wikipedii. Skocz do: nawigacji, szukaj leptony. kwarki u c t d s b. ν e ν µ ν τ

Bozon. Właściwości bozonów [edytuj] Z Wikipedii. Skocz do: nawigacji, szukaj leptony. kwarki u c t d s b. ν e ν µ ν τ Bozon [edytuj] Z Wikipedii Skocz do: nawigacji, szukaj leptony e µ τ ν e ν µ ν τ kwarki u c t d s b nośniki oddziaływań γ Z 0 W ± gluon g hadrony mezony π K J/ψ Υ B D bozony bariony p n Λ Σ Ξ Ω fermiony

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

MECHANIKA STOSOWANA Cele kursu

MECHANIKA STOSOWANA Cele kursu MECHANIKA STOSOWANA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 9 października 2014 Karol Kołodziej Mechanika stosowana 1/6 Cele kursu Podstawowe cele zaprezentowanego

Bardziej szczegółowo

1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F

1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F SPIS TREŚCI Przedmowa 11 Wprowadzenie... 13 Część I. Doświadczenia dyfrakcyjno-interferencyjne z pojedynczymi obiektami mikroświata.. 17 Literatura... 23 1.1. Doświadczenia dyfrakcyjno-interferencyjne

Bardziej szczegółowo

Nadprzewodnictwo i nadciekłość w układach oddziałuja. cych mieszanin bozonowo-fermionowych. Tadeusz Domański

Nadprzewodnictwo i nadciekłość w układach oddziałuja. cych mieszanin bozonowo-fermionowych. Tadeusz Domański Toruń, 22 września 2006 r. Nadprzewodnictwo i nadciekłość w układach oddziałuja cych mieszanin bozonowo-fermionowych Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures

Bardziej szczegółowo