Komputerowe modelowanie zjawisk fizycznych
|
|
- Angelika Lewandowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Komputerowe modelowanie zjawisk fizycznych Ryszard Kutner Zakład Dydaktyki Fizyki Instytut Fizyki Doświadczalnej, Wydział Fizyki Uniwersytet Warszawski
2 IX FESTIWAL NAUKI WARSZAWA 2005 BRAK INWESTYCJI W NAUKĘ I EDUKACJĘ TO INWESTYCJA W IGNORANCJĘ
3 Nauczanie, uczenie się oraz prowadzenie badań naukowych można oprzeć na komputerowym modelowaniu czyli symulacjach komputerowych
4 Spis symulacji komputerowych Fizyka kwantowa: cząstka w studni Łukasz Kuźnicki Statystyki kwantowe: rozkład Fermiego-Diraca Wojciech Weseli, Monika Gall Kondensacja Bosego-Einsteina Marcin Regulski, Dariusz Żebrowski Proces ostygania ciał Monika Gall, Adam Galant Gaz rzeczywisty Łukasz Malinowski Ruchy Browna Wojciech Weseli, Jarosław Hurkała
5 Silnik Carnota Jaroslaw Hurkała, Monika Gall Ruch peryhelium Merkurego Mirosław Maciejczyk
6
7 Termodynamika statystyczna pełni rolę pomostu między światem makroskopowym a mikroskopowym Podejście ma charakter interdyscyplinarny: dydaktyki fizyki fizyka komputerowa termodynamika statystyczna
8 Ruchy Browna
9 Statystyki kwantowe: rozkład Fermiego-Diraca
10 R.Kutner, R.Przeniosło, M.Kwiatkowski: Quantum statistics and discreteness. Differences between the canonical and grand canonical ensembles for a fermionic lattice gas, Annalen der Physik 4 (1995)
11 Założenia modelu mikroskopowego Mamy do czynienia z modelem gazu sieciowego, przy czym komórki sieci reprezentują jednocząstkowe stany nieoddziałujących fermionów znajdujących się w potencjale jednowymiarowego oscylatora harmonicznego Obowiązuje zakaz Pauliego Układ jest w kontakcie z rezerwuarem cieplnym a przeskoki fermionów pomiędzy stanami mają charakter termicznie aktywowany Badamy dwa przypadki: (a) gdy liczba fermionów może fluktuować, (b) gdy liczba fermionów jest ustalona
12 Celem doświadczenia numerycznego jest wyznaczenie średniego obsadzenia każdego stanu kwantowego czyli znalezienie statystyk kwantowych
13 ZASADNICZY WNIOSEK Powodem odstępstw od statystyki Fermiego-Diraca są korelacje typu cząstka-dziura jakie pojawiają się gdy liczba fermionów w układzie jest ustalona
14 Kondensacja Bosego-Einsteina
15 Ryszard Kutner, Marcin Regulski: Bose-Einstein condensation shown by Monte Carlo simulation, Computer Physics Communications (1999)
16 Założenia modelu mikroskopowego Rozważamy nieoddziałujące bozony znajdujące się w potencjale trójwymiarowego oscylatora harmonicznego Zakładamy, że całkowita liczba bozonów jest ustalona Układ bozonów znajduje się w kontakcie z rezerwuarem cieplnym a przeskoki bozonów pomiędzy poszczególnymi stanami mają charakter termicznie aktywowany
17 Cel doświadczenia numerycznego: Symulacja konednsacji Bosego-Einsteina na drodze czysto statystycznej a nie kwantowomechanicznej
18 Zasadniczy element algorytmu: imitacja kwantowej nierozróżnialności bozonów za pomocą zasady zachowania kolejności cząstek Dwie cząstki i dwa stany jednocząstkowe
19 Bozony w potencjale 1d oscylatora harmonicznego Tylko cząstka o najwyższym numerze w danym stanie może dokonać przeskoku
20 Bozony w potencjale 3d oscylatora harmonicznego Tylko górna cząstka w danym stanie może dokonać przeskoku
21 Najważniejsze wyniki Obsadzenie stanu podstawowego
22 Ciepło właściwe: przemiana typu λ
23 ZASADNICZY WNIOSEK Główną przyczyną kondensacji Bosego- Einsteina jest kwantowa nierozróżnialność bozonów, którą można imitować za pomocą zasady zachowania odpowiedniego porządku cząstek klasycznych
24 Procesy nieodwracalne Fouriera- Onsagera: przekaz ciepła przez ściankę diatermiczną
25 A.Galant, R.Kutner, A.Majerowski: Heat Transfer, Newton s Law of Cooling and the Law of Entropy Increase Simulated by the Real-Time Computer Experiment in Java, Lecture Notes in Computer Science 2657 (2003) 46-53
26 Założenia teorii Fouriera- Onsagera procesów nieodwracalnych Szybkość zmiany temperatury jest proporcjonalna do różnicy temperatur
27 Założenia modelu mikroskopowego Dyskretyzacja czasu Oddziaływanie atomów gazu doskonałego ze sobą jedynie poprzez neutralną ściankę diatermiczną Przekaz energii przez ściankę diatermiczną bazuje na lokalnej zasadzie ekwipartycji energii Przybliżenie lokalnej zmiany temperatury za pomocą procesu izotermicznego i adiabatycznego (analogon podejścia Ito) Szorstkość wszystkich ścianek Układ jako całość jest izolowany od otoczenia
28 Celem doświadczenia numerycznego jest wyprowadzenie z modelu mikroskopowego makroskopowych własności przewidywanych przez teorię Fouriera- Onsagera
29 ZASADNICZY WNIOSEK Rezygnacja z chaosu molekularnego, lub ogólniej rzecz biorąc z ergodyczności prowadzi do odstępstw od teorii Fouriera-Onsagera
30 Gaz rzeczywisty
31 Założenia modelu mikroskopowego Mamy do czynienia z dwoma rodzajami gazu zamkniętego w izolowanym pojemniku: (a) gazem oddziałujących twardych rdzeni, przy czym bierzemy pod uwagę tylko oddziaływania dwuciałowe, (b) gazem doskonałym (składającym się z nieoddziałujących atomów)
32 Zasadniczym celem doświadczenia numerycznego jest: Sprawdzenie zasady ekwipartycji energii kinetycznej Zbudowanie rozkładu Maxwella Zbadanie odstępstw od prawa Boyle a i Mariotte a
33 ZASADNICZY WNIOSEK Gaz twardych rdzeni jest modelem wystarczającym do badania zasadniczych własności gazów rzeczywistych i idealnych
34 Ruchy Browna Centralne Twierdzenie Graniczne
35 Założenia modelu stochastycznego Pojedyncze przemieszczenia cząsteczki posiadają skończoną wariancję a poza tym ich rozkład prawdopodobieństwa jest dowolny Pojedyncze przemieszczenia cząsteczki są statystycznie niezależne Przestrzeń jest jednorodna i izotropowa Czas jest dyskretny i jednorodny
36 Celem doświadczenia numerycznego jest: (a) znalezienie zależności wariancji sumarycznego przemieszczenia cząsteczki od czasu (b) znalezienie rozkładu prawdopodobieństwa jakiemu podlegają sumaryczne przemieszczenia cząsteczki dla długich czasów
37 ZASADNICZE WNIOSKI Niezależnie od tego jakiemu rozkładowi prawdopodobieństwa podlegają pojedyncze przemieszczenia cząsteczki, spełnione są następujące własności: (a) wariancja sumarycznego przemieszczenia cząsteczki jest liniową funkcją czasu dla długich czasów (b) sumaryczne przemieszczenia cząsteczki podlegają, dla długich czasów, rozkładowi Gaussa Własności (a) i (b) stanowią tezę Centralnego Twierdzenia Granicznego
38 PODSUMOWANIE Jeżeli jakieś zjawisko umiemy opisać słowami to potrafimy je zalgorytmizować zatem, algorytmizacja fizyki jest możliwa. A więc, jest możliwe podejście do fizyki od strony doświadczeń numerycznych. Tym samym jest możliwe nauczanie i uczenie się fizyki poprzez doświadczenia numeryczne czyli symulacje komputerowe Oznacza to, że fizyka może być łatwa i przyjemna
Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe
Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy
Fizyka statystyczna. This Book Is Generated By Wb2PDF. using
http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?
Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
Statystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
Termodynamiczny opis układu
ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). Termodynamiczny opis układu Opis termodynamiczny
ELEMENTY FIZYKI STATYSTYCZNEJ
ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). 15.1. Termodynamiczny opis układu Opis
Elementy fizyki statystycznej
5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną
Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej
1 Rachunek prawdopodobieństwa
1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const
Spis tres ci 1. Wiadomos ci wste pne
Spis treści Przedmowa do wydania I... 9 Przedmowa do wydania II... 10 Wykaz ważniejszych oznaczeń... 11 1. Wiadomości wstępne... 15 1.1. Fenomenologiczny opis materii... 15 1.2. Wielkości ekstensywne (WE)...
Zadania z Fizyki Statystycznej
Zadania z Fizyki Statystycznej 1. Wyznaczyć skok wartości pochodnej ciepła właściwego w temperaturze krytycznej dla gazu bozonów, w temperaturze w której pojawia się konensacja [1].. Wyznaczyć równanie
Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29
Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab
Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016
Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Warszawa, 31 sierpnia 2015r. Zespół Przedmiotowy z chemii i fizyki Temat
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Termodynamika Część 3
Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Rzadkie gazy bozonów
Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni
ROZKŁAD MATERIAŁU Z FIZYKI W PIERWSZYCH KLASACH TECHNIKUM
ROZKŁAD MATERIAŁU Z FIZYKI W PIERWSZYCH KLASACH TECHNIKUM W czteroletnim cyklu nauczania przewidziane są 3 godziny fizyki, 2 godziny w klasie pierwszej oraz 1 godzina w klasie drugiej. Proponowana siatka
Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej
Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 204/205 Warszawa, 29 sierpnia 204r. Zespół Przedmiotowy z chemii i fizyki Temat lekcji
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap)
Ramowy Program Specjalizacji MODELOWANIE MATEMATYCZNE i KOMPUTEROWE PROCESÓW FIZYCZNYCH Studia Specjalistyczne (III etap) Z uwagi na ogólno wydziałowy charakter specjalizacji i możliwość wykonywania prac
Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów
Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni
Fizyka 14. Janusz Andrzejewski
Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych
Podstawy fizyki sezon 1 X. Elementy termodynamiki
Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika
Wykład 5. Początki nauki nowożytnej część 3 (termodynamika)
Wykład 5 Początki nauki nowożytnej część 3 (termodynamika) 1 Temperatura Termoskopy powietrzne Awicenna Santorio Santori (1612) pierwszy opis termometru powietrznego pierwszy rysunek termometru Robert
Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano.
Chemia teoretyczna to dział chemii zaliczany do chemii fizycznej, zajmujący się zagadnieniami związanymi z wiedzą chemiczną od strony teoretycznej, tj. bez wykonywania eksperymentów na stole laboratoryjnym.
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1
1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Silnie zwyrodniały gaz bozonów o niezerowej masie spoczynkowej Gdy liczba cząstek nie jest zachowywana, termodynamika nieoddziaływujących
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m
TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość
Termodynamika program wykładu
Termodynamika program wykładu Wiadomości wstępne: fizyka statystyczna a termodynamika masa i rozmiary cząstek stan układu, przemiany energia wewnętrzna pierwsza zasada termodynamiki praca wykonana przez
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 14-15.50 można się umówić wysyłając e-maila
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Zagadnienia na egzamin 2016/2017
Zagadnienia na egzamin 2016/2017 Egzamin będzie obejmował: - 8 pytań/problemów wymagających krótkiego, kilkuzdaniowego omówienia istoty zagadnienia (część I poniżej) - 2 zagadnienia obejmujące: wyprowadzenie
Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne
(program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra
Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl
Wykaz specjalności na studiach magisterskich
Wykaz specjalności na studiach magisterskich Na Wydziale Fizyki UW prowadzone są studia magisterskie w ramach następujących specjalnościach: specjalności na kierunku fizyka fizyka cząstek i oddziaływań
Z-ID-204. Inżynieria Danych I stopień Praktyczny Studia stacjonarne Wszystkie Katedra Matematyki i Fizyki Prof. dr hab.
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ID-204 Kod modułu Nazwa modułu Fizyka II Nazwa modułu w języku angielskim Physics II Obowiązuje od roku akademickiego 2018/2019 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.
Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.
Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a
Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron
Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1
Fizyka komputerowa(ii)
Instytut Fizyki Fizyka komputerowa(ii) Studia magisterskie Prowadzący kurs: Dr hab. inż. Włodzimierz Salejda, prof. PWr Godziny konsultacji: Poniedziałki i wtorki w godzinach 13.00 15.00 pokój 223 lub
Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna
ELEMENTY TERMODYNAMIKI
ELEMENTY TERMODYNAMIKI 8.1. Rozkład szybkości cząstek gazu Początkowo termodynamika zajmowała się badaniem właściwości cieplnych ciał i ich układów, bez analizowania ich mikroskopowej struktury. Obecnie
WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna
WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna (Zadaniem Fizyki Statystycznej jest zrozumienie własności (równowagowych i nierównowagowych materii w oparciu o oddziaływania międzymolekularne)
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Fizyka statystyczna doskona ego gazu bozonów
Fizyka statystyczna doskonaego gazu bozonów Kazimierz Rzewski Centrum Fizyki Teoretycznej PAN oraz Uniwersytet Kardynaa Stefana Wyszyskiego w Warszawie Fizyka statystyczna doskonaego gazu bozonów Kazimierz
podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.
PLAN WYNIKOWY FIZYKA - KLASA TRZECIA TECHNIKUM 1. Ruch postępowy i obrotowy bryły sztywnej Lp. Temat lekcji Treści podstawowe 1 Iloczyn wektorowy dwóch wektorów podać przykład wielkości fizycznej, która
FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych
FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym
Stany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Model powłokowy Moment kwadrupolowy w jednocząstkowym modelu powłokowym: Dla pojedynczego protonu znajdującego się na orbicie j (m j
Fizyka statystyczna i termodynamika Wykład 1: Wstęp. Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej
Fizyka statystyczna i termodynamika Wykład 1: Wstęp Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej http://www.if.pwr.wroc.pl/~katarzynaweron/ Mój plan zajęć Strona kursu Kim jestem? Prof. dr hab. Katarzyna
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
1 I zasada termodynamiki
1 I zasada termodynamiki 1.1 Pojęcie podstawowe W chemii fizycznej wszechświat dzielimy na dwie części : układ i otoczenie. Układ jest interesującą nas częścią rzeczywistości (przyrody, wszechświata) może
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
STRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
Termodynamika statystyczna A. Wieloch Zakład Fizyki Gorącej Materii IFUJ
Termodynamika statystyczna A. Wieloch Zakład Fizyki Gorącej Materii IFUJ Kraków 15.02.2006 Literatura: A.K. Wróblewski, J.A. Zakrzewski: Wstęp do fizyki : tom 2, część 2 oraz tom 1, PWN 1991. F. Reif:
WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO
W3 WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO Ciepło właściwe jest jedną z podstawowych cech termodynamicznych ciał, mającą duże znaczenie praktyczne. Zależność ciepła właściwego różnych ciał od temperatury
0900 FS2 2 FAC. Fizyka atomu i cząsteczki FT 8. WYDZIAŁ FIZYKI UwB KOD USOS: Karta przedmiotu. Przedmiot moduł ECTS. kierunek studiów: FIZYKA 2 st.
WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS2 2 FAC Karta przedmiotu Przedmiot moduł ECTS Fizyka atomu i cząsteczki FT 8 kierunek studiów: FIZYKA 2 st. specjalność: FIZYKA TEORETYCZNA Formy zajęć wykład konwersatorium
Cząstki Maxwella-Boltzmanna (maxwellony)
TiFS, Ćwiczenia nr 4 Cząstki Maxwella-Boltzmanna (maxwellony) Jeśli do wielkiej sumy statystycznej zastosuje się klasyczną poprawkę na niezrozróżnialność cząstek to w wyniku otrzymuje się własności cząstek,
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład
Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie
Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11
Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.
Wykład 3. Entropia i potencjały termodynamiczne
Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
w rozrzedzonych gazach atomowych
w rozrzedzonych gazach atomowych Anna Okopińska Instytut Fizyki S P IS T RE Ś C I I WSTĘP II. TEORIA ZDEGENEROWANYCH GAZÓW DOSKONAŁYCH III. WŁASNOŚCI MATERII W NISKICH TEMPERATURACH IV. METODY CHŁODZENIA
Wykład 3. Zerowa i pierwsza zasada termodynamiki:
Wykład 3 Zerowa i pierwsza zasada termodynamiki: Termodynamiczne funkcje stanu. Parametry extensywne i intensywne. Pojęcie równowagi termodynamicznej. Tranzytywność stanu równowagi i pojęcie temperatury
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
Statystyki kwantowe. P. F. Góra
Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie
Termodynamika cz. 2. Gaz doskonały. Gaz doskonały... Gaz doskonały... Notes. Notes. Notes. Notes. dr inż. Ireneusz Owczarek
Termodynamika cz. 2 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Gaz doskonały Definicja makroskopowa (termodynamiczna)
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki
Termodynamika. Ćwiczenia: prof.dr hab. Pokazy: mgr Paulina Urban. Przedmiot wykładu (1)
Termodynamika Wojciech Dominik Zakład Cząstek i Oddziaływań Fundamentalnych IFD Pasteura 5, pok. 4.06 tel: 22 55 32 806 dominik@fuw.edu.pl Ćwiczenia: prof.dr hab. Jacek.Ciborowski @fuw.edu.pl Pokazy: mgr
Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin
Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...