KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH"

Transkrypt

1 KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH Danel Kosorowsk Katedra Statystyk, UEK w Krakowe Posedzene Rady Wydzału Zarządzana Kraków,

2 PLAN REFERATU 1. Wprowadzene przykłady zagadneń ekonomcznych prowadzących do funkcjonalnej analzy danych (FAD). 2. Podstawowe pojęca zagadnena FAD charakterystyk opsowe danych funkcjonalnych, wybór bazy, przekształcene danych dyskretnych do postac funkcyjnej. 3. Funkcjonalne główne składowe PKB per capta oraz przychód z oblgacj w krajach UE Funkcjonalne korelacje kanonczne - PKB per capta w krajach UE15 vs. PKB per capta w krajach A Funkcjonalna regresja perspektywa nowych kerunków badań. 6. Podsumowane.

3 WPROWADZENIE Często dane rozpatrywane w ekonom mają bezpośredno bądź pośredno postać funkcj. Weźmy dla przykładu: - badana śceżek rozwoju przedsęborstw, trajektor rozwoju ekonomcznego państw bądź regonów (makroekonomczne modele wzrostu, badane faz rozwoju przedsęborstwa, cyklu życa produktu funkcjonalne PCA). - analzy zwązków pomędzy oczekwaną stopą zwrotu z nwestycj fnansowej a wahanem przebegu tej stopy zwrotu w przeszłośc bądź burzlwoścą trajektor dzsaj a taką charakterystyką w przeszłośc funkcjonalna regresja). - analza zwązków pomędzy śceżkam rozwoju (kształtem całej trajektor) dla różnych państw, przedsęborstw (funkcjonalne korelacje kanonczne). - szacowane funkcj gęstośc, regresj dla danych panelowych (danych tworzących skupska), grafologa, dagnostyka medyczna, statystyczna teora kształtu (rozpoznawane przedmotów zachowań nebezpecznych na podstawe transmsj z kamer mejskego montorngu).

4 PRZYKŁADY Trajektore przyrostu PKB per capta w krajach EU15 oraz A12 w latach

5 Funkcjonalny wykres pudełkowy stopa nflacj w krajach UE w latach (dane Eurostat). Wykres typu tęcza stopa nflacj w krajach UE w latach (dane Eurostat).

6 Oszacowane gęstośc prawdopod. dla przychodu centralnej częśc gospodarstw domowych w roku 2005 w ujęcu województw RP (dane GUS). Wydatk vs. dochody gospodarstw domowych w ujęcu województw RP. Prosta regresja neparametryczna dla danych panelowych (dane GUS).

7 Wynagrodzene vs. lata nauk oszacowane jądrowe rodzny warunkowych gęstośc prawdopodobeństwa.

8 Oszacowana bezwarunkowej gęstośc prawd. dla procesu SETAR(1,1), dane zawerały do 5% obserwacj odstających. Funkcjonalny wykres pudełkowy dla oszacowań bezwarunkowej gęstośc prawd. dla procesu SETAR(1,1), dane zawerały do 5% obserwacj odstających.

9 Ponerzy funkcjonalnej analzy danych Jm Ramsay & Bernard Slverman

10 POZYCJE KLASYCZNE FDA 1. Appled Functonal Data Analyss, Second Edton, J. O. Ramsay and B. W. Slverman, Sprnger-Verlag, Functonal Data Analyss by J. O. Ramsay and B. W. Slverman. Book publshed by Sprnger-Verlag, Functonal Data Analyss wth R and Matlab by J. O. Ramsay, G. Hooker and S. Graves. Book publshed by Sprnger-Verlag, AKTUALNE KIERUNKI POSZUKIWAŃ FDA 1. Inference for Functonal Data wth Applcatons, Horvath, Lajos, Kokoszka, Potr, Seres: Sprnger Seres n Statstcs, Vol. 200, 2012, XIV 2. Nonparametrc Functonal Data Analyss Theory and Practce, Frédérc Ferraty, F., P. Phlppe Veu, Sprnger, 2006 FDA w POLSCE 1. Krzyśko, M., Góreck, T., Deręgowsk, K. (2012), Jądrowa Funkcjonalna Analza Składowych Głównych spotkane PTS o. w Poznanu. 2. Szereg zastosowań FAD w analze sygnałów zespoły z AGH PW. 3. Odporna FAD w ocene skutecznośc poltyk regonalnych dzałań samorządów lokalnych Kosorowsk n. (2012), (2013).

11 CELE FAD z PERSPEKTYWY WYKORZYSTYWANYCH TECHNIK - przekształcene dyskretnych obserwacj do postac funkcj (funkcje obserwujemy w dyskretnych chwlach) w tak sposób, aby dalsza analza była możlwe najprostsza. - wzualzacja danych uwypuklająca nteresujące nas cechy zjawsk. - analza wzorców źródeł zmennośc danych. - analza zwązków zmennym np. za pomocą regresj skalar vs. zmenna funkcjonalna bądź zmenna funkcjonalna vs. zmenne funkcjonalne. - porównana zjawsk, estymacja charakterystyk, wnoskowane statystyczne. CELE FAD z PERSPEKTYWY CELU ANALIZY - analza eksploracyjna (technk odkrywana nowych cech zjawsk). - analza konfrmacyjna (udzelene odpowedz na konkretne pytana). - analza predykcyjna (tworzene schematów prognostycznych dla zjawsk).

12 PRZYKŁAD ZASTOSOWANIA FAD w EKONOMII Analzujemy dane hstoryczne dotyczące produktu krajowego brutto per Capta w dolarach amerykańskch w roku 2005 oraz rocznej stopy wzrostu produktu krajowego brutto per Capta w latach dla dwóch grup państw: EU15 A12. Źródło danych: ERS Internatonal Macroeconomc Data Set EU15: Austra, Belga-Luksemburg, Belga, Luksemburg, Dana, Fnlanda, Francja, Nemcy, Grecja, Irlanda, Włochy, Holanda, Portugala, Hszpana, Szwecja, Welka Brytana A12: Bułgara, Cypr, Republka Czeska, Estona, Węgry, Łotwa, Ltwa, Malta, Polska, Rumuna, Słowacja, Słowena

13

14 PRZEKSZTAŁCENIE DYSKRETNYCH OBSERWACJI do POSTACI FUKCJI Przypuśćmy, że obserwujemy obekt w j tym momence czasowym, gdze 1,..., K, j 1,..., J, ze względu na cechę X, tzn. obserwujemy Chwle, w których obserwujemy różne obekty mogą różnć sę pomędzy obektam tzn. np. 1,..., K, 1,..., J cągłym funkcjam czasu j t t t t Nasze dane to { t,x } j j x j., gdze. W takej sytuacj wygodnej jest posługwać sę xt (), t [0, T] wygodnej jest posługwać sę danym funkcjonalnym. W ekonom naturalnym jest rozpatrywać dane funkcjonalne z perspektywy K nezależnych realzacj x ( t), 1,..., K; t [ 0,T ] pewnego procesu losowego (ekonometra fnansowa, badana procesów ekonomcznych).

15 Jednakże wperw musmy przekształcć dane dyskretne { } funkcjonalnych x ( t), 1,..., K; t [ 0,T ] Aby skorzystać z technk FAD musmy je przekształcć wartoścam x () t. t,x j j do danych x w funkcje z, możemy tu stosować np. nterpolację bądź wygładzane. Surowe dane Przekształcone dane

16 WYBÓR BAZY Jednym z podstawowych kroków FAD jest wybór systemu bazowego (bazy), tzn. układu funkcj k, 1,...,L, który służy do wyrażena funkcj kombnacj lnowej jej elementów (na ogół funkcj ortonormalnych) xt () jako L T x( t) c ( t) ( t) k 1 k k c, t [ 0,T ], gdze c1, c2,..., c k to współczynnk. W przypadku dobrze znanych szeregów Fourera można przyjąć: ( t ) 1 1, ( t) sn( t ) 2, ( t) cos( t) 3, ; 2 /T. Występują tu dwa parametry: lczbę funkcj bazowych oraz okres T.

17 Przykład bazy Fourera. Przykłady baza złożonej ze sklejek.

18 W przypadku zastosowań ekonomcznych (netypowa okresowość zjawska, bądź jej brak) rozsądne jest wykorzystać tzw. bazę złożoną ze sklejek. Sklejk to funkcje złożone z (na ogół różnych) welomanów na dzedzne podzelonej na odcnk. Bazę złożoną ze sklejek konstruujemy poprzez podzał obszaru określonośc funkcj na podprzedzały postać welomanu zmena sę wraz z przejścem do następnego podprzedzału. Stopeń układu sklejek odpowada najwyższej potędze welomanu rząd welomanu jest o jeden wyższy nż jego stopeń. Tworzene systemu sklejek: należy wskazać krańce podprzedzałów (ang. break ponts). należy wskazać stopeń wykorzystywanych welomanów. należy wskazać cąg węzów punktowych ogranczeń dla wykorzystywanych welomanów (ang. knots) w szczególnośc ogranczenam są oczywśce zaobserwowane dane.

19 REPREZENTACJA OBIEKTU FUNKCJONALNEGO W BAZIE Współczynnk c1, c2,..., c l reprezentacj L T x( t) c ( t) c ( t) k 1 k k, dobera sę dla każdej funkcj oddzelne często z wykorzystanem kryterum najmnejszych kwadratów (NK) tzn. tak aby zmnmalzować funkcję T SSE ( x-φc) ( x - Φc), gdze c ( c0, c1,..., c ) T L oraz jest macerzą zawerającą L ( t ) j. Czym kerujemy sę przy wyborze bazy, wyborze reprezentacj funkcj w baze? Lczba elementów bazy często wyberana jest z wykorzystanem kryterum nformacyjnego AKAIKE bądź bayesowskego kryterum nformacyjnego. Najperw kryterum stosujemy do poszczególnych funkcj następne lczymy np. średną ze wskazanych lczb elementów bazy dla poszczególnych funkcj.

20 TWORZENIE OBIEKTU FUNKCJONALNEGO Przypuśćmy, że ustalono L funkcj bazowych, analzujemy zbór danych składający sę z N funkcj. Podstawowy obekt FAD to macerz wymaru L K zawerająca współczynnk badanych funkcj w ustalonej baze. Okazuje sę, że zwykła analza składowych głównych tej macerzy jest równoważna z analzą głównych składowych funkcjonalnych dla procesów skończene wymarowych defnowanych dalej por. Krzyśko n. (2012). xt () x ( ),..., ( ) 1 t xk t [ D x( t)] 2 2 Dla funkcj kwadrat drugej pochodnej funkcj x w punkce t nazywa sę jej krzywzną. Można przykładowo wprowadzć ogranczene na swego rodzaju marę neporządnośc funkcj (ang. roughness) scałkowany kwadrat drugej pochodnej całkowtą krzywznę. PEN x D x t dt, ( ) 2 ( ) 2 Ogranczene co do roughness 2 2 ( ) j ( j) ( ) j F c y x t D x t dt x t c t, to parametr gładkośc funkcj. T gdze ( ) ( ) 2 2,

21 CHARAKTERYSTYKI OPISOWE DLA DANYCH FUNKCJONALNYCH x () t 1,..., K Dysponujemy próbą krzywych bądź funkcj,, dopasowanych do danych, (przypomnjmy funkcje obserwujemy w dyskretnych chwlach stąd koneczność dopasowywana). Możemy zdefnować podstawowe charakterystyk opsowe dla danych funkcjonalnych. 1 x( t) x( t) N, średna funkcjonalna z próby, 1 s( t) x( t) x( t) N 1 2, warancja funkcjonalna z próby, 1 v( s, t) x( s) x( s) x( t) x( t) N 1 próby., kowarancja funkcjonalna z

22 Średna trajektora przyrostu PKB per capta w krajach EU15 oraz A12 w latach

23 Zmenność trajektor przyrostu PKB per capta w krajach EU15 oraz A12 w latach

24 Kowarancja funkcjonalna dla trajektor przyrostu PKB per capta w krajach EU15 oraz A12 w latach (wykresy perspektywczne).

25 Kowarancja funkcjonalna dla trajektor przyrostu PKB per capta w krajach EU15 oraz A12 w latach (wykresy konturowe).

26 EKSPLORACJA ZMIENNOŚCI DANYCH FUNKCJONALNYCH Próbnk (sonda) zwązany z funkcją wagową () t jest narzędzem służącym podkreślenu zmennośc na pewnym obszarze dla danych funkcjonalnych sondy są zmenne ważonym lnowym kombnacjam wartośc funkcj. Nech będze funkcją wagową, sondę stosujemy do funkcj następujący sposób: ( x) ( t) x( t) dt. xt () w Pewen szczególny przypadek próbnka funkcj wagowej to odpowednk pojęć wartośc własnej wektora własnego.

27 EKSPLORACJA ZMIENNOŚCI DANYCH FUNKCJONALNYCH CD. Dysponujemy obserwacjam funkcjonalnym funkcję kowarancj x () s oraz x () t 1 v( s, t) x( s) x( s) x( t) x( t) N 1 Iloczynem krzyżowym oraz korelacją funkcjonalną 1 c( s, t) x( s) x( t) N, r( s, t) v( s, t), v( s, s) v( t, t), oszacowanem CELEM FUNKCJONALNYCH SKŁADOWYCH GŁÓWNYCH JEST ZNALEZIENIE TAKIEGO PRÓBNIKA a tym samym TAKIEJ FUNKCJI WAGOWEJ, KTÓRA ODKRYWA (UWYPUKLA) NAJWAŻNIEJSZĄ Z NASZEGO PUNKTU WIDZENIA ZMIENNOŚĆ DANYCH.

28 W FDA STAWIAMY PYTANIE dla jakej funkcj wagowej osąga najwyższą możlwą wartość? ( x ) ( t) x ( t) dt (klasyczne PCA dla jakego wektora, warancja kombnacj lnowej zmennych przyjmuje wartość maksymalną) Nakładamy ogranczene co do zachowana sę, STAWIAMY SOBIE ZA CEL, 2 ( t) dt 1 (odpowedn postulat dla wektorów własnych) 2 max ( x ), pod warunkem 2 ( t) dt 1, to analogon wartośc własnej ; to analogon funkcj własnej.

29 Tak jak w welowymarowej PCA, nerosnący cąg wartośc własnych k może zostać skonstruowany teracyjne nakładamy ogranczene aby nowa funkcja własna polczona w kroku l, była ortogonalna do tych polczonych we wcześnejszych krokach j ( t) ( t) dt 0 l, j 1,..., l 1, 2 ( t) 1 l. Można na proces znajdywana wartośc własnych spojrzeć: Szukamy funkcj własnych j funkcj kowarancj v( s, t) jako rozwązana funkcjonalnej postac równana charakterystycznego (ang. functonal egenequaton ) v( s, t) j( t) dt j j( s ).

30 Rozwązując take zagadnene własne uzyskujemy jednocześne najbardzej efektywną bazę welkośc l w tym sense, że całkowta suma kwadratów błędu T PCASSE x ( t) x( t) c ( t) dt osąga mnmum z wykorzystanem empryczne funkcje ortogonalne) l funkcj bazowych 2, () t (są to tzw. Podobne jak w przypadku klasycznych składowych głównych można rozważać rozmate przekształcena orygnalnych obserwacj za pomocą polczonej bazy 1,..., l np. tzw. prncpal component scores c ( x x ) ( t) x ( t) x( t) dt j j j.

31 PRZYKŁAD NR 1 FPCA dla przyrostów PKB per capta w EU15 A12

32

33

34

35 FPCA DLA EU 15 wartośc własne

36 FPCA DLA A12 wartośc własne

37 Rotacja VARIMAX dla FPCA? EU15 A12

38 PRZYKŁAD NR 2 Mesęczne welkośc stóp zwrotu z 10-letnch oblgacj rządowych państw europejskch (ne tylko UE), w podzale na strefę z walutą państwową Euro oraz pozostałe (dane 01/ /2011), dane Europejskego Banku Centralnego.

39

40 FUNKCJONALNA KOWARIANCJA WYKRES PERSPEKTYWICZNY

41 FUNKCJONALNA KOWARIANCJA WYKRES KONTUROWY

42 FPCA STREFA EURO FPCA POZOSTAŁE PAŃSTWA UE

43 FPCA STREFA EURO ROTACJA VARMAX FPCA POZOSTAŁE PAŃSTWA UE ROTACJA VARMAX

44 WYBÓR LICZBY SKŁADOWYCH GŁÓWNYCH w FPCA W welowymarowym PCA, kontrolujemy pozom dopasowana do danych poprzez wybór lczby składowych głównych. W przypadku funkcjonalnych PCA także możemy modulować pozom dopasowana poprzez kontrolowane charakterystyk gładkośc (ang. roughness ) dla estymowanej funkcj własnej np. poprzez modulowane defncj ortogonalnośc funkcj: 2 2 j( t) k( t) dt D j( t) D k( t) dt 0, gdze to parametr modyfkujący, D 2 () t t odpowada krzywźne funkcj w punkce t. druga pochodna funkcj w punkce

45 EKSPORACJA FUNKCJONALNEJ KOWARIANCJI poprzez ANALIZĘ KORELACJI KANONICZNYCH Bardzo często w ekonom staramy sę zbadać sposoby, w jake dwa zbory funkcj (krzywych, trajektor, śceżek wzrostu) ( x, y ) warancję (są współzmenne)., 1,..., N; dzelą FAD oferuje w tym zakrese m. n. funkcjonalne korelacje kanonczne. Dwa zbory zmennych zostały wycentrowane tzn. funkcje zastąpono poprzez reszty y y ; zakładamy, że x y x x 0. oraz x y oraz

46 Defnujemy mody warancj dla x - ów oraz y - ów w kategorach funkcj próbnkowych (sond) oraz, które defnują całk ( t) x ( t) dt oraz ( t) y ( t) dt Za kryterum współzmennośc funkcj przyjmujemy kwadrat korelacj kanoncznej R 2 (, ) Uzyskane w ten sposób N par, które odpowadają wspólne składowe. reprezentuje wspólne warancje, za

47 Współczynnk korelacj kanoncznej R 2 (, ) ( t) x ( t) dt ( t) y ( t) dt 2 2 ( t) x ( t) dt ( t) y ( t) dt 2, Tak jak w przypadku zwykłych korelacj kanoncznych, funkcje wagowe oraz są wyspecyfkowane poprzez znalezene par wag (sond), które optymzują kryterum kanoncznych R 2 (, ). Możemy polczyć nerosnący cąg kwadratów korelacj R, R,..., Rk sond które są do sebe ortogonalne. poprzez polczene kolejnych kanoncznych wartośc

48 Przyrost PKB per capta w krajach EU15 A12 dwe perwsze zmenne kanonczne. współczynnk kanoncznych korelacj R1=1.0; R2=1.0; R3=0.97; R4= 0.95; R5=0.65; R6= 0.57; R7= 0.12

49 Współrzędne państw EU15 oraz A12 w przestrzen dwóch perwszych zmennych kanoncznych zm 1 zm 2 zm 1 zm 2 Austra_R Bulgara BL_R Cyprus Belgum_R Czech.Republc Luxembourg_R Estona Denmark_R Hungary Fnland_R Latva France_R Lthuana Germany_R Malta.and.Gozo Greece_R Poland Ireland_R Romana Italy_R Slovaka Netherlands Slovena

50 PODSUMOWANIE I NOWE PERSPEKTYWY BADAŃ EKONOMICZNYCH 1. Współczesna ekonoma podejmuje zagadnena oraz bada zjawska, które ne stnały powedzmy lat temu. 2. Strumenowe przetwarzane danych, rynk fnansowe, centra handlowe, montorowane centrum masta za pomocą systemu kamer, roboty nternetowe, zarządzane centrum handlowym, sec telekomunkacyjne 3. Funkcjonalna regresja np. w zagadnenu czy pozom rozwoju ekonomcznego państwa ma zwązek z jego trajektorą wzrostu GDP DZIĘKUJĘ

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3 Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Analiza zatrudnienia w nowej UE z wykorzystaniem FPCA. Uniwersytet Rzeszowski Ćwiklińskiej 2, Rzeszów

Analiza zatrudnienia w nowej UE z wykorzystaniem FPCA. Uniwersytet Rzeszowski Ćwiklińskiej 2, Rzeszów Analiza zatrudnienia w nowej UE z wykorzystaniem FPCA Jolanta Wojnar 1, Wojciech Zieliński 2 1 Katedra Metod Ilościowych i Informatyki Gospodarczej Uniwersytet Rzeszowski Ćwiklińskiej 2, 35-61 Rzeszów

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11 Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

ZAJĘCIA X. Zasada największej wiarygodności

ZAJĘCIA X. Zasada największej wiarygodności ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Pomiar dobrobytu gospodarczego

Pomiar dobrobytu gospodarczego Ekonomiczny Uniwersytet Dziecięcy Pomiar dobrobytu gospodarczego Uniwersytet w Białymstoku 07 listopada 2013 r. dr Anna Gardocka-Jałowiec EKONOMICZNY UNIWERSYTET DZIECIĘCY WWW.UNIWERSYTET-DZIECIECY.PL

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw MATERIAŁY I STUDIA Zeszyt nr 86 Analza dyskrymnacyjna regresja logstyczna w procese oceny zdolnośc kredytowej przedsęborstw Robert Jagełło Warszawa, 0 r. Wstęp Robert Jagełło Narodowy Bank Polsk. Składam

Bardziej szczegółowo

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Artur Zaborsk Unwersytet Ekonomczny we Wrocławu ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Wprowadzene Od ukazana

Bardziej szczegółowo

Subiektywny dobrobyt osobisty i społeczny w krajach europejskich Tomasz Panek Szkoła Główna Handlowa w Warszawie

Subiektywny dobrobyt osobisty i społeczny w krajach europejskich Tomasz Panek Szkoła Główna Handlowa w Warszawie Subektywny dobrobyt osobsty społeczny w krajach europejskch Tomasz Panek Szkoła Główna Handlowa w Warszawe Konferencja Polska a Europa. Kontynuacje zmany Warszawa, 15 styczna 2014 1 PLAN PREZENTACJI 1.

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI ODSTAJĄCYCH, UZUPEŁNIANIE BRAKUJĄCYCH DANYCH Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska WYKRYWANIE

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej... Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów

Bardziej szczegółowo

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1 Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa

Bardziej szczegółowo

Regresja nieparametryczna series estimator

Regresja nieparametryczna series estimator Regresja nieparametryczna series estimator 1 Literatura Bruce Hansen (2018) Econometrics, rozdział 18 2 Regresja nieparametryczna Dwie główne metody estymacji Estymatory jądrowe Series estimators (estymatory

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU Studa Ekonomczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH Domnk Krężołek Unwersytet Ekonomczny w Katowcach MIARY ZALEŻNOŚCI ANALIZA AYYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU MEALI NIEŻELAZNYCH Wprowadzene zereg czasowe obserwowane na rynkach kaptałowych

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE

MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Mateusz Ppeń Unwersytet Ekonomczny w Krakowe MODELE COPULA M-GARCH O ROZKŁADACH NIEZMIENNICZYCH NA TRANSFORMACJE ORTOGONALNE Wprowadzene W analzach emprycznych przeprowadzonych z wykorzystanem welorównanowych

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12 Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej

Bardziej szczegółowo

Modelowanie struktury stóp procentowych na rynku polskim - wprowadzenie

Modelowanie struktury stóp procentowych na rynku polskim - wprowadzenie Mgr Krzysztof Pontek Katedra Inwestycj Fnansowych Ubezpeczeń Akadema Ekonomczna we Wrocławu Modelowane struktury stóp procentowych na rynku polskm - wprowadzene Wprowadzene Na rynku stóp procentowych analzowana

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo