Statystyka i eksploracja danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka i eksploracja danych"

Transkrypt

1 Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014

2

3 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ).

4 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Uwaga: EZ = 0, Var (Z) = 1.

5 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Uwaga: EZ = 0, Var (Z) = 1. Uwaga: Jeżeli X = (X 1, X 2,..., X d ) T jest wektorem losowym o macierzy kowariancji Σ, to wektor standaryzowany (po współrzędnych) Z ma wartość oczekiwaną E Z = 0 i macierz kowariancji R = [r ij ] równą macierzy KORELACJI wektora X, tj. r ij = ρ ij = cov (X i, X j ). Var (X i )Var (X j )

6 - cd.

7 - cd. Uwaga: prosta baza danych + ewentualna liczbowa etykietyzacja niektórych pól = ciąg wartości wektorów X n (rekordów), których składowe mierzone są na ogół w różnych jednostkach.

8 - cd. Uwaga: prosta baza danych + ewentualna liczbowa etykietyzacja niektórych pól = ciąg wartości wektorów X n (rekordów), których składowe mierzone są na ogół w różnych jednostkach. Empiryczna standaryzacja ciągu wektorów losowych Niech X n = (X n1, X n2,..., X nd ) T, n = 1, 2,..., N będzie ciągiem wektorów losowych. Niech X j = 1 Nn=1 N (X nj X j ) X nj, S j = 2. N N 1 n=1 Standaryzacją ciągu { X n } nazywamy ciąg wektorów losowych Z n o składowych Z nj = (X nj X j ) S j.

9 - cd.

10 - cd. Empiryczna macierz korelacji ciągu wektorów losowych Empiryczną macierzą korelacji ciągu { X n } nazywamy macierz losową ˆρ ij = ˆρ N ij = Nn=1 (X ni X i )(X nj X j ) Nn=1 (X ni X i ) 2 Nn=1 (X nj X j ) 2.

11 - cd. Empiryczna macierz korelacji ciągu wektorów losowych Empiryczną macierzą korelacji ciągu { X n } nazywamy macierz losową ˆρ ij = ˆρ N ij = Nn=1 (X ni X i )(X nj X j ) Nn=1 (X ni X i ) 2 Nn=1 (X nj X j ) 2. Uwaga: Przypuśćmy, że ciąg { X n } jest próbą prostą z rozkładu µ.

12 - cd. Empiryczna macierz korelacji ciągu wektorów losowych Empiryczną macierzą korelacji ciągu { X n } nazywamy macierz losową ˆρ ij = ˆρ N ij = Nn=1 (X ni X i )(X nj X j ) Nn=1 (X ni X i ) 2 Nn=1 (X nj X j ) 2. Uwaga: Przypuśćmy, że ciąg { X n } jest próbą prostą z rozkładu µ. ˆρ N ij = 1 N 1 1 Nn=1 N 1 (X ni X i )(X nj X j ) Nn=1 (X ni X i ) 2 1. Nn=1 N 1 (X nj X j ) 2

13 - cd. Empiryczna macierz korelacji ciągu wektorów losowych Empiryczną macierzą korelacji ciągu { X n } nazywamy macierz losową ˆρ ij = ˆρ N ij = Nn=1 (X ni X i )(X nj X j ) Nn=1 (X ni X i ) 2 Nn=1 (X nj X j ) 2. Uwaga: Przypuśćmy, że ciąg { X n } jest próbą prostą z rozkładu µ. ˆρ N ij ˆρ N ij = 1 N 1 1 Nn=1 N 1 (X ni X i )(X nj X j ) Nn=1 (X ni X i ) 2 1. Nn=1 N 1 (X nj X j ) 2 jest mocno zgodnym ciągiem estymatorów.

14 - cd. Empiryczna macierz korelacji ciągu wektorów losowych Empiryczną macierzą korelacji ciągu { X n } nazywamy macierz losową ˆρ ij = ˆρ N ij = Nn=1 (X ni X i )(X nj X j ) Nn=1 (X ni X i ) 2 Nn=1 (X nj X j ) 2. Uwaga: Przypuśćmy, że ciąg { X n } jest próbą prostą z rozkładu µ. ˆρ N ij ˆρ N ij = 1 N 1 1 Nn=1 N 1 (X ni X i )(X nj X j ) Nn=1 (X ni X i ) 2 1. Nn=1 N 1 (X nj X j ) 2 jest mocno zgodnym ciągiem estymatorów. Jednak ˆρ N ij nie jest estymatorem nieobciążonym elementu ρ ij macierzy korelacji R.

15

16 Dla każdej realizacji X 1 (ω), X 2 (ω),..., X N (ω) empiryczna macierz korelacji ˆρ N (ω) jest macierzą korelacji, tzn. jest

17 Dla każdej realizacji X 1 (ω), X 2 (ω),..., X N (ω) empiryczna macierz korelacji ˆρ N (ω) jest macierzą korelacji, tzn. jest symetryczna,

18 Dla każdej realizacji X 1 (ω), X 2 (ω),..., X N (ω) empiryczna macierz korelacji ˆρ N (ω) jest macierzą korelacji, tzn. jest symetryczna, nieujemnie określona,

19 Dla każdej realizacji X 1 (ω), X 2 (ω),..., X N (ω) empiryczna macierz korelacji ˆρ N (ω) jest macierzą korelacji, tzn. jest symetryczna, nieujemnie określona, na przekątnej ma wartości 1, a więc jej ślad wynosi d (wymiar wektora danych).

20 Dla każdej realizacji X 1 (ω), X 2 (ω),..., X N (ω) empiryczna macierz korelacji ˆρ N (ω) jest macierzą korelacji, tzn. jest symetryczna, nieujemnie określona, na przekątnej ma wartości 1, a więc jej ślad wynosi d (wymiar wektora danych). W szczególności, dla ˆρ N (ω) istnieją wartości własne λ 1 λ 2... λ d 0 oraz odpowiadające im wektory własne {e 1, e 2,..., e d } tworzące bazę ortonormalną w R d.

21 Dla każdej realizacji X 1 (ω), X 2 (ω),..., X N (ω) empiryczna macierz korelacji ˆρ N (ω) jest macierzą korelacji, tzn. jest symetryczna, nieujemnie określona, na przekątnej ma wartości 1, a więc jej ślad wynosi d (wymiar wektora danych). W szczególności, dla ˆρ N (ω) istnieją wartości własne λ 1 λ 2... λ d 0 oraz odpowiadające im wektory własne {e 1, e 2,..., e d } tworzące bazę ortonormalną w R d. Uwaga: i wartości własne i wektory zależą od całej realizacji X 1 (ω), X 2 (ω),..., X N (ω)!

22

23 Składowe główne Niech Z będzie d-wymiarowym wektorem standaryzowanym (tzn. E Z = 0 i Cov ( Z) = Corr ( Z)).

24 Składowe główne Niech Z będzie d-wymiarowym wektorem standaryzowanym (tzn. E Z = 0 i Cov ( Z) = Corr ( Z)). Niech λ 1 λ 2... λ d 0 będą wartościami własnymi macierzy Corr ( Z) a {e 1, e 2,..., e d } odpowiadającymi im wektorami własnymi, które tworzą bazę ortonormalną w R d.

25 Składowe główne Niech Z będzie d-wymiarowym wektorem standaryzowanym (tzn. E Z = 0 i Cov ( Z) = Corr ( Z)). Niech λ 1 λ 2... λ d 0 będą wartościami własnymi macierzy Corr ( Z) a {e 1, e 2,..., e d } odpowiadającymi im wektorami własnymi, które tworzą bazę ortonormalną w R d. Składowymi głównymi wektora Z (w istocie: macierzy Corr ( Z)) nazywamy zmienne losowe Y i = e T i Z, i = 1, 2,..., d.

26 - cd.

27 - cd. Var (Y i ) = Var (ei T Z) = Var ( e i, Z ) = e i, Cov ( Z)e i = e i, Corr ( Z)e i = e i, λ i e i = λ i.

28 - cd. Var (Y i ) = Var (ei T Z) = Var ( e i, Z ) = e i, Cov ( Z)e i = e i, Corr ( Z)e i = e i, λ i e i = λ i. Mówimy, że zmienna Y i wyjaśnia część λ i /d całkowitej zmienności ( wariancji ) wektora Z.

29 - cd. Var (Y i ) = Var (ei T Z) = Var ( e i, Z ) = e i, Cov ( Z)e i = e i, Corr ( Z)e i = e i, λ i e i = λ i. Mówimy, że zmienna Y i wyjaśnia część λ i /d całkowitej zmienności ( wariancji ) wektora Z. (ang. Principal Components Analysis ) polega na wyborze i właściwej interpretacji zmiennych Y 1, Y 2,..., Y k w taki sposób, aby wyjaśnić zadaną część α (0, 1) całkowitej wariancji.

30 - cd.

31 - cd. Innymi słowy, w analizie składowych głównych (PCA) szukamy:

32 - cd. Innymi słowy, w analizie składowych głównych (PCA) szukamy: k możliwie małego (w stosunku do d), które spełnia warunek

33 - cd. Innymi słowy, w analizie składowych głównych (PCA) szukamy: k możliwie małego (w stosunku do d), które spełnia warunek λ i /d + λ 2 /d λ k /d > α,

34 - cd. Innymi słowy, w analizie składowych głównych (PCA) szukamy: k możliwie małego (w stosunku do d), które spełnia warunek λ i /d + λ 2 /d λ k /d > α, i dla którego odpowiednie kombinacje liniowe zmiennych wyjściowych posiadają sensowną interpretację.

35 Model dla analizy czynnikowej

36 Model dla analizy czynnikowej Postuluje się istnienie nieobserwowanych czynników (ang. factors ), które przejawiają się w rezultacie działania mechanizmu liniowego X E X = L F + ε, gdzie wektor obserwacji X ma wymiar d, wektor czynników F ma wymiar k < d (znacznie!), wektor czynników specyficznych ε ma wymiar d, a macierz ładunków czynników L ma wymiar d k.

37 Model dla analizy czynnikowej Postuluje się istnienie nieobserwowanych czynników (ang. factors ), które przejawiają się w rezultacie działania mechanizmu liniowego X E X = L F + ε, gdzie wektor obserwacji X ma wymiar d, wektor czynników F ma wymiar k < d (znacznie!), wektor czynników specyficznych ε ma wymiar d, a macierz ładunków czynników L ma wymiar d k. Zakłada się, że F i ε są nieskorelowane, E F = 0, Cov (F ) = 1I k, E ε = 0 i Cov ( ε) = Λ ε jest macierzą diagonalną,

38 (ang. Factor Analysis )

39 (ang. Factor Analysis ) W szczególności: Σ = E( X EX )( X EX ) T = E(LF + ε)(lf + ε) T = E(LF F T L T ) + E(LF ε T ) + E( ε F T L T ) + E( ε ε T ) = LL T + Λ ε.

40 (ang. Factor Analysis ) W szczególności: Σ = E( X E X )( X E X ) T = E(L F + ε)(l F + ε) T = E(L F F T L T ) + E(L F ε T ) + E( ε F T L T ) + E( ε ε T ) = LL T + Λ ε. Rozwiązanie powyższego równania oraz poszukiwanie czynników F przeprowadza się numerycznie.

41 (ang. Factor Analysis ) W szczególności: Σ = E( X E X )( X E X ) T = E(L F + ε)(l F + ε) T = E(L F F T L T ) + E(L F ε T ) + E( ε F T L T ) + E( ε ε T ) = LL T + Λ ε. Rozwiązanie powyższego równania oraz poszukiwanie czynników F przeprowadza się numerycznie. Niech ( F, L) będzie rozwiązaniem dla modelu analizy czynnikowej. Nich B będzie dowolnym odwzorowaniem ortogonalnym. Wówczas (B F, LB T ) tez jest rozwiązaniem i konieczna jest dodatkowa analiza i wybór odpowiedniej rotacji czynników.

42 (ang. Factor Analysis ) W szczególności: Σ = E( X E X )( X E X ) T = E(L F + ε)(l F + ε) T = E(L F F T L T ) + E(L F ε T ) + E( ε F T L T ) + E( ε ε T ) = LL T + Λ ε. Rozwiązanie powyższego równania oraz poszukiwanie czynników F przeprowadza się numerycznie. Niech ( F, L) będzie rozwiązaniem dla modelu analizy czynnikowej. Nich B będzie dowolnym odwzorowaniem ortogonalnym. Wówczas (B F, LB T ) tez jest rozwiązaniem i konieczna jest dodatkowa analiza i wybór odpowiedniej rotacji czynników., mimo bogatej literatury i mnogosci algorytmów pozostaje zawsze narzędziem bardzo kontrowersyjnym.

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q

Bardziej szczegółowo

Analiza głównych składowych- redukcja wymiaru, wykł. 12

Analiza głównych składowych- redukcja wymiaru, wykł. 12 Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji

Bardziej szczegółowo

Analiza składowych głównych

Analiza składowych głównych Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi

Bardziej szczegółowo

ANALIZA CZYNNIKOWA Przykład 1

ANALIZA CZYNNIKOWA Przykład 1 ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Wprowadzenie (1) Przedmiotem analizy czynnikowej jest badanie wewnętrznych zależności w zbiorze zmiennych. Jest to modelowanie niejawne. Oprócz zmienn

Wprowadzenie (1) Przedmiotem analizy czynnikowej jest badanie wewnętrznych zależności w zbiorze zmiennych. Jest to modelowanie niejawne. Oprócz zmienn Analiza czynnikowa Wprowadzenie (1) Przedmiotem analizy czynnikowej jest badanie wewnętrznych zależności w zbiorze zmiennych. Jest to modelowanie niejawne. Oprócz zmiennych, które są bezpośrednio obserwowalne

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student

Bardziej szczegółowo

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014 Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Rozdział Metoda największej wiarygodności Ogólnie w procesie estymacji na podstawie prób x i (każde x i może być wektorem) wyznaczamy parametr λ (w ogólnym przypadku również wektor) opisujący domniemany

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

CELE ANALIZY CZYNNIKOWEJ

CELE ANALIZY CZYNNIKOWEJ ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Centralne twierdzenie graniczne

Centralne twierdzenie graniczne Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1

Bardziej szczegółowo

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Diagonalizacja macierzy i jej zastosowania

Diagonalizacja macierzy i jej zastosowania Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad

Bardziej szczegółowo

Eksploracyjna analiza danych. Metody rzutowania: analiza składowych głównych oraz skalowanie wielowymiarowe.

Eksploracyjna analiza danych. Metody rzutowania: analiza składowych głównych oraz skalowanie wielowymiarowe. Eksploracyjna analiza danych. Metody rzutowania: analiza składowych głównych oraz skalowanie wielowymiarowe. Janusz Dutkowski Przedstawimy tutaj metody stosowane w eksploracyjnej analizie danych z wielowymiarowej

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.

Bardziej szczegółowo

Diagonalizacja macierzy i jej zastosowania

Diagonalizacja macierzy i jej zastosowania Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 29 Mirosław Sobolewski (UW) Warszawa, wrzesień

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski

Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski Komputerowa analiza danych doświadczalnych Wykład 3 9.03.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Dwuwymiarowe rozkłady zmiennych losowych Jednoczesne pomiary

Bardziej szczegółowo

SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA

SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA Wrocław University of Technology SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA Maciej Zięba Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 18.01.2013 Redukcja wymiarów Zmienne wejściowe

Bardziej szczegółowo

Diagonalizacja macierzy i jej zastosowania

Diagonalizacja macierzy i jej zastosowania Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla

Bardziej szczegółowo

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Redukcja wariancji w metodach Monte-Carlo

Redukcja wariancji w metodach Monte-Carlo 14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki XXXI Sesja KNM UŚ Motywacje, intuicje, konstrukcje Szczyrk 10 13 listopada 2011 Tomasz Kochanek (Uniwersytet Śląski) Twierdzenie

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach

Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach maja, 7 Rozglądanie się w D Plan Klasyka z brodą: zbiór danych Iris analiza składowych głównych (PCA), czyli redukcja

Bardziej szczegółowo

Natalia Neherbecka. 11 czerwca 2010

Natalia Neherbecka. 11 czerwca 2010 Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VI... 16 Listopada 2011 1 / 24 Jest to rozkład zmiennej losowej rozkład chi-kwadrat Z = n i=1 X 2 i, gdzie X i N(µ i, 1) - niezależne. Oznaczenie: Z χ 2 (n, λ), gdzie:

Bardziej szczegółowo

SPOTKANIE 9: Metody redukcji wymiarów

SPOTKANIE 9: Metody redukcji wymiarów Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr

Bardziej szczegółowo

Podstawowe modele probabilistyczne

Podstawowe modele probabilistyczne Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje

Bardziej szczegółowo

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy

Bardziej szczegółowo

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ). B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

Statystyka matematyczna dla kierunku Rolnictwo w SGGW. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ.

Statystyka matematyczna dla kierunku Rolnictwo w SGGW. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ. IDEA OPISU WSPÓŁZALEśNOŚCI CECH X, Y cechy obserwowane w doświadczeniu, n liczba jednostek doświadczalnych, Wyniki doświadczenia: wartości

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Model jako : Stosowana Analiza Regresji Wykład XI 21 Grudnia 2011 1 / 11 Analiza kowariancji Model jako : Oprócz czynnika o wartościach nominalnych chcemy uwzględnić wpływ predyktora o wartościach ilościowych

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Idea. Analiza składowych głównych Analiza czynnikowa Skalowanie wielowymiarowe Analiza korespondencji Wykresy obrazkowe.

Idea. Analiza składowych głównych Analiza czynnikowa Skalowanie wielowymiarowe Analiza korespondencji Wykresy obrazkowe. Idea (ang. Principal Components Analysis PCA) jest popularnym używanym narzędziem analizy danych. Na metodę tę można spojrzeć jak na pewną technikę redukcji wymiarowości danych. Jest to metoda nieparametryczna,

Bardziej szczegółowo

Analiza Składowych Głównych i Czynnikowa

Analiza Składowych Głównych i Czynnikowa Analiza Składowych Głównych i Czynnikowa Agata Weltrowska Paulina Zalewska Wydział FTiMS, 12 kwiecień 2018 Wstęp oraz cele Wprowadzenie W jednej ze swoich prac, A.E. Maxwell podaje, że analiza składowych

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

Wykład 10 Skalowanie wielowymiarowe

Wykład 10 Skalowanie wielowymiarowe Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Uogólniona Metoda Momentów

Uogólniona Metoda Momentów Uogólniona Metoda Momentów Momenty z próby daż a do momentów teoretycznych (Prawo Wielkich Liczb) plim 1 n y i = E (y) n i=1 Klasyczna Metoda Momentów (M M) polega na szacowaniu momentów teoretycznych

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,

Bardziej szczegółowo

Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów

Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

R k v = 0}. k N. V 0 = ker R k 0

R k v = 0}. k N. V 0 = ker R k 0 Definicja 1 Niech R End(V ). Podprzestrzeń W przestrzeni V nazywamy podprzestrzenią niezmienniczą odwzorowania R jeśli Rw W, dla każdego w W ; równoważnie: R(W ) W. Jeśli W jest różna od przestrzeni {0}

Bardziej szczegółowo

1 Gaussowskie zmienne losowe

1 Gaussowskie zmienne losowe Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Teoretyczne podstawy programowania liniowego

Teoretyczne podstawy programowania liniowego Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4 ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Zmienne zależne i niezależne

Zmienne zależne i niezależne Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }

Bardziej szczegółowo