Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311"

Transkrypt

1 Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311

2 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym

3 Repetto W aspekce archtektury: zajmowalśmy sę tylko secam typu feed-forward W aspekce dzałana pojedynczego neuronu: rozważalśmy tylko neurony oblczające sumy ważone wejść (ze względu na najczęścej stosowaną funkcję aktywacj neurony te są zwane neuronam sgmodalnym)

4 Repetto (cd.) W aspekce uczena: szczegółowo przedstawono tylko gradentowe algorytmy uczena nadzorowanego: backpropagaton (wraz z modyfkacjam nercyjnym) (algorytm I rzędu) metodę zmennej metryk (algorytm II rzędu) metodę gradentów sprzężonych (algorytm I rzędu)

5 Repetto (cd.) Ponadto: Podano typowe reguły uczena (nenadzorowanego nadzorowanego) jako przypadk szczególne uogólnonej reguły uczena Przedstawono metody: - doboru współczynnków uczena - ncjalzacj wag - doboru archtektury sec - zwększana zdolnośc generalzujących

6 Sec neuronowe z radalnym funkcjam bazowym Sec o radalnych funkcjach bazowych (RBF) składają sę z jednej warstwy ukrytej oraz jednej warstwy wyjścowej. Neurony warstwy wyjścowej są lnowe Neurony ukryte realzują funkcję ϕ zmenającą sę radalne (stąd nazwa sec) wokół wybranego centrum c

7 Sec RBF (cd.) Formalne: Wyjśca neuronów ukrytych (radalnych) sec RBF generują wektor sygnałów y dany równanem: y = ϕ ( ) x c

8 Porównane dzałana neuronów sgmodalnych radalnych Neuron sgmodalny występujący w MLP reprezentuje w przestrzen wejścowej hperpłaszczyznę dzelącą tę przestrzeń na dwe otwarte klasy Neuron radalny reprezentuje hpersferę dokonującą podzału kołowego wokół punktu centralnego

9 Grafczne porównane dzałana neuronu sgmodalengo radalnego x _ + _ x x 1 + x 1 y = f = w j x j y ϕ j j ( ) x t j j

10 Sec RBF (cd.) W zadanach zawerających symetre kołowe zastosowane neuronów radalnych pozwala znaczne zmnejszyć lczbę neuronów ukrytych (a zatem zwększyć generalzację) Ponadto wystarczy zawsze jedna warstwa ukryta

11 Nelnowa ϕ-separowalność Nech ϕ (x) = [ϕ 1 (x), ϕ (x),..., ϕ k (x)] T będze wektorem funkcj radalnych w N wymarowej przestrzen wejścowej. Podzał tej przestrzen na klasy X + oraz X - jest nelnowo ϕ - separowalny jeśl stneje tak wektor w, że: w w T T ϕ ϕ ( x) > 0 dla x X ( ) x < 0 dla x X +

12 Nelnowa ϕ-separowalność (cd.) Zatem: Problem jest nelnowo ϕ-separowalny w przestrzen wejścowej x wymaru N jeśl jest lnowo separowalny w przestrzen rzutowana ϕ (x) wymaru k. Granca mędzy obu klasam w przestrzen ϕ (x) jest zdefnowana za pomocą hperpłaszczyzny o równanu: w T ϕ( x) = 0

13 Twerdzene o nelnowej ϕ-separowalnośc Dowolny zbór wzorców jest nelnowo ϕ-separowalny pod warunkem przyjęca odpowedno dużego wymaru k przestrzen rzutowana

14 Wnosek z twerdzena o nelnowej ϕ-separowalnośc Przyjęce dostateczne dużej lczby neuronów radalnych realzujących funkcje ϕ (x) zapewna rozwązane dowolnego problemu klasyfkacyjnego przy użycu dwu warstw: Warstwy ukrytej realzującej wektor ϕ (x) oraz Warstwy wyjścowej realzowanej przez neuron lnowy z wektorem wagowym w.

15 Interpolacja welowymarowa w secach RBF Poszukujemy nterpolacj welowymarowej odwzorowującej p różnych wektorów wejścowych x ( = 1,,..., p) z przestrzen wejścowej N wymarowej w zbór p lczb rzeczywstych d ( = 1,,..., p) za pomocą sec RBF

16 Interpolacja welowymarowa w secach RBF (cd.) Przedstawona nterpolacja jest równoważna poszukwanu takej funkcj radalnej F (x), dla której spełnone są warunk nterpolacj: gdze : F F ( x ) ( x) = w ( ) ϕ x x = 1 Wybór normy jest w zasadze dowolny, choć w praktyce najczęścej stosuje sę normę eukldesową. Wartośc wektorów x stanową centra funkcj radalnej. = d p

17 Interpolacja welowymarowa w secach RBF funkcje Greena Jako funkcje ϕ przyjmuje sę zazwyczaj funkcje radalne Greena G(x; x ) z których najpopularnejszą jest (neznormalzowana) funkcja Gaussa: N xx 1 G = e σ = e σ k= 1 [ x; x ] w której x oznaczają wektory wartośc średnch (centrów) a σ warancje ( x ) k x, k

18 Interpolacja jako superpozycja welowymarowych funkcj Gaussa Po podstawenu w mejsce funkcj radalnej welowymarowej neznormalzowanej funkcj Gaussa otrzymuje sę następujące równane nterpolujące: xx F p ( x) = = 1 w e Powyższe równane przedstawa superpozycję welowymarowych funkcj Gaussa z centram (wartoścam oczekwanym) ulokowanym w x szerokoścam (odchylenam standardowym) σ σ

19 Ogranczena Choć przedstawene poprzedne jest zawsze możlwe, jest ono nepraktyczne ze względu na lość neuronów ukrytych równą lośc próbek uczących p. Dlatego w praktyce stosuje sę przyblżene z ogranczenem do K neuronów

20 Przyblżene funkcj nterpolującej Funkcję F przyblża sę funkcją F* daną: F * ( x) w G( x; t ) gdze : G K = = 1 ( x; t ) = G( x t ), K < p Wektory t ( = 1,..., K) są centram które należy wyznaczyć (w przypadku szczególnym, gdy K = p otrzymuje sę rozwązane dokładne dla którego oczywśce: t = x,

21 Schemat sec RBF x 1 x ϕ 1 W 1 1 W 0... x N ϕ... ϕ K W W K y ( x; ) ϕ = G t

22 Uczene sec RBF Uczene sec RBF polega na takm doborze wag w funkcj Greena G(x; t ) gdze ( = 1,..., K) aby funkcja F* realzowana przez seć RBF możlwe najlepej przyblżała teoretyczną funkcję dokładną F.

23 Sec z hper-radalnym funkcjam bazowym (HRBF) W secach RBF funkcje bazowe Greena zależne są od normy eukldesowej W secach HRBF korzysta sę z uogólnonej normy eukldesowej, dla której każdy wymar ma swój odrębny współczynnk wag, a nawet wektor wag

24 Sec HRBF - uogólnona norma eukldesowa Uogólnona norma eukldesowa: x ( ) T Qx ( Qx) x T Q T Qx = = Q Przyjmując: Q T Q = C = [c kl ] dostajemy: x Q = N N k = 1 l= 1 c kl x k x l

25 Norma eukldesowa jako przypadek szczególny normy uogólnonej W szczególnośc jeśl Q jest macerzą dagonalną, wówczas: x Q = N k = c x Przy dodatkowym załażenu, że Q = 1 norma wagowa sprowadza sę do normy klasycznej: x Q = x

26 Dzałane sec HRBF Zastosowane uogólnonej normy wagowej daje uogólnone wyrażene rozwnęca funkcj radalnych: K ( ) ( ) = w G F = 1 * x x t Q Jednocześne powyższe równane opsuje dzałane sec HRBF

27 Uogólnona (neznormalzowana) funkcja Gaussa Neznormalzowana uogólnona funkcja Gaussa otrzymuje sę poprzez przyjęce dla -tej funkcj bazowej: gaussowskej funkcj radalnej Greena o centrum t oraz Macerzy wagowej Q Dana jest ona wzorem: ( ) [ ] [ ] ( ) [ ] [ ] = = e e G t x S t x t x Q Q t x Q T T T t x 1 1

28 Uogólnona (neznormalzowana) funkcja Gaussa (cd.) Neznormalzowana uogólnona funkcja Gaussa dana jest zatem wzorem: Wdać, że wyrażene ½ S -1 =Q T Q pełn funkcję czynnka 1/(σ ) standardowej welowymarowej funkcj Gaussa ( ) [ ] [ ] ( ) [ ] [ ] = = = e e G t x S t x t x Q Q t x Q T T T t x 1 1

29 Porównane sec RBF z secam sgmodalnym W secach RBF parametr funkcj aktywacj σ jest zależny od neuronu podlega uczenu, natomast w secach sgmodalnych analogczny parametr β jest stały jednakowy dla wszystkch neuronów. Argumentem funkcj radalnej jest odległość danej próbk x od centrum t, a w sec sgmodalnej jest to loczyn skalarny wektorów w T x. Neurony radalne dzelą przestrzeń na obszary lokalne poprzez hpersfery, natomast neurony sgmodalne dzelą przestrzeń na obszary globalne poprzez hperpłaszczyzny.

30 Uczene sec (H)RBF Uczene sec (hper)radalnych składa sę z dwóch etapów: 1. dobór centrów parametrów kształtu funkcj bazowych. dobór wag lnowych neuronów wyjścowych

31 Uczene sec (H)RBF (cd.) Poneważ zadane druge (doboru wag wyjścowych neuronów lnowych) może zostać rozwązane algebraczne, o le znane jest rozwązane zadana perwszego, zatem to zadane perwsze jest podstawowym zadanem w uczenu sec (H)RBF

32 Metody wyznaczana centrów parametrów kształtu funkcj bazowych Losowy wybór centrów funkcj bazowych Samoorganzujący sę proces podzału na klastery Uczene pod nadzorem (oparte o algorytmy propagacj wstecznej)

33 Losowy wybór centrów funkcj bazowych Rozwązane najprostsze, lecz dopuszczalne dla sec radalnych przy założenu, że rozkład danych uczących dobrze odzwercedla specyfkę problemu (a tak zawsze pownno być) Wówczas dobór stałych parametrów funkcj bazowych jest dokonywany losowo przy rozkładze równomernym

34 Dobór losowy centrów (cd.) Po dokonanu losowego wyboru centrów t oblcza sę wartość parametru zwązanego z odchylenem standardowym: 1 σ d K = σ = K W powyższym wzorze d oznacza maksymalną odległość mędzy centram t Funkcje bazowe są zatem postac: ( ) G x t = e d xt d K

35 Samoorganzujący sę proces podzału na klastery Dane wejścowe dzel sę na klastery (np. za pomocą algorytmu K-uśredneń) Lczba funkcj bazowych równa jest lośc klasterów Do centrum każdego klastera przyporządkowuje sę centrum funkcj bazowej

36 Gradentowe uczene pod nadzorem sec HRBF W metodze tej modyfkuje sę równocześne: centra funkcj bazowych, ch parametry oraz wartośc wektora wag neuronów lnowych warstwy wyjścowej

37 Gradentowe uczene pod nadzorem sec HRBF (cd.) Zdefnujmy błąd E jako: K 1 E = [ wϕ ( )] x d = 0 Przy czym wyjśce sec y jest określone jako: y ϕ K = 0 = 0 wϕ ( x), 1 T [ Q ( xt )] Q ( xt ) [ ] ( ) ( ) x = 1, ϕ x = e

38 Składowe gradentu względem parametrów podlegających uczenu j =1..N, =1..K, k =1..N ( ) ( ) ( )( ) ) ( ) ( 1 ) ( 1 ) ( ) ( 1 ) ( 1 0, j k k u jk N k k kj u j u z t x d y w e Q E z Q d y w e t E d y e w E d y w E = = = = =

39 Zmenne wykorzystywane do określana składowych gradentu j =1..N, =1..K, k =1..N z u ( ) j = = N N k = 1 ( () ) zk k = 1 Q ( ) x t () () jk k k

40 Gradentowe uczene pod nadzorem sec HRBF (cd.) Znając składowe gradentu funkcj błedu względem wszystkch parametrów podlegających uczenu można stosować dowolną metodę optymalzacj gradentowej, np. najwększego spadku, w której kerunek poszukwań p = -η E

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba

Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 1 Ćwczene 2: Perceptron WYMAGANIA 1. Sztuczne sec neuronowe budowa oraz ops matematyczny perceptronu (funkcje przejśca perceptronu), uczene perceptronu

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Sieci Neuronowe 1 Michał Bereta

Sieci Neuronowe 1 Michał Bereta Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Sieci Neuronowe 2 Michał Bereta

Sieci Neuronowe 2 Michał Bereta Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 2 Mchał Bereta Cele laboratorum: zapoznane sę z nowym rodzajam sec neuronowych: secam Kohonena oraz secam radalnym porównane sec Kohonena oraz sec

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu Wprowadzene do Sec Neuronowych Algorytm wstecznej propagacj błędu Maja Czoków, Jarosław Persa --6 Powtórzene. Perceptron sgmodalny Funkcja sgmodalna: σ(x) = + exp( c (x p)) Parametr c odpowada za nachylene

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych

Neuron liniowy. Najprostsza sieć warstwa elementów liniowych Najprostsza jest jednostka lnowa: Neuron lnowy potraf ona rozpoznawać wektor wejścowy X = (x 1, x 2,..., x n ) T zapamętany we współczynnkach wagowych W = (w 1, w 2,..., w n ), Zauważmy, że y = W X Załóżmy,

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

Uczenie sieci radialnych (RBF)

Uczenie sieci radialnych (RBF) Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Nieeuklidesowe sieci neuronowe

Nieeuklidesowe sieci neuronowe Unwersytet Mkoaja Kopernka Wydza Fzyk, Astronom Informatyk Stosowanej IS Helena Jurkewcz numer albumu: 177622 Praca magsterska na kerunku Fzyka Komputerowa Neeukldesowe sec neuronowe Opekun pracy dyplomowej

Bardziej szczegółowo

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

Sztuczne Sieci Neuronowe

Sztuczne Sieci Neuronowe Sztuczne Sieci Neuronowe Wykład 7 Sieci neuronowe o radialnych funkcjach bazowych wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. 26/11/08

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym.

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym. =DGDQLHSROHJDMFHQDSRV]XNLZDQLXPDNV\PDOQHMOXEPLQLPDOQHMZDUWRFLIXQNFMLZLHOX ]PLHQQ\FKSU]\MHGQRF]HVQ\PVSHáQLHQLXSHZQHMLORFLQDáR*RQ\FKZDUXQNyZ UyZQDOXE QLHUyZQRFLQRVLQD]Z]DGDQLDRSW\PDOL]DF\MQHJROXE]DGDQLDSURJUDPRZDQLD

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Nie istnieje ogólna recepta, każdy przypadek musi być rozważany indywidualnie!

Nie istnieje ogólna recepta, każdy przypadek musi być rozważany indywidualnie! Kwesta wyboru struktury modelu neuronowego Schematyczne przedstawene etapów przetwarzana danych w procese neuronowego modelowana Ne stneje ogólna recepta, każdy przypadek mus być rozważany ndywdualne!

Bardziej szczegółowo

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO NA PODSTAWIE REFERATU JUSTYNY KOSAKOWSKIEJ. Moduły prnjektywne posety skończonego typu prnjektywnego Nech I będze skończonym posetem. Przez max

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI ODSTAJĄCYCH, UZUPEŁNIANIE BRAKUJĄCYCH DANYCH Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska WYKRYWANIE

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE całki pojedyncze

CAŁKOWANIE NUMERYCZNE całki pojedyncze CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone

Programowanie Równoległe i Rozproszone Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

ZAJĘCIA X. Zasada największej wiarygodności

ZAJĘCIA X. Zasada największej wiarygodności ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład

Bardziej szczegółowo

Systemy Inteligentnego Przetwarzania wykład 7: Sieci RBF

Systemy Inteligentnego Przetwarzania wykład 7: Sieci RBF Systemy Inteligentnego Przetwarzania wykład 7: Sieci RBF Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Bazowe funkcje radialne (1) Sieci neuronowe wielowarstwowe

Bardziej szczegółowo

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE 5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Oprócz transmtancj operatorowej, do opsu członów układów automatyk stosuje sę tzw. transmtancję wdmową. Transmtancję wdmową G(j wyznaczyć moŝna dzęk podstawenu do wzoru

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Neuronu dyskretny. Neuron dyskretny (perceptron prosty)

Plan wykładu. Sztuczne sieci neuronowe. Neuronu dyskretny. Neuron dyskretny (perceptron prosty) Plan wykładu Dzałane neuronu dyskretnego warstwy neuronów dyskretnych Wykład : Reguły uczena sec neuronowych. Sec neuronowe ednokerunkowe. Reguła perceptronowa Reguła Wdrowa-Hoffa Reguła delta ałgorzata

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

Wprowadzenie. Support vector machines (maszyny wektorów wspierających, maszyny wektorów nośnych) SVM służy do: Zalety metody SVM

Wprowadzenie. Support vector machines (maszyny wektorów wspierających, maszyny wektorów nośnych) SVM służy do: Zalety metody SVM SVM Wprowadzene Support vector machnes (maszyny wektorów wsperających, maszyny wektorów nośnych) SVM służy do: w wersj podstawowej klasyfkacj bnarnej w wersj z rozszerzenam regresj wyboru najważnejszych

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Komputer kwantowy Zasady funkcjonowania. Dr hab. inż. Krzysztof Giaro Politechnika Gdańska Wydział ETI

Komputer kwantowy Zasady funkcjonowania. Dr hab. inż. Krzysztof Giaro Politechnika Gdańska Wydział ETI Komputer kwantowy Zasady funkcjonowana Dr hab. nż. Krzysztof Garo Poltechnka Gdańska Wydzał ETI Oblczena kwantowe. R. Feynman [985] symulację zachowana układu kwantowego należy przeprowadzć na "maszyne"

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3 Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne

Bardziej szczegółowo

Regresja liniowa i nieliniowa

Regresja liniowa i nieliniowa Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Problem dwuklasowy (N=1) Problem klasyfikacji. Wykład 6: Ocena jakoci sieci neuronowej Sieci RBF KLASYFIKATOR

Plan wykładu. Sztuczne sieci neuronowe. Problem dwuklasowy (N=1) Problem klasyfikacji. Wykład 6: Ocena jakoci sieci neuronowej Sieci RBF KLASYFIKATOR Plan wykładu Wykład 6: Ocena jakoc sec neuronowej Sec RBF Małgorzata Krtowska Katedra Orogramowana e-mal: mmac@.b.balystok.l Metody oceny jakoc sec neuronowych roblem klasyfkacj metody szacowana jakoc

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

WYBRANE ZASTOSOWANIA OPTYMALIZACJI ROZMYTEJ W STEROWANIU PROCESAMI ODLEWNICZYMI

WYBRANE ZASTOSOWANIA OPTYMALIZACJI ROZMYTEJ W STEROWANIU PROCESAMI ODLEWNICZYMI 47/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznk 5, Nr 17 Archves of Foundry Year 2005, Volume 5, Book 17 PAN - Katowce PL ISSN 1642-5308 WYBRANE ZASTOSOWANIA OPTYMALIZACJI ROZMYTEJ W STEROWANIU PROCESAMI ODLEWNICZYMI

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12 Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy

Bardziej szczegółowo

Optymalizacja belki wspornikowej

Optymalizacja belki wspornikowej Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana

Bardziej szczegółowo

Odtworzenie wywodu metodą wstępującą (bottom up)

Odtworzenie wywodu metodą wstępującą (bottom up) Przeglądane wejśca od lewej strony do prawej L (k) Odtwarzane wywodu prawostronnego Wystarcza znajomosc "k" następnych symbol łańcucha wejścowego hstor dotychczasowych redukcj, aby wyznaczyc jednoznaczne

Bardziej szczegółowo

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej... 1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe

Bardziej szczegółowo

Warszawa, 28 stycznia 2017 r., Blok tematyczny II Sztuczne sieci neuronowe (środowisko MATLAB i Simulink z wykorzystaniem Neural Network Toolbox),

Warszawa, 28 stycznia 2017 r., Blok tematyczny II Sztuczne sieci neuronowe (środowisko MATLAB i Simulink z wykorzystaniem Neural Network Toolbox), Studa Doktorancke IBS PA nt. Technk nformacyjne teora zastosowana WYKŁAD Semnarum nt. Modelowane rozwoju systemów w środowsku MATLABA Smulnka Prof. nadzw. dr hab. nż. Jerzy Tchórzewsk, jtchorzewsk@ntera.pl;

Bardziej szczegółowo

7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH

7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Szymon Chojnacki MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH

Szymon Chojnacki MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH MODELOWANIE KONIUNKTURY GOSPODARCZEJ Z WYKORZYSTANIEM DANYCH TEKSTOWYCH Szymon Chojnack Zakład Wspomagana Analzy Decyzj, Szkoła Główna Handlowa, Warszawa 1 WPROWADZENIE Gospodarka krajów rozwnętych podlega

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Minimalizacja globalna, algorytmy genetyczne i zastosowanie w geotechnice

Minimalizacja globalna, algorytmy genetyczne i zastosowanie w geotechnice Mnmalzacja globalna, algorytmy genetyczne zastosowane w geotechnce Metoda sejsmczna Metoda geoelektryczna Podstawowy podzał ZAGADNIENIE PROSTE (ang. forward problem) model + parametry modelu dane (ośrodek,

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo