1 T. Sygnały. Sygnał okresowy f(t) Wartość średnia sygnału okresowego f(t) Sygnały f(t) Stałe. Zmienne f(t) const. Pulsujące Inne.

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 T. Sygnały. Sygnał okresowy f(t) Wartość średnia sygnału okresowego f(t) Sygnały f(t) Stałe. Zmienne f(t) const. Pulsujące Inne."

Transkrypt

1 Sygnały Sygnały f(t) Stałe Zmienne f(t) const Pulsujące nne Zmieniające znak Zachowujące znak Oksowe Nieoksowe Odkształcone SNSODALNE nne Sygnał oksowy f(t) > t f ( t) f ( t + ) Wartość śdnia sygnału oksowego f(t) F śr def t + t f ( t)dt Przykład Obliczyć wartość śdnią nieskończonego ciągu pulsów o kształcie pokazanym na rysunku. f(t),5 [s] +3 F śr,6,5 t [s],5,,5 F ( )d ( 3)d ( )d,5 f t t t t 5, 3 5 ( 3,5), 6 śr

2 Przykład f(t) +3,5,6 Wartość skuteczna sygnału oksowego f(t) F sk def t+ t f ( t) dt Obliczyć wartość skuteczną nieskończonego ciągu pulsów o kształcie pokazanym na rysunku.,5 [s] F sk,5,,5 F śr F ( ) d ( 3) d ( ) d 9,5,5 f t t t + t 5, t [s],5 nterptacja energetyczna wartości skutecznej ( ) 4,, 5 sk u(t) i( t + ) u(t) i( t + ) sk sk Prąd oksowy Prąd stały Energia wydzielona w oporze w przedziale czasu t t t + : w ( t, t + ) t + t u( t) i( t)dt t + t i ( t)dt Wniosek: Energia wydzielona w oporze w czasie jednego oksu prądu oksowego i( t + ) jest równa energii, jaką w tym samym oporze i w tym samym czasie wydzieli prąd stały o wartości sk. w ( t, t + ) t + t u( t) i( t)dt G t + t sk u ( t)dt G Wniosek: Energia wydzielona w oporze w czasie jednego oksu napięcia oksowego u(t) u( t + ) jest równa energii, jaką w tym samym oporze i w tym samym czasie wydzieli napięcie stałe o wartości sk. sk Przykład Wyznaczyć wartość napięcia stałego dającego w zystorze taki sam skutek energetyczny jak napięcie oksowe pokazane na rysunku. u(t) [V],5 [s] +3,5 sk ( )d ( 3 ( ) sk +,5) 4,,5 V,5,5 u t t 5,5 t [s]

3 Sygnał sinusoidalny Przemienny pulsujący (zmienia znak) oksowy okślony dla t (, + ). f ( t) sin sin Am α ( t) Am t + cos cos ( ω ϕ ) A m amplituda sygnału; α(t) ω t + ϕ faza sygnału w [rad] lub [ o ]; ω pulsacja sygnału w [rad/s] lub [ o /s] przy czym: ω f gdzie f [Hz] częstotliwość sygnału, [s] oks sygnału; ϕ faza początkowa sygnału w [rad] lub [ o ]; f(t) α(t) A m A max +A m A pp A m ω t [rad] ω t - A m A min A m ϕ - sin sin f ( t) Am α ( t) Am t + cos cos ( ω ϕ ) Wartość śdnia sygnału sinusoidalnego Am Am Fśr cos(ω )d sin(ω ) t + ϕ t t + ϕ ω Wartość skuteczna sygnału sinusoidalnego Am Am + cos( + ϕ ) F sk cos ( + )dt dt ϕ A m

4 Przykład Jakie napięci pracy powinien mieć kondensator filtrujący włączony równolegle do sieci zasilającej odbiornik V System elektroenergetyczny sk 3 V C m sk 35 V Czyli, 35 < C 4 V minalne napięcie pracy kondensatora C ( w praktyce, lepiej C 63 V ). Przesunięcie fazowe sygnałów sinusoidalnych f( t) f (t) f (t) ϕ ϕ f (t) A sin α (t) A sin( ω t + ϕ ) f (t) A sin α (t) A sin( ω t + ϕ ) ω t Przykład e(t) E m sin α α (t) α (t) (ω t + ϕ ) (ω t + ϕ ) ϕ ϕ Stan stalony Sinusoidalny (SS) Przyłączenie napięcia sinusoidalnego do dwójnika L. L di( t) L dt NPK + i E m sin ozwiązanie i p (t) + i u (t) : dla t całka ogólna: i p GL t ( t) Ce ; i p (t) całka szczególna: iu ( t) K sin + K cos Ksin( + ϕ ) ; i u (t) SS

5 Przykład ozpływ prądów zgodnie z PPK i (t) PPK w: i (t) + i (t) w i (t) Prąd stały: i (t) 3 A, i (t) A i (t) + i (t) 4 A. ( i po problemie! ) Prądy sinusoidalne: i (t) m sin ( + ϕ ), i (t) m sin ( + ϕ ). Dla danych: m 3 A, m A, moŝna tylko stwierdzić, Ŝe dla przesunięcia fazy α : m + 4 A, dla przesunięcia fazy α : m + A i z tego: + m + 4. ( i tu jest problem! ) Cały czas obowiązuje PPK dla węzła w: i (t) + i (t) α α 9 α 8 sygnały w fazie pośdnie przesunięcie fazowe sygnały w przeciwfazie i (t) 3 sin ( ) i (t) 3 sin ( ) i (t) 3 sin ( ) i (t) sin ( ) i (t) sin ( + /) i (t) sin ( + ) 4 sin ( ) sin ( + 8 ) sin ( ) Metoda bezpośdniej analizy obwodów znajdujących się w SS jest nieco uciąŝliwa, aczkolwiek wykonalna, i w związku z tym powstała metoda symboliczna oparta na liczbach zespolonych. Kiedy w obwodzie jest Stan stalony Sinusoidalny Obwód SLS znajduje się w stanie sinusoidalnym ustalonym ( SS ) jeśli:. wszystkie obwodowe funkcje wymuszające ( napięcia e n (t) i prądy j p (t) autonomicznych źródeł wymuszających ) mają przebieg sinusoidalny o jednakowej pulsacji ω;. autonomiczne źródła wymuszające działają w obwodzie nieskończenie długo co oznacza, Ŝe składowe przejściowe ( całki ogólne ), związane z zaistniałą w obwodzie w chwili początkowej t komutacją oraz początkowymi energiami w C (t ) i w L (t ) zgromadzonymi w konserwatywnych elementach C i L, wszystkich obwodowych funkcji gałęziowych zanikły do zera; 3. wszystkie obwodowe funkcje gałęziowe ( napięcia e g (t) i prądy j g (t) gałęzi ) mają przebieg sinusoidalny o jednakowej pulsacji ω oznacza to brak w obwodzie półdegeneracji w postaci przekrojów pojemnościowych ( złoŝonych z pojemności i autonomicznych źródeł prądu ) i oczek indukcyjnych ( złoŝonych z indukcyjności i autonomicznych źródeł napięcia ) -4

6 Sygnał sinusoidalny, a liczby zespolone Wzór Eulera: e jα cos α + j sin α gdzie: j ; jedno z dwu rozwiązań równania: j +. +j z Płaszczyzna zespolona m z α e z + j s(t) S m cos( + α) e[ S m e j( + α) ] e[ (S m e jα ) e j ] e[se j ] gdzie: S S m e jα amplituda zespolona sygnału sinusoidalnego S(t); przy czym: S S m moduł amplitudy zespolonej S; arg S α (,+) argument główny amplitudy zespolonej S. s(t) S m sin( + β) m[ S m e j( + β) ] m[ (S m e jβ ) e j ] m[s e j ] gdzie: S S m e j β amplituda zespolona sygnału sinusoidalnego S(t); przy czym: S S m moduł amplitudy zespolonej S; arg S β (,+) argument główny amplitudy zespolonej S. przy czym: β + α. Fazor wektor wirujący: w e j Moduł w: w w ; Argument w: arg w +j j m w m w w w e w + j

7 Przykład: Napięcie sinusoidalne ma postać: u(t) cos( ω t + 6 ) [V]. Amplituda zespolona: e j 6 Argument główny: arg 6 [rad]. [V] ( cos 6 + j sin 6 ) [V] 5 ( 3 + j ) [V]; Zmiana postaci amplitudy zespolonej S sygnału sinusoidalnego. Postać wykładnicza (PW): S S e jϕ Postać algebraiczna (PA): S a + j b; a e S, b m S. PW > PA PA > PW a S cos ϕ S a + b b S sin ϕ cosϕ sinϕ a + b b a a + b ϕ Wyliczanie kąta fazowego b a > < ϕ < + ϕ arctg a a ϕ ϕ + ϕ ( sgn b) a < < ϕ < < ϕ < ϕ sgn b arctg waga! sin ( m moŝna cos jednoznacznie przyporządkować jego amplitudę zespoloną S S m e jϕ. ). KaŜdemu sygnałowi sinusoidalnemu s t) S ( ω t + ϕ ) ). KaŜdej amplitudzie zespolonej S S m e jϕ moŝna przyporządkować dwa sin sygnały sinusoidalne s ( t) Sm ( ω t + ϕ ) róŝniące się fazą o [rad]. cos W związku z tym naleŝy przyjąć a priori umowę, Ŝe w rozpatrywanym zagadnieniu wszystkie sygnały b a

8 sinusoidalne zapisujemy w postaci funkcji sinus albo funkcji cosinus. Działania na sygnałach sinusoidalnych ). MnoŜenie sygnału sinusoidalnego przez liczbę rzeczywistą Dane: s (t) S m cos( + α ) e[s e j ] S S m e jα s(t) k s (t) S m cos( + α) e[s e j ] S S m e jα s(t) k S m cos( + α ) e[k S e j ] S (k S m ) e jα S k S k > S S k S α k < S α S k S przy czym: k \{} Amplituda zespolona S iloczynu sygnału sinusoidalnego przez stałą k \{} jest równa iloczynowi amplitudy zespolonej tego sygnału przez tę stałą. ). Suma sygnałów sinusoidalnych Dane: s (t) S m cos( + α ) e[s e j ] S S m e jα s (t) S m cos( + α ) e[s e j ] S S m e jα Suma: s(t) s (t) + s (t) S m cos( + α) e[s e j ] S S m e jα s(t) s (t) + s (t) e[s e j ] + e[s e j ] e[(s + S )e j ] e[(s + S )e j ] e[s e j ] S S S + S S S S S + S α α α

9 S S m e jα + S m e jα Amplituda zespolona S sumy sygnałów sinusoidalnych o tej samej pulsacji ω jest równa sumie ich amplitud zespolonych 3). óŝnica sygnałów sinusoidalnych Dane: s (t) S m cos( + α ) e[s e j ] S S m e jα s (t) S m cos( + α ) e[s e j ] S S m e jα Suma: s(t) s (t) s (t) S m cos( + α) e[s e j ] S S m e jα s(t) s (t) s (t) e[s e j ] e[s e j ] e[(s S )e j ] e[(s S )e j ] e[s e j ] S S S S S S S S S m e jα S m e jα α S Amplituda zespolona S róŝnicy sygnałów sinusoidalnych o tej samej pulsacji ω jest równa róŝnicy ich amplitud zespolonych S α α Przykład Jakie jest napięcie u(t) oraz prąd gałęzi pokazanej na rysunku, jeśli 4 Ω, e (t) e (t) cos ( ω t + /6 ) [V] u (t) 8 cos ( ω t /4 ) [V] u(t) u (t) Amplitudy zespolone napięć: E e j /6 [V] ( cos /6 + j sin /6 ) 5( 3 j) + [V] 8 e j /4 [V] 8 [cos( /4) + j sin( /4)] ( j) Amplituda zespolona sumy napięć: E + ( ) j( 4 5) 4 [V] m [V] E /4 /6 + 4,3 j,66 4,76 e -j 38 e [V]

10 Napięcie: u(t) 4,76 cos( 38 ) [V] Prad: G u (t) ( wg PO ) Amplituda zespolona prądu: G,5 8 e j /4 [A] ( j) [A] Prąd:, cos( /4) [A] 4). óŝniczkowanie sygnałów sinusoidalnych Dane: s (t) S m cos( + α ) e[s e j ] S S m e jα m e /4 s(t) ds ( t) dt S m cos( + α) e[s e j ] S S m e jα d dt j j s(t) e[se ] e[ ( jω S ) e ] S j ω ( S m e jα ) S jω S Amplituda zespolona sygnału sinusoidalnego S powstałego przez zróŝniczkowanie względem czasu sygnału sinusoidalnego o pulsacji ω jest równa iloczynowi amplitudy zespolonej tego sygnału przez jω. PoniewaŜ: j j e, to S S e jα [ωs ]e j( α + ), z tego wynika: S ω S oraz α α + Sygnał sinusoidalny po zróŝniczkowaniu względem czasu wyprzedza w fazie sygnał róŝniczkowany o / radianów. Przykład Jakie napięcie u(t) towarzyszy przepływowi prądu cos ( + 5 ) ma o pulsacji ω Mrad/s przez indukcyjność L 3 mh u(t) L u( t) d L i( t) d t S S S jω S α S.

11 Amplituda zespolona prądu w indukcyjności: Amplituda zespolona napięcia na indukcyjności: (ωl) kω; 6 e j5 [V] e j5 [ma] L ( jω ) j (ωl) [V] u(t) e[ e j ] 6 cos( + 5 ) [V] 5). Całkowanie sygnałów sinusoidalnych Dane: s (t) S m cos( + α ) e[s e j ] S S m e jα s(t) s ( τ ) dτ S m cos( + α) e[s e j ] S S m e jα jωτ j s(t) e[se ]dτ e[ S e ] jω S jω S Amplituda zespolona sygnału sinusoidalnego S, będącego funkcją pierwotną sygnału sinusoidalnego o pulsacji ω jest równa iloczynowi S jω ( Sm e jα ) S S α S amplitudy zespolonej S tego sygnału przez jω. S jω S PoniewaŜ: j j e j, to S S e jα [ ω S ]e j( α ), z tego wynika: S ω S oraz α α Sygnał sinusoidalny po scałkowaniu opóźnia się w fazie względem sygnału całkowanego o / radianów. Przykład Jakie napięcie u(t) towarzyszy przepływowi prądu cos ( + 5 ) ma o pulsacji ω Mrad/s przez pojemność C nf u(t) C u( t) i( t) d t C.

12 Amplituda zespolona prądu w pojemności: e j5 [ma] Amplituda zespolona napięcia na pojemności: ωc C jω ωc,5 kω; e j75 [V] j [V] u(t) e[ e j ] cos( 75 ) [V] Analiza obwodów Metodą Amplitud Zespolonych (MAZ) ( metoda symboliczna ( MS ), metoda wskazowa ( MW )) Jeśli obwód SLS znajduje się w stanie ustalonym sinusoidalnym (SS), to w celu dokonania analizy MAZ tego obwodu naleŝy wszystkie występujące w n pobudzenia ( napięcia źródłowe e(t) oraz prądy źródłowe j(t)) przedstawić w dziedzinie zespolonej jako odpowiednie amplitudy zespolone pobudzeń; przy czym naleŝy uŝyć jednolitej konwencji cos( ) e[ ] albo sin( ) m[ ]. Jednocześnie wszystkie szukane funkcje obwodowe naleŝy zapisywać zgodnie z przyjętą konwencją. Przykład Obwód pokazany na rysunku znajduje się w SS. Wyznaczyć prąd płynący w tym obwodzie. u (t) u L (t) L u C (t) C e(t) E m cos( + α ) Szukamy rozwiązania w postaci: m cos( + β) e[ e j ] di( t) NPK: i ( t) + L + i( )d e( t) dt C τ τ Amplituda zespolona napięcia pobudzającego e(t): Amplituda zespolona szukanego prądu : NPK w dziedzinie zespolonej: j d j jωτ e[e ] + L e[e ] + e[e ]d dt C τ e + jlω + jcω e j e[ee j ] E E m e jα m e jβ e[ee j ]

13 + jlω + E jcω + E j ωl ωc m E m + ωl ωc ωl β arg α arctg ωc Wartość skuteczna zespolona W metodzie MAZ zamiast pojęcia amplitudy zespolonej moŝe być stosowane pojęcie wartości skutecznej zespolonej. ( Dotyczy to głównie energetyki. ) s(t) S m cos( + α) S sk cos( + α) e[ (S sk e jα ) e j ] Wartość skuteczną zespolona S S sk e jα Związek amplitudy zespolonej i wartości skutecznej zespolonej S S Związki między amplitudami zespolonymi (wskazami) prądów i napięć na elementach u(t) u(t) L u(t) C u(t) m cos( + α) e[ e j ] m cos( + β) e[ e j ]; j jlω jcω Cω m m β α Lω m m β α Cω m m m e jα m e jβ β α + mmitancje dwójników: mpedancja Z i Admitancja Y

14 PO dla amplitud zespolonych: Z równanie pedancyjne lub Y równanie admitancyjne Z Z L jlω Y G Y L Z C jcω j j Y jcω jlω Lω C Cω Dwójnik SLS Z ˆ Z Y Y ˆ Z Z e jα r + jx r e[z] - zystancja x m[z] - aktancja α arg arg - faza Z Y Y e jβ g +jb g e[z] - konduktancja b m[z] - susceptancja β arg arg α - faza Y

15 ypy dwójników r e[z] g e[y] x m[z] b m[y] ϕ - faza yp + + stratny pasywny bezstratny pasywny Aktywny + + charakter indukcyjny ezonans typu szegowego ezonans typu równoległego + Charakter pojemnościowy

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

2. REZONANS W OBWODACH ELEKTRYCZNYCH

2. REZONANS W OBWODACH ELEKTRYCZNYCH 2. EZONANS W OBWODAH EEKTYZNYH 2.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód elektryczny,

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

1. Sprawdzanie prawa OHMA i praw KIRCHHOFFA

1. Sprawdzanie prawa OHMA i praw KIRCHHOFFA Sprawdzanie prawa OHMA i praw KHHOFFA -0 Dr inŝ. Tadeusz Mączka. Sprawdzanie prawa OHMA i praw KHHOFFA. Wstęp: kłady elektryczne, moŝna traktować jako zbiory obwodów elektrycznych, przez które przepływają

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć REZONANS SZEREGOWY I RÓWNOLEGŁY I. Rezonans napięć Zjawisko rezonansu napięć występuje w gałęzi szeregowej RLC i polega na tym, Ŝe przy określonej częstotliwości sygnałów w obwodzie, zwanej częstotliwością

Bardziej szczegółowo

Systemy liniowe i stacjonarne

Systemy liniowe i stacjonarne Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane

Bardziej szczegółowo

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Wykład 7 Transformata aplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Prowadzący: dr inż. Tomasz Sikorski Instytut Podstaw lektrotechniki i lektrotechnologii

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE

Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE Parametry sygnału sinusoidalnego Sygnały sinusoidalne zwane również harmonicznymi są opisane w dziedzinie czasu następującym wzorem (w opisie przyjęto oznaczenie sygnału napięciowego) : Wielkości występujące

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

ładunek pobrany ze źródła jest równy sumie ładunków na poszczególnych kondensatorach

ładunek pobrany ze źródła jest równy sumie ładunków na poszczególnych kondensatorach Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl Połączenie równoległe kondensatorów na każdym kondensatorze jest takie samo napięcie napięcie źródła ładunek pobrany ze źródła jest równy sumie ładunków

Bardziej szczegółowo

POSTULATY TEORII OBWODÓW

POSTULATY TEORII OBWODÓW 1.0 Wiadomości wstępne Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna Skalarna Wielkość Fizyczna Wektorowa Międzynarodowy Układ Jednostek - układ SI Jednostki wtórne SI Wybrane Stałe Fizyczne

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday:

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday: Dr inż. Agnieszka Wardzińska pokój: 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Advisor hours: Tuesday: 10.00-10.45 Thursday: 10.30-11.15 Literatura podstawowa: 1. Podstawy

Bardziej szczegółowo

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej

Bardziej szczegółowo

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO IDEALNA REZYSTANCJA W OBWODZIE PRĄDU PRZEMIENNEGO Symbol rezystora: Idealny rezystor w obwodzie prądu przemiennego:

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO mgr inż. Grzegorz Strzeszewski ZespółSzkółnrwWyszkowie 01 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego

Bardziej szczegółowo

8. ELEMENTY RZECZYWISTE W OBWODACH PRĄDU ZMIENNEGO Cewka indukcyjna rzeczywista - gałąź szeregowa RL

8. ELEMENTY RZECZYWISTE W OBWODACH PRĄDU ZMIENNEGO Cewka indukcyjna rzeczywista - gałąź szeregowa RL 8. ELEMENTY ZECZYWISTE W OBWODACH PĄDU ZMIENNEO Poznane przez nas idealne elementy obwodów elektrycznych są wyidealizowanymi, uproszczonymi odwzorowaniami obiektów rzeczywistych. Prostota ich matematycznego

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 5. Badanie rezonansu napięć w obwodach szeregowych RLC. Rzeszów 206/207 Imię i nazwisko Grupa Rok studiów Data wykonania

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA,

LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA, Wykład VIII LICZBY ZESPOLONE W ELEKTROTECHNICE, ELEKTRYCZNY WEKTOR ZESPOLONY, METODA SYMBOLICZNA, ROZWIĄZYWANIA UKŁADÓW ROZGAŁĘZIONYCH PRĄDU PRZEMIENNEGO POSTACI LICZB ZESPOLONYCH Wskazy prądu i napięcia:

Bardziej szczegółowo

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH OBWOD SGNAŁ 9. METOD SECOWE (ALGORTMCZNE) ANALZ OBWODÓW LNOWCH 9.. WPROWADZENE ANALZA OBWODÓW Jeżeli przy badaniu obwodu elektrycznego dane są parametry elementów i schemat obwodu, a poszukiwane są napięcia

Bardziej szczegółowo

R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1.

R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1. EROELEKR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 9/ Rozwiązania zadań dla grupy elektrycznej na zawody stopnia adanie nr (autor dr inŝ. Eugeniusz RoŜnowski) Stosując twierdzenie

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa. MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.

Bardziej szczegółowo

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem:

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem: Wyprowadzenie wzorów na impedancję w dwójniku RLC. Dwójnik zbudowany jest z rezystora, kondensatora i cewki. Do zacisków dwójnika przyłożone zostało napięcie sinusoidalnie zmienne. W wyniku przyłożonego

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny POTEHNKA WOŁAWSKA, WYDZAŁ PPT - ABOATOM Z PODSTAW EEKTOTEHNK EEKTONK Ćwiczenie nr. Dwójniki, rezonans elektryczny el ćwiczenia: Podstawowym celem ćwiczenia jest zapoznanie studentów właściwościami elementów

Bardziej szczegółowo

Przyjmuje się umowę, że:

Przyjmuje się umowę, że: MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek:

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek: Dr inż. Agnieszka Wardzińska 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Konsultacje: Poniedziałek : 8.00-9.30 Czwartek: 8.00-9.30 Impedancja elementów dla prądów przemiennych

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

u(t)=u R (t)+u L (t)+u C (t)

u(t)=u R (t)+u L (t)+u C (t) Szeregowy obwód Źródło napięciowe u( o zmiennej sile elektromotorycznej E(e [u(] Z drugiego prawa Kirchhoffa: u(u (u (u ( ównanie ruchu ładunku elektrycznego: Prąd płynący w obwodzie: di( i t dt u t i

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI. Zakład Teorii Obwodów ANALOGOWA. Zbigniew Świętach dr inż.

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI. Zakład Teorii Obwodów ANALOGOWA. Zbigniew Świętach dr inż. POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI Zakład Teorii Obwodów TECHNIKA ANALOGOWA Zbigniew Świętach dr inż. Czwórniki - program wykładu Koncepcja czwórnika Równania czwórnika, parametry własne czwórnika

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

Przyrządy pomiarowe w elektronice multimetr

Przyrządy pomiarowe w elektronice multimetr Przyrządy pomiarowe w elektronice multimetr Miernik uniwersalny służy do pomiaru istotnych parametrów elementów elektronicznych: rezystancji pojemności napięć, prądów stałych i zmiennych (50Hz) na elementach

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego PROTOKÓŁ POMAROWY LABORATORUM OBWODÓW SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 3 Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat BADANA

Bardziej szczegółowo

Materiały dydaktyczne. Podstawy elektrotechniki i elektroniki. Semestr III. Ćwiczenia

Materiały dydaktyczne. Podstawy elektrotechniki i elektroniki. Semestr III. Ćwiczenia Materiały dydaktyczne Podstawy elektrotechniki i elektroniki Semestr III Ćwiczenia 1 Temat 1 (6 godzin): Obwody prądu stałego Zagadnienie: 1. Obwody pasywne prądu stałego. (3h) Obwodem pasywnym nazywa

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Badanie rezonansu w obwodach prądu przemiennego

Badanie rezonansu w obwodach prądu przemiennego E/E Wydział Fizyki AM Badanie rezonansu w obwodach prądu przemiennego el ćwiczenia: Przyrządy: Zagadnienia: Poznanie podstawowych własności szeregowego obwodu rezonansowego. Zbadanie wpływu zmian wartości

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYZNA EEKTONZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE ÓWNOEGŁEGO OBWOD (SYMAJA) rok szkolny klasa grupa data wykonania.

Bardziej szczegółowo

a = (2.1.3) = (2.1.4)

a = (2.1.3) = (2.1.4) . DRGANIA Fundamentalną ideą drgań są drgania harmoniczne proste. Termin harmoniczne ma informować, Ŝe funkcja opisująca drgania to funkcja typu sinus/cosinus, natomiast słowo proste Ŝe drgania nie są

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki 58 Prąd d zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w ziennych Opór r bierny Prąd d zienny Prąd d zienny 3 Prąd d zienny 4 Prąd d zienny 5 Prąd d zienny Przy stałej prędkości kątowej

Bardziej szczegółowo

Sygnały zmienne w czasie

Sygnały zmienne w czasie Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne

Bardziej szczegółowo

Formalizm liczb zespolonych

Formalizm liczb zespolonych Część III Elementy bierne: rezystor, kondesator, cewka Wymuszenie, odpowiedź układu Systemy liniowe i stacjonarne Prądy sinusoidalne, impedancja Dwójniki bierne: rezystancja, pojemność, indukcyjność Rezonans

Bardziej szczegółowo

Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie.

Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie. Prąd d zmienny prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie. 1 Oś wartości natężenia prądu Oś czasu 2 Definicja natężenia prądu zmiennego i dq =

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Elektrotechnika i elektronika (konspekt) Franciszek Gołek Wykład 3. Obwody prądu sinusoidalnego

Elektrotechnika i elektronika (konspekt) Franciszek Gołek  Wykład 3. Obwody prądu sinusoidalnego Elektrotechnika i elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 3. Obwody prądu sinusoidalnego Obecnie powszechnie dostępna energia elektryczna jest produkowana

Bardziej szczegółowo

Szeregowy obwód RLC. u(t)=u R (t)+u L (t)+u C (t) U L = R U U L C U C DOBROĆ OBWODU. Obwód rezonansowy szeregowy - częstość rezonansowa = 1.

Szeregowy obwód RLC. u(t)=u R (t)+u L (t)+u C (t) U L = R U U L C U C DOBROĆ OBWODU. Obwód rezonansowy szeregowy - częstość rezonansowa = 1. Szerego obwód Źródło napięcio o zmiennej sile elektromotorycznej E(e [] drugiego prawa Kirchhoffa: ównanie ruchu ładunku elektrycznego: jeśli Prąd płynący w obwodzie: e jωt u (u (u ( d i t dt u t i t (

Bardziej szczegółowo

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa

Lekcja 9. Pierwsze i drugie prawo Kirchhoffa. 1. I prawo Kirchhoffa Lekcja 9. Pierwsze i drugie prawo Kirchhoffa 1. I prawo Kirchhoffa Pierwsze prawo Kirchhoffa mówi, że dla każdego węzła obwodu elektrycznego suma algebraiczna prądów jest równa zeru. i 0 Symbol α odpowiada

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM TECHNIK INFORMACYJNYCH

INSTRUKCJA LABORATORIUM TECHNIK INFORMACYJNYCH INSTRUKCJA LABORATORIUM TECHNIK INFORMACYJNYCH WPROWADZENIE DO PROGRAMU PSPICE Autor: Tomasz Niedziela, Strona /9 . Uruchomienie programu Pspice. Z menu Start wybrać Wszystkie Programy Pspice Student Schematics.

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie

Bardziej szczegółowo

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1. OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Metoda symboliczna Zad. 1.1 Znaleźć zespolone wartości skuteczne następujących prądów i napięć:

Metoda symboliczna Zad. 1.1 Znaleźć zespolone wartości skuteczne następujących prądów i napięć: Metoda symboliczna ad.. naleźć zespolone wartości skuteczne następujących prądów i napięć: 7 a) ut ( ) sin 5t V, b) it () 5 cos5t, 4 c) ut ( ) sin t cost V, d) it () 5sint 4cost. 4 Wynik: 7 j a) e V, 5rad/s,

Bardziej szczegółowo

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH OWODY SYGNŁY 0. MTODY NLGOYTMCZN NLZY OWODÓW LNOWYCH 0.. MTOD TNSFGUCJ Przez termin transfiguracji rozumiemy operację kolejnego uproszczenia struktury obwodu (zmniejszenie liczby gałęzi i węzłów), przy

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Elektrotechnika elektronika miernictwo Franciszek Gołek Wykład 3. Obwody prądu sinusoidalnego

Elektrotechnika elektronika miernictwo Franciszek Gołek  Wykład 3. Obwody prądu sinusoidalnego Elektrotechnika elektronika miernictwo Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 3. Obwody prądu sinusoidalnego Obecnie powszechnie dostępna energia elektryczna jest produkowana

Bardziej szczegółowo

Autor: Franciszek Starzyk. POJĘCIA I MODELE potrzebne do zrozumienia i prawidłowego wykonania

Autor: Franciszek Starzyk. POJĘCIA I MODELE potrzebne do zrozumienia i prawidłowego wykonania WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 9 OBWODY RC: 9.1. Reaktancja pojemnościowa 9.2.

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

REZONANS PRĄDOWY. I. Cel ćwiczenia: zapoznanie z problematyką rezonansu prądowego, wyznaczenie charakterystyk. IV. Wprowadzenie

REZONANS PRĄDOWY. I. Cel ćwiczenia: zapoznanie z problematyką rezonansu prądowego, wyznaczenie charakterystyk. IV. Wprowadzenie Ćwiczenie E- EZONANS PĄDOWY I. el ćwiczenia: zapoznanie z problematyką rezonansu prądowego, wyznaczenie charakterystyk prądowych obwodu, częstości rezonansowej, współczynnika dobroci i tłumienia, pasma

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 9 marca 5 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Pracownia Fizyczna i Elektroniczna 2014

Pracownia Fizyczna i Elektroniczna 2014 Pracownia Fizyczna i Elektroniczna 04 http://pe.fw.ed.pl/ Wojciech DOMNK ozbłysk gamma GB 08039B 9.03.008 teleskop Pi of the Sky sfilmował najpotężniejszą eksplozję obserwowaną przez człowieka pierwszy

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA wykład 7 Janusz Andrzejewski Niedoceniany geniusz Nikola Tesla Nikola Tesla wynalazł (lub znakomicie ulepszył) większość urządzeń, które spowodowały to, że prąd zmienny wyparł z naszych domów prąd

Bardziej szczegółowo

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża:

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: Teoria obwodów 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę superpozycji

Bardziej szczegółowo

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny 58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola

Bardziej szczegółowo

Ćwiczenia tablicowe nr 1

Ćwiczenia tablicowe nr 1 Ćwiczenia tablicowe nr 1 Temat Pomiary mocy i energii Wymagane wiadomości teoretyczne 1. Pomiar mocy w sieciach 3 fazowych 3 przewodowych: przy obciążeniu symetrycznym i niesymetrycznym 2. Pomiar mocy

Bardziej szczegółowo

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych

Bardziej szczegółowo

(EL1A_U09) 4. Przy otwartym przełączniku, woltomierz idealny wskazał 0. Po zamknięciu wyłącznika woltomierz i amperomierz idealny wskażą:

(EL1A_U09) 4. Przy otwartym przełączniku, woltomierz idealny wskazał 0. Po zamknięciu wyłącznika woltomierz i amperomierz idealny wskażą: Teoria obwodów (EL1A_U07) 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

Co było na ostatnim wykładzie?

Co było na ostatnim wykładzie? Co było na ostatnim wykładzie? Rzeczywiste źródło napięcia: Demonstracja: u u s (t) R u= us R + RW Zależy od prądu i (czyli obciążenia) w.2, p.1 Podłączamy różne obciążenia (różne R). Co dzieje się z u?

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD Wydział IMi Zadania z elektrotechniki i elektroniki 2014 A. W obwodzie jak na rysunku oblicz wskazanie woltomierza pracującego w trybie TU MS. Przyjmij diodę, jako element idealny. Dane: = 230 2sin( t),

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC

II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC II prawo Kirchhoffa algebraiczna suma zmian potencjału napotykanych przy pełnym obejściu dowolnego oczka jest równa zeru klucz zwarty w punkcie a - ładowanie kondensatora równanie ładowania Fizyka ogólna

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltechnka Wrocławska nstytut Maszyn, Napędów Pomarów Elektrycznych Materał lustracyjny do przedmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zelńsk (-9, A10 p.408, tel. 30-3 9) Wrocław 005/6 PĄD ZMENNY

Bardziej szczegółowo

Elektrotechnika Skrypt Podstawy elektrotechniki

Elektrotechnika Skrypt Podstawy elektrotechniki UNIWERSYTET PEDAGOGICZNY Wydział Matematyczno-Fizyczno-Techniczny Instytut Techniki Edukacja Techniczno-Informatyczna Elektrotechnika Skrypt Podstawy elektrotechniki Kraków 2015 Marcin Kapłan 1 Spis treści:

Bardziej szczegółowo

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autorzy: Konrad Nosek 09 Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autor: Konrad Nosek DEFINICJA Definicja : Funkcja pierwotna Rozważmy

Bardziej szczegółowo