METODY OPTYMALIZACJI. Tomasz M. Gwizdałła 2018/19
|
|
- Robert Sokołowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 METODY OPTYMALIZACJI Tomasz M. Gwizdałła 2018/19
2 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.524b tel
3 Informacje wstępne Prawdopodobny plan wykładu: Wstęp. Optymalizacja deterministyczna: metody niegradientowe i gradientowe funkcji jednej i wielu zmiennych Programowanie liniowe simplex, zagadnienie transportowe, zagadnienie plecakowe Metody heurystyczne symulowane wyżarzanie, poszukiwanie tabu, algorytm ewolucyjny, algorytm mrówkowy
4 Informacje wstępne Literatura: dowolna (porządna) książka dotycząca metod numerycznych, np. J.Stoer, R.Bulirsch Wstęp do analizy numerycznej A.Bjorck, G.Dahlquist Metody numeryczne M.Sysło, N.Deo, J.Kowalik Algorytmy optymalizacji dyskretnej Z.Michalewicz, D.Vogel Jak to rozwiązać czyli nowoczesna heurystyka Z.Michalewicz Algorytmy genetyczne + struktury danych = programy ewolucyjne
5 Pojęcie Co to jest optymalizacja? Istnieje wiele zagadnień opisywanych terminem optymalizacja: optymalizacja matematyczna (formuła) optymalizacja oprogramowania optymalizacja stron optymalizacja systemu optymalizacja wydajności optymalizacja ekonomiczna (efektywność kodu) (wyszukiwanie, pozycjonowanie) (efektywność sprzętu) (zarządzanie zasobami) (P/E) programowanie liniowe
6 Pojęcie Co to jest optymalizacja? Metoda wyznaczania najlepszego rozwiązania z punktu widzenia określonego kryterium. 1. Najlepsze: szukamy wartości ekstremalnej. 2. Kryterium: musimy dysponować funkcją oceny.
7 Sformułowanie Dana jest funkcja f: A R Szukamy takiej wartości x 0 A x A f x < f x 0 x A f x f x 0 zagadnienie maksymalizacji x A f x > f x 0 x A f x f x 0 zagadnienie minimalizacji,że A - przestrzeń poszukiwań lub przestrzeń konfiguracyjna zwykle jest to podzbiór przestrzeni R n Taki wybór znacznie ogranicza zakres analizowanych przez nas zagadnień, pomijając np. tzw. zagadnienia multiobjective optimization (optymalizacji wielokryterialnej), stanowiące bardzo istotną część współczesnych problemów optymalizacyjnych.
8 Sformułowanie Pierwsze zagadnienie optymalizacyjne
9 Sformułowanie Pierwsze zagadnienie optymalizacyjne Publius Vergilius Maro Eneida - Zagadnienie Elissy (Dydony) związane z legendą dotyczącą założenia Kartaginy. Koloniści osiadłszy na zamieszkanych przez Numidyjczyków północnych wybrzeżach Afryki mogli zająć tyle miejsca, ile da się objąć skórą wołu Forma matematyczna: Jak zmaksymalizować powierzchnię obszaru ograniczonego krzywą o długości zależnej od pewnych dodatkowych czynników?
10 Sformułowanie Pierwsze sformułowane formalnie zagadnienie optymalizacyjne
11 Sformułowanie Pierwsze sformułowane formalnie zagadnienie optymalizacyjne 1697 Johann Bernoulli zagadnienie brachistochrony Znaleźć na płaszczyźnie krzywą, łączącą nie leżące w pionie punkty A i B, wzdłuż której musiałby poruszać się punkt materialny, aby pod działaniem siły ciężkości przebyć drogę w najkrótszym czasie t = p2 ds p1 v = ds = v = 2gy 1 + ( dx dy ) 2 dx = p2 1 + y 2 2gy dx p1
12 Sformułowanie Pierwsze sformułowane formalnie zagadnienie optymalizacyjne 1697 Johann Bernoulli zagadnienie brachistochrony Znaleźć na płaszczyźnie krzywą, łączącą nie leżące w pionie punkty A i B, wzdłuż której musiałby poruszać się punkt materialny, aby pod działaniem siły ciężkości przebyć drogę w najkrótszym czasie t = p2 ds p1 v = ds = v = 2gy 1 + ( dx dy ) 2 dx = p2 1 + y 2 2gy dx p1 x = 1 2 k2 (θ sinθ) x = 1 2 k2 (1 cosθ) parametryczne równanie cykloidy Ale, czy zagadnieniem optymalizacyjnym nie jest zasada Fermata (1662)
13 Elementy definiujące zagadnienie Trudności napotykane w fazie poszukiwania optimum 1. Rozmiar przestrzeni poszukiwań 2. Skomplikowanie modelu 3. Niejednoznaczność funkcji oceny 4. Ograniczenie przestrzeni poszukiwań przez więzy 5. Osoba rozwiązująca problem 6. Niepewność informacji 7. Wielość celów
14 Elementy definiujące zagadnienie Rozmiar przestrzeni poszukiwań (1) Rozważmy dwuwymiarowy model Isinga na sieci o krawędzi L (dopuszczalne wartości spinów {-1,1}, ilość spinów N=L 2 ) Spróbujmy przejrzeć wszystkie możliwe konfiguracje i załóżmy, że analiza pojedynczej konfiguracji trwa 1ns.
15 Elementy definiujące zagadnienie Rozmiar przestrzeni poszukiwań (1) Rozważmy dwuwymiarowy model Isinga na sieci o krawędzi L (dopuszczalne wartości spinów {-1,1}, ilość spinów N=L 2 ) Spróbujmy przejrzeć wszystkie możliwe konfiguracje i załóżmy, że analiza pojedynczej konfiguracji trwa 1ns. Tu przekroczyliśmy wiek Wszechświata (14 mld. lat ~4.4 e17 s)
16 Elementy definiujące zagadnienie Rozmiar przestrzeni poszukiwań (2) Rozważmy teraz graf (dla uproszczenia nieskierowany) obrazujący połączenia między N miastami i spróbujmy znaleźć w nim najkrótszy cykl Hamiltona - TSP.
17 Elementy definiujące zagadnienie Rozmiar przestrzeni poszukiwań (3) Złożoność obliczeniowa dla zachłannego rozwiązania modelu Isinga.
18 Elementy definiujące zagadnienie Rozmiar przestrzeni poszukiwań (4) Złożoność obliczeniowa dla zachłannego rozwiązania modelu Isinga i problemu komiwojażera.
19 Elementy definiujące zagadnienie Rozmiar przestrzeni poszukiwań (5) A może zmienna ciągła, np. f(x) = cos(x)cos(50x) f(x) = 10n + n i=1 (x i 2 10cos(2πx i ))
20 Elementy definiujące zagadnienie Model Model jest fundamentalnym pojęciem związanym z teorią optymalizacji ponieważ zawiera matematyczny opis rozwiązywanego problemu. Model rozwiązania, nie jego reprezentacja. W sytuacjach, kiedy pełny opis problemu może zawierać elementy trudne do analizy, np. nieciągłości, zdarza się stosować opis przybliżony. Rozwiązanie najlepsze vs. rozwiązanie lepsze.
21 Elementy definiujące zagadnienie Problemy z funkcją oceny Funkcja oceny jest związana z modelem, jednak nawet w jego ramach mogą występować problemy z jej prawidłowym określeniem. Funkcja oceny może zmieniać się w czasie. Odzwierciedlenie pełnej, poprawnej i aktualnej wiedzy. Sprzężenie zwrotne (czyżby cybernetyka).
22 Elementy definiujące zagadnienie Ograniczenia, czyli więzy Więzy wprowadzają problemy poprzez wprowadzenie znaczących ograniczeń na podprzestrzeń dopuszczalnych rozwiązań przestrzeni poszukiwań. Jak zapisać więzy matematycznie? W większości przypadków więzy czynią podprzestrzeń rozwiązań niewypukłą. Jak zaimplementować więzy w algorytmie: - kara - powrót do obszaru prawidłowego.
Tomasz M. Gwizdałła 2012/13
METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla
Bardziej szczegółowoPlan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Bardziej szczegółowoMetody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Bardziej szczegółowoBADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych
BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,
Bardziej szczegółowoJacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Bardziej szczegółowoWybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Bardziej szczegółowoEkonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Bardziej szczegółowoOptymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Bardziej szczegółowoAlgorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Bardziej szczegółowoPolitechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I, Kierunek Oceanotechnika, Spec. Okrętowe Podstawy teorii optymalizacji Wykład 1 M. H. Ghaemi Marzec 2016 Podstawy teorii
Bardziej szczegółowoWykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ
Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZŁOŻONOŚĆ OBLICZENIOWA ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ dr hab. Krzysztof SZKATUŁA, prof. PAN Instytut Badań Systemowych PAN Uniwersytet
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu
Bardziej szczegółowoTeoria obliczeń i złożoność obliczeniowa
Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy
Bardziej szczegółowoZadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Bardziej szczegółowoMetody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawy optymalizacji Plan prezentacji 1 Podstawy matematyczne 2 3 Eliminacja ograniczeń Metody
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności
Bardziej szczegółowoZagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Bardziej szczegółowoDefinicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Bardziej szczegółowoPrzykłady problemów optymalizacyjnych
Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów
Bardziej szczegółowoOptymalizacja konstrukcji
Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne
Bardziej szczegółowoWyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
Bardziej szczegółowoSchemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Bardziej szczegółowoTechniki optymalizacji
Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych
Bardziej szczegółowoProgramowanie matematyczne
dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X
Bardziej szczegółowoLABORATORIUM 7: Problem komiwojażera (TSP) cz. 2
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:
Bardziej szczegółowodoc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Bardziej szczegółowoTechniki optymalizacji
Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji
Bardziej szczegółowoBadania operacyjne Operation research. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Badania
Bardziej szczegółowoAlgorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Bardziej szczegółowoMetody optymalizacji Optimization methods Forma studiów: stacjonarne Poziom studiów II stopnia. Liczba godzin/tydzień: 1W, 1Ć
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści dodatkowych Rodzaj zajęć: wykład, ćwiczenia Metody Optimization methods Forma studiów: stacjonarne Poziom studiów
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 1
L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów
Bardziej szczegółowoTOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Literatura Literatura
Bardziej szczegółowoMetody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Bardziej szczegółowoTeoria treningu. Projektowanie. systemów treningowych. jako ciąg zadań optymalizacyjnych. Jan Kosendiak. Istota projektowania. systemów treningowych
Teoria treningu 77 Projektowanie procesu treningowego jest jednym z podstawowych zadań trenera, a umiejętność ta należy do podstawowych wyznaczników jego wykształcenia. Projektowanie systemów treningowych
Bardziej szczegółowoSPIS TREŚCI WSTĘP... 10
SPIS TREŚCI WSTĘP... 10 Wykład 1. GENEZA, ROZWÓJ, WSPÓŁCZESNE WYZWANIA PRALOGISTYKI WOJSKOWEJ 1. Historyczne źródła logistyki wojskowej... 15 2. Logistyka według poglądów teoretyków amerykańskich... 17
Bardziej szczegółowoAlgorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
Bardziej szczegółowoAlgorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Bardziej szczegółowoModelowanie logistycznych sytuacji decyzyjnych w konwencji zadań programowania matematycznego
Artur Berliński 1 Modelowanie logistycznych sytuacji decyzyjnych w konwencji zadań programowania matematycznego 24 Wstęp O konkurencyjności przedsiębiorstwa decyduje między innymi, efektywna strategia
Bardziej szczegółowoModelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Bardziej szczegółowoProblemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
Bardziej szczegółowoHeurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
Bardziej szczegółowoTeoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska
Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia
Bardziej szczegółowoSpecjalność Optymalizacja Decyzji Menedżerskich. Katedra Badań Operacyjnych Uniwersytetu Łódzkiego
Specjalność Optymalizacja Decyzji Menedżerskich Katedra Badań Operacyjnych Uniwersytetu Łódzkiego Kilka słów o nas Katedra Badań Operacyjnych jest częścią Instytutu Ekonomik Stosowanych i Informatyki.
Bardziej szczegółowoSpis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
Bardziej szczegółowoMetody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
Bardziej szczegółowoInstytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoDocument: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Bardziej szczegółowoZ-ZIP2-303z Zagadnienia optymalizacji Problems of optimization
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE
Bardziej szczegółowoOpis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK405 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/2016 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Bardziej szczegółowoALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Bardziej szczegółowoAproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Bardziej szczegółowoPorównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Bardziej szczegółowoMetody optymalizacji dyskretnej
Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Bardziej szczegółowoOpis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.SIK306 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Bardziej szczegółowoOpis przedmiotu: Badania operacyjne
Opis : Badania operacyjne Kod Nazwa Wersja TR.SIK306 Badania operacyjne 2013/14 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka
Bardziej szczegółowoProgramowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje
Bardziej szczegółowoModele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
Bardziej szczegółowoOSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
Bardziej szczegółowoZagadnienia optymalizacji Problems of optimization
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/04 Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE MODUŁU W
Bardziej szczegółowoMetody optymalizacji dyskretnej. Metody przybliżone
Metody optymalizacji dyskretnej Metody przybliżone Metody optymalizacji dyskretnej Większość problemów optymalizacji dyskretnej pochodzących z praktyki (szeregowanie, harmonogramowanie, transport, plany
Bardziej szczegółowoExcel - użycie dodatku Solver
PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym
Bardziej szczegółowoAlgorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Bardziej szczegółowoOptymalizacja. Programowanie Matematyczne
. dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Zakres tematyczny Metodyka optymalizacja liniowa, całkowitoliczbowa, nieliniowa, heurystyki,
Bardziej szczegółowoROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Bardziej szczegółowoetody programowania całkowitoliczboweg
etody programowania całkowitoliczboweg Wyróżnia się trzy podejścia do rozwiazywania zagadnień programowania całkowitoliczbowego metody przegladu pośredniego (niebezpośredniego), m.in. metody podziału i
Bardziej szczegółowoAlgorytmika Problemów Trudnych
Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.
Bardziej szczegółowo[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985.
Metody optymalizacji, wykład nr 10 Paweł Zieliński 1 Literatura [1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. [2] R.S. Garfinkel, G.L. Nemhauser Programowanie całkowitoliczbowe
Bardziej szczegółowoOptymalizacja. Algorytmy dokładne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1
Bardziej szczegółowoWprowadzenie do złożoności obliczeniowej
problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów
Bardziej szczegółowoZagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoMarcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Bardziej szczegółowoZałącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2
Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: ALGORYTMY I STRUKTURY DANYCH 2 3. Karta przedmiotu ważna od roku akademickiego:
Bardziej szczegółowoZaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Bardziej szczegółowoZ52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Bardziej szczegółowoSpecjalność Optymalizacja Decyzji Menedżerskich. Katedra Badań Operacyjnych Uniwersytetu Łódzkiego
Specjalność Optymalizacja Decyzji Menedżerskich Katedra Badań Operacyjnych Uniwersytetu Łódzkiego Kilka słów o nas Katedra Badań Operacyjnych jest częścią Instytutu Ekonomik Stosowanych i Informatyki.
Bardziej szczegółowoAlgorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu
Bardziej szczegółowo1 Programowanie całkowitoliczbowe PLC
Metody optymalizacji, wykład nr 9 Paweł Zieliński Programowanie całkowitoliczbowe PLC Literatura [] S.P. Bradley, A.C. Hax, T. L. Magnanti Applied Mathematical Programming Addison-Wesley Pub. Co. (Reading,
Bardziej szczegółowoAlgorytmy i struktury danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy
Bardziej szczegółowoEfektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
Bardziej szczegółowoO ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
Bardziej szczegółowoMetody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów
Laboratorium Metod Optymalizacji 216 Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów 1. Za pomocą funkcji lsqcurvefit dobrać parametry a i b funkcji: Posiadając następujące dane pomiarowe:
Bardziej szczegółowoPlan. Badania operacyjne jako nauka systemowa. Badania operacyjne. Wspomaganie decyzji. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki 1 2 3 Wspomaganie decyzji Badania operacyjne Kittel (1947) Operations Research is a scientific method for providing executive departments
Bardziej szczegółowoKarta (sylabus) przedmiotu
WM Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN Studia I stopnia o profilu: A P Przedmiot: Wybrane z Kod ECTS Status przedmiotu: obowiązkowy MBM S 0 5 58-4_0 Język wykładowy: polski, angielski
Bardziej szczegółowoTeoria grafów dla małolatów
Teoria grafów dla małolatów Andrzej P.Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka w szkole podstawowej kojarzy się przede wszystkim z arytmetyką, ale współcześni matematycy rzadko
Bardziej szczegółowoMETODY OPTYMALIZACJI W BEZPIECZNYM TRANSPORCIE MORSKIM
Józef Lisowski Akademia Morska w Gdyni METODY OPTYMALIZACJI W BEZPIECZNYM TRANSPORCIE MORSKIM Wprowadzenie Podstawowym celem optymalizacji jest realizacja procesu sterowania obiektem w najlepszy sposób.
Bardziej szczegółowoProgramowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
Bardziej szczegółowoOpis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Bardziej szczegółowoWykład 10 Grafy, algorytmy grafowe
. Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s
Bardziej szczegółowoPlanowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
Bardziej szczegółowoWstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
Bardziej szczegółowo