ZASTOSOWANIE MEDIANY KEMENY EGO DO WYZNACZANIA OCENY GRUPOWEJ DLA PORZ DKÓW CZ CIOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASTOSOWANIE MEDIANY KEMENY EGO DO WYZNACZANIA OCENY GRUPOWEJ DLA PORZ DKÓW CZ CIOWYCH"

Transkrypt

1 ZASTSWANIE MEDIANY KEMENY EG D WYZNACZANIA CENY GRUWEJ DLA RZDKÓW CZCIWYCH HANNA BURY DARIUSZ WAGNER Istytut Bada Systemowych AN Streszczee W pracy przeaalzowao zagadee wyzaczea ocey grupowe w sytuac, gdy ocey podae przez espertów ma charater porzdów czcowych oraz gdy dopuszcza s molwo wystpowaa obetów rówowaych zarówo w oceach espertów, a w ocee grupowe. rzyto, e zostae zastosowaa metoda meday Kemey ego polegaca a mmalzac odległoc szuaego uporzdowaa od zboru uporzdowa podaych przez espertów. Słowa luczowe: Decyze grupowe, porzde czcowy, odległo mdzy oceam, medaa Kemey ego. Wprowadzee rzy wyzaczau ocey grupowe, w celu uproszczea rozwaa, wprowadza s pewe załoea dotyczce postac zarówo oce espertów, a rówe ocey grupowe. Zazwycza załada s, e esperc ocea wszyste obety, poadto przymue s, e zarówo w oceach espertów, a w ocee grupowe e wystpu obety rówowae. Załoea te w stoty sposób zawa las rozwzywaych problemów. W esze pracy przyto, e esperc mog uza, e etóre obety s eporówywale bd erozróale (rówowae). Naley zauway, e s to róe sytuace. oadto przyto, e obety rówowae mog wystpowa w ocee grupowe. roblem rówowaoc obetów w oceach espertów był rozwaay m.. w pracach Cooa Seforda (978), Armstroga. (98), Bury Wagera (8a)). Aalza molwoc wystpowaa obetów rówowaych w ocee grupowe est bardze złooa. Bury Wager (8a, b) zastosowal ułamowy zaps pozyc obetów zapropooway przez Cooa Seforda (978) w celu uwzgldea obetów rówowaych w ocee grupowe wyzaczae za pomoc algorytmów Bordy oraz meda Kemey ego, Ltvaa Cooa-Seforda. Rchards. (6) przedstawl zastosowae metody Bordy do wyzaczaa ocey grupowe dla porzdów czcowych. Coo. (986) zapropoowal zastosowae dwóch zero-edyowych macerzy azywaych macerzam formac preferec - do opsu trzech rozwaaych waratów op podawaych przez espertów: csłe preferec (porzde lowy bez rówowaoc), słabe preferec (porzde lowy z rówowaocam) oraz eporówywaloc obetów (porzde czcowy). rzyl o, e ocea grupowa wyzaczaa est ao uporzdowae, tórego odległo sformułowaa za pomoc macerzy formac oraz preferec od zboru op podaych espertów est amesza. odece to przedstawoo w puce.

2 8 Haa Bury, Darusz Wager Zastosowae meday Kemey ego do wyzaczaa ocey grupowe dla porzdów czcowych W pracy przeaalzowao zagadee wyzaczaa ocey grupowe w sytuac, gdy załada s, e esperc e s w stae porówa ze sob etórych obetów oraz gdy dopuszcza s molwo wystpowaa obetów rówowaych zarówo w oceach espertów, a w ocee grupowe. rzyto, e zostae zastosowaa metoda meday Kemey ego polegaca a mmalzac odległoc szuaego uporzdowaa od zboru uporzdowa podaych przez espertów. (Zagadee wyzaczaa odległoc przedstawoo w pracy Bury, Wager (9)). odao przyłady umerycze oraz porówao otrzymae wy z uzysaym dla odległoc defowae za pomoc macerzy porówa param.. zaczea defce Nech ozacza zbór obetów,, =,..., oraz = {,..., K} zbór espertów dooucych ocey. rzyto, e ocey espertów ma charater porzdów czcowych. Załadamy, e wszyste rozwaae relace mdzy obetam odosz s do przytego ryterum (ryterów) ch porówywaa. Dla uproszczea zapsu w dalszych rozwaaach to zało- ee est pomae. Wprowadzamy astpuce ozaczea:, eel zdaem esperta obet est lepszy od,, eel zdaem esperta obety s rówowae,, eel zdaem esperta obet est lepszy od obetu,, eel zdaem esperta obetu e moa porówywa z obetem. W przypadu wystpowaa obetów eporówywalych (esperc poda porzde cz- cowy) macerz porówa param ma astpuc posta. Defca Ltva (98) A = [a ], gdze a = gdze est pew lczb całowt. eel eel eel eel, () W celu ułatwea badaa przechodoc op espertów w pracy (Bury, Wager (9)) zapropoowao wprowadzee macerzy bare B, bdce przeształceem macerzy porówa param A. Elemety macerzy B s oreloe astpuco (dla uproszczea zapsu des ozaczacy umer esperta został pomty).

3 LSKIE STWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa Materały, r, 9 9 Defca (Bury, Wager (9)) Jeel, to b b b b =, b =, b =, b =, b = =. () = dległo mdzy zborem op espertów () = {,, K } da op moe by defowaa za pomoc macerzy porówa param A oraz macerzy bare B. Defca (Ltva (98)) Jeel załoymy, ze w opach espertów mog wystpowa obety rówowae lub tae, tórych e moa porówa, to odległo mdzy par obetów (, ) w op par obetów (, ) w op daa est zaleoc gdze d przy czym (, ) d(, ) + d(, ) + d(, ) (, ) I =, () (, ) I (, ) I = I zbór par desów (, ) tach, e w op lub, I zbór par desów (, ) tach, e w op, I zbór par desów (, ) tach, e w op, eel w op d(, ) =, ω >. () (, ) I w przecwym przypadu ω W aalogczy sposób moa zdefowa odległo mdzy opam espertów za pomoc macerzy B. Defca (Bury, Wager (9)) dległo d dae op od zboru op podaych przez espertów () = {,,, K } daa est zaleoc K = K = = = () d (, ) = d(, ) = d (, ) = b b. (). Wyzaczae meday Kemey ego K = = = Medaa Kemey ego est to uporzdowae ame odległe, w sese przyte odległoc, od zboru op podaych przez espertów. Zadae wyzaczaa meday Kemey ego moa sformułowa ao zadae optymalzac m d(, () ) ^. (6)

4 Haa Bury, Darusz Wager Zastosowae meday Kemey ego do wyzaczaa ocey grupowe dla porzdów czcowych Defuc pewe pomoccze macerze, tzw. macerze strat [r ] (Ltva (98), Bury, Wager (8b), rozpatrywae zagadee moa przedstaw ao problem optymalzac całowtolczbowe (bdcy uogóloym zagadeem przydzału). m d(, () ) = m x r x = =, (7) eel gdze x =. (8) w przecwym raze Zadae to wymaga sformułowaa dodatowych waruów zapewacych przechodo uzysaych rozwza, co staow stote utrudee. Ia molwo wyzaczea uporzdowaa ^ polega a przeszuau zboru wszystch molwych uporzdowa (metoda przegldu zupełego). Zagadee to zostało opsae m.. w pracy Bury, Wager (8b). Zadae zadowaa uporzdowaa ^ w zborze porzdów czcowych est bardze zło- oe (ze wzgldu a lczb molwych postac op espertów) wymaga rozwaea racoalo- c poszuwaa ocey grupowe dopuszczace wystpowae obetów eporówywalych. W dalszych rozwaaach załadamy, e szuamy ocey grupowe ( ^ ) w zborze porzdów lowych (obety rówowae s dopuszczale). Lczoc zborów molwych postac op espertów dla róych porzdów w zaleoc od lczby obetów przedstawoo w tabel (Bogart (97), Guzc, Zarzews ()). Tabela. Lczoc zborów molwych postac op espertów dla róych porzdów w zaleoc od lczby obetów bez obetów rówowaych porzde lowy z obetam rówowaym porzde czcowy (bez obetów rówowaych) = 6 9 = 7 9 = = = Na rysuu przedstawoo wszyste molwe porzd czcowe dla trzech obetów (bez obetów rówowaych).

5 LSKIE STWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa Materały, r, 9 Rys.. Wszyste molwe porzd czcowe dla trzech obetów Lczo rozpatrywaych zborów roe szybo ze wzrostem lczby obetów. słabae załoe dotyczcych charateru op espertów (lowe, lowe z rówowaocam, czcowe) powodue bardzo zaczy wzrost lczby op, ae aleałoby rozpatrze, co w stoty sposób ogracza stosowae metody przegldu zupełego.. rzyłady oblczeowe Rozpatrzymy zadaa wyzaczaa ocey grupowe metod meday Kemey ego z zastosowaem macerzy porówa param oraz odpowadace e macerzy bare w sytuac, gdy esperc mog porówa wszyste obety oraz gdy esperc e mog porówa ze sob etórych obetów. Wyorzystao metod przegldu zupełego. rzyład 6. Rozwamy uporzdowaa czterech obetów podae przez pcu espertów. Załadamy, e wszyste obety s porówywale, obety rówowae s ute w awasach. :,,, :,,, : (,, ), :,,, : (, ), (, ) W zborze lowych porzdów z rówowaocam rozwzaem zadaa (6) est uporzdowae {, (,, )}. Jego odległo od zboru { () } wyos, zarówo dla odległoc wyzaczae za pomoc macerzy porówa param A (), a macerzy barych B (). W zborze lowych porzdów bez rówowaoc rozwzaam zadaa (6) s astpuce uporzdowaa,,,,,,

6 Haa Bury, Darusz Wager Zastosowae meday Kemey ego do wyzaczaa ocey grupowe dla porzdów czcowych,,,,,,. Zgode z oczewaem ch odległoc od zboru { () } defowae przy uycu macerzy A, a B s rówe wyosz. rzyład 7. Rozwamy ocey czterech obetów podae przez pcu espertów. cey podae przez perwszych czterech espertów zostały zapsae w postac uporzdowa, obety rówowae ute s w awasach. stat espert podał porzde czcowy. :,,, :, (, ), :,,, : (,, ), : Macerze A B (dla op podae przez ptego esperta) ma posta A = B = (9) W zborze lowych porzdów z rówowaocam zadae (6) ma trzy rozwzaa. S oe tae same dla odległoc wyzaczae z zastosowaem zarówo macerzy A, a B: (, ),,,, (, ),, (,, ),. dległoc podaych uporzdowa od zboru op espertów s oczywce róe; d m,a = (dla = -), d m,b =. W zborze lowych porzdów bez rówowaoc rozwzaam zadaa (6) s astpuce uporzdowaa, tae same dla odległoc wyzaczae z zastosowaem zarówo macerzy A a B:,,,,,,,,,,, Ich odległo od zboru op espertów { () } wyos w przypadu zastosowaa macerzy B oraz w przypadu zastosowaa macerzy A. Nastpy przyład poazue, e ocey grupowe otrzymae przy uycu macerzy B lub A mog s ró.

7 LSKIE STWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa Materały, r, 9 rzyład 8 Rozwamy ocey pcu obetów podae przez pcu espertów. stat espert podał porzde czcowy, a w przyładze. Dla wygody, ocey podae przez pozostałych espertów zostały zapsae w postac uporzdowa, obety rówowae ute s w awasach. :,,,, : (,, ),, :, (, ), (, ) :, (, ),, : Macerze A B (dla op podae przez ptego esperta) ma posta A = B = () W zborze lowych porzdów z rówowaocam zadae (6) ma dwa rozwzaa dla odległoc wyzaczae z zastosowaem macerzy A: (, ),,, oraz (, ),, (, ), przy czym d m,a = 8 (dla =-) oraz edo rozwzae dla odległoc wyzaczae z zastosowaem macerzy B: (, ),,,, d m,b =. W zborze lowych porzdów bez rówowaoc rozwzaem zadaa (6) est uporzdowae, tae samo dla odległoc wyzaczae z zastosowaem zarówo macerzy A, a B:,,,,, przy czym d m,a = 9 (dla = -), d m,b =.. odece dwumacerzowe Coo. (986) zapropoowal wyzaczae meday Kemey ego w przypadu wystpowaa rówowaoc lub eporówywaloc obetów w opach espertów przy uycu dwóch

8 Haa Bury, Darusz Wager Zastosowae meday Kemey ego do wyzaczaa ocey grupowe dla porzdów czcowych macerzy macerzy formac F oraz macerzy preferec G zastosowaych do zapsu op espertów. eel s porówywae (cle preferowae lub rówowae) f = () w przecwym raze eel g =. () w przecwym raze rzyład 9 Dla op podae przez ptego esperta z przyładu 7 mamy F = G = () Defca (Coo. (986)) dległo mdzy opam ma posta FG d ( =, ) f f + g g. () = = W pracy (Coo. (986)) wyazao, e ta zdefowaa odległo speła asomaty odległo- c sformułowae przez Kemey ego Sella (96). cea grupowa (medaa) ^ est defowaa ao opa, tóra mmalzue odległo K = d FG (, ) = K = = = f f + g w zborze wszystch porzdów czcowych. g, () FG Wartoc odległoc d (, ) dla molwych ombac połoea obetów oraz w opach oraz przedstawoo w tabel.

9 LSKIE STWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa Materały, r, 9 FG Tabela. Wartoc odległoc d (, ) dla molwych ombac połoea obetów oraz w opach oraz opa opa d FG ( ( ( ( (, ) (f =, g =) (f =, g =) (f =, g =) (f =, g =) f =, g =) ½ f =, g =) ½ f =, g =) ½ f =, g =) ½ ½ ½ rzyta przez Cooa. (986) defca odległoc () ró s od odległoc zdefowaych za pomoc zaleoc () (). Zadae () było rozwzywae w zborze porzdów lowych metod przegldu zupełego. Dla op espertów przedstawoych w przyładach 6 7 rozwzaa uzysae dla odległo- c d FG były zgode z otrzymaym dla odległoc defowae za pomoc macerzy A B. Dla op z przyładu 8 ocea grupowa w sese odległoc d FG mała posta:,,,, przy załoeu brau obetów rówowaych, d FG = oraz przy załoeu rówowaoc obetów (, ),, (, ) (, ), (,, ), d FG =. ratycza mplemetaca zadaa () w zborze porzdów czcowych (e rozwaaa w omawae pracy) est złooym problemem optymalzac dysrete. Naley w m uwzgld zarówo przechodo op espertów, a rówe otrzymywaych rozwza (ocey grupowe). 6. Uwag ocowe Uogólee metod wyzaczaa ocey grupowe a przypad, gdy esperc e mog rozró obetów, bd ch porówa est stote dla pratyczych zastosowa. W szczególoc uwzgldee tych sytuac w ocee grupowe zaczco rozszerza las zada, ae mog by rozwzywae. odece zapropoowae przez Ltvaa () umolwa rozwaae porzdów czcowych podawaych przez espertów. Zapropoowaa przez autorów modyfaca tego podeca () ułatwa wyzaczae ocey grupowe (w zborze porzdów lowych) a podstawe mmalzac odległoc od zboru op espertów metod przegldu zupełego. Rozwzae zadaa mmalzac (7) (8), tóre umolwłoby wyzaczae ocey grupowe w przypadu wsze lczby obetów, pozostae spraw otwart.

10 6 Haa Bury, Darusz Wager Zastosowae meday Kemey ego do wyzaczaa ocey grupowe dla porzdów czcowych Bblografa. Armstrog R.D., Coo W.D., Seford L.M., (98), rorty rag ad cosesus formato: The case of tes, Maagemet Scece, 8, o. 6, pp Bogart K.., (97), referece structures I: Dstaces betwee trastve preferece relatos, Joural of Mathematcal Socology,, pp Bury H., Wager D., (8a), Group Judgemet Wth Tes. Dstace-Based Methods. I: Aschema H. (Ed.): New Approaches Automato ad Robotcs. I-Tech Educato ad ublshg, Vea, Austra, ss Bury H., Wager D., (8b), ozycye ocey grupowe dla obetów rówowaych. W: wss J.W., Nahors Z., Szapro T. (Red.): Badaa operacye systemowe: decyze, gospodara, aptał ludz ao. Istytut Bada Systemowych AN, olse Towarzystwo Badaperacyych Systemowych, Warszawa, ss Bury H., Wager D., (9), cea grupowa dla porzdów czcowych. Wyzaczae odległoc. 6. Coo W.D., Seford L.M., (978), rorty rag ad cosesus formato, Maagemet Scece,, o. 6, pp Coo W.D., Kress M., Seford L.M., (986), Iformato ad preferece partal orders: a bmatrx represetato, sychometra, vol., o., pp Guzc W., Zarzews., (), Wyłady ze wstpu do matematy. Wprowadzee do teor mogoc, WN Warszawa. 9. Kemey J.G., Sell L.J., (96), referece Rag: A Axomatc Approach. I J.G. Kemey ad L.J. Sell, Mathematcal Models the Socal Sceces, New Yor, G.. Ltva B.G., (98), Espertaa formaca. Metody połuczea aalza, Rado Swaz, Moswa.. Rchards W., Seug H.S., ccard G., (6), Neural votg maches, Neural Networs, vol. 9, ssue 8, pp.6-67.

11 LSKIE STWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa Materały, r, 9 7 THE KEMENY MEDIAN FR ARTIAL RDERS Summary The paper s cocered wth determg group udgemet for the case whe experts opos are gve the form of partal orders ad ted alteratves ca occur experts opos as well as group udgemet. The Kemey meda method s appled to solve the problem of mmzato of the dstace betwee preferece orders. Keywords: group decsos, partal order of alteratves, dstace betwee preferece orders, the Kemey meda method Haa Bury Darusz Wager Istytut Bada Systemowych olsa Aadema Nau -7 Warszawa, Newelsa 6 e-mal: bury@bspa.waw.pl d.wager@bspa.waw.pl

OCENA GRUPOWA DLA PORZ DKÓW CZ CIOWYCH. WYZNACZANIE ODLEGŁO CI

OCENA GRUPOWA DLA PORZ DKÓW CZ CIOWYCH. WYZNACZANIE ODLEGŁO CI CENA GRUPWA DLA PRZDÓW CZCIWYCH. WYZNACZANIE DLEGŁCI HANNA BURY DARIUSZ WAGNER Istytut Bada Systemowych PAN Streszczee Przy wyzaczau ocey grupowe zazwycza przymowae s pewe załoea upraszczace. Z reguły

Bardziej szczegółowo

WYZNACZANIE MEDIANY LITVAKA W PRZYPADKU WYST POWANIA OBIEKTÓW RÓWNOWA NYCH W OCENIE GRUPOWEJ

WYZNACZANIE MEDIANY LITVAKA W PRZYPADKU WYST POWANIA OBIEKTÓW RÓWNOWA NYCH W OCENIE GRUPOWEJ WYZNACZANIE MEDIANY LITVAKA W PRZYPADKU WYSTPOWANIA OBIEKTÓW RÓWNOWANYCH W OCENIE GRUPOWEJ HANNA BURY, DARIUSZ WAGNER Istytut Bada Systemowych Streszczee Wele metod wyzaczaa ocey grupowej moa stosowa w

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

BINARNE MACIERZE PORÓWNA PARAMI. MO LIWO CI ZASTOSOWA W ZAGADNIENIACH WYZNACZANIA OCENY GRUPOWEJ.

BINARNE MACIERZE PORÓWNA PARAMI. MO LIWO CI ZASTOSOWA W ZAGADNIENIACH WYZNACZANIA OCENY GRUPOWEJ. BINARNE MACIERZE PORÓWNA PARAMI. MOLIWOCI ZASTOSOWA W ZAGADNIENIACH WYZNACZANIA OCENY GRUPOWEJ. HANNA BURY DARIUSZ WAGNER Instytut Bada Systemowych PAN Streszczenie Przedstawiono zmodyfiowan posta macierzy

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

WRAŻLIWOŚĆ WYNIKU TECHNICZNEGO ZAKŁADU UBEZPIECZEŃ NA ZMIANĘ POZIOMU REZERWY SZKODOWEJ

WRAŻLIWOŚĆ WYNIKU TECHNICZNEGO ZAKŁADU UBEZPIECZEŃ NA ZMIANĘ POZIOMU REZERWY SZKODOWEJ Aca Woy WRAŻLIWOŚĆ WYNIKU TECHNICZNEGO ZAKŁADU UBEZPIECZEŃ NA ZMIANĘ POZIOMU REZERWY SZKODOWEJ Wstęp Załad ubezpeczeń est zobgoway do tworzea fuduszu ubezpeczeowego sładaącego sę z rezerw techczo-ubezpeczeowych

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce.

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce. Metody probablstycze statystyka Wykład 7: Statystyka opsowa. Rozkłady prawdopodobestwa wystpujce w statystyce. Podstawowe pojca Populacja geerala - zbór elemetów majcy przyajmej jed włacwo wspól dla wszystkch

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; }

Typ może być dowolny. //realizacja funkcji zamiana //przestawiajacej dwa elementy //dowolnego typu void zamiana(int &A, int &B) { int t=a; A=B; B=t; } Idea: Wyzaczamy ameszy elemet w cągu tablcy zameamy go mescam z elemetem perwszym, astępe z pozostałego cągu wyberamy elemet ameszy ustawamy go a druge mesce tablcy zmeamy, td. Realzaca w C++ vod seleca

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aalza Matematycza I. Sera, Potr Nayar Zadae. Nech a k >, k =,..., b d lczbam rzeczywstym o tym samym zaku. Udowodj,»e prawdzwa jest erówo± + a + a... + a + a + a +... + a. Czy zaªo»ee,»e lczby a k maj

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

Porz dkowanie krajów Unii Europejskiej wed ug poziomu zrównowa onego rozwoju

Porz dkowanie krajów Unii Europejskiej wed ug poziomu zrównowa onego rozwoju PRACE NAUKOWE Akadem m. Jaa Dugosza w Czstochowe Sera: Pragmata tes Okoomas 20, z. V Marek KULESZA Akadema m. Jaa Dugosza w Czstochowe Stasawa OSTASIEWICZ WSOWL m T. Kocuszk we Wrocawu Porzdkowae kraów

Bardziej szczegółowo

Klasyfikacja w oparciu o przykłady

Klasyfikacja w oparciu o przykłady Klasyfaca w oparcu o przyłady (ag. stace based learg Wyład, 4/0/003 Pla wyładu Wprowadzee Metoda ablszyc ssadów Mary podobestwa Pratycze problemy Reduca zbdyc przyładów Reduca szumu w dayc Wyzaczae wag

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Badania Operacyjne (dualnośc w programowaniu liniowym)

Badania Operacyjne (dualnośc w programowaniu liniowym) Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP

WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP KATARZYNA BŁASZCZYK BOGDAN RUSZCZAK Poltecha Opolsa WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP Wstęp Esploraca daych (ag. data g) zaue sę efetywy zadowae ezaych dotychczas

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Bajki kombinatoryczne

Bajki kombinatoryczne Artyuł powstał a podstawe odczytu pod tym samym tytułem, wygłoszoego podczas XXXVI Szoły Matematy Poglądowej Pomysł czy rachue? w Grzegorzewcach, styczeń 006. Baj ombatorycze Joaa JASZUŃSKA, Warszawa Ja

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIESTWA wybrane zagadnienia

RACHUNEK PRAWDOPODOBIESTWA wybrane zagadnienia L.Kowals Wybrae zagadea z rachuu prawdopodobestwa RACHUNEK PRAWDOPODOBIESTWA wybrae zagadea PRAWDOPODOBIESTWO Przyład Rozpatrzmy jao dowadczee losowe jedoroty rzut szece ost. Choca e potrafmy przewdze

Bardziej szczegółowo

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lecja 4 Nearametrycze testy stotośc ZADANIE DOMOWE www.etraez.l Stroa 1 Część 1: TEST Zazacz orawą odowedź (tylo jeda jest rawdzwa). Pytae 1 W testach earametryczych a) Oblczamy statystyę

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Kodowanie rónicowe. Plan 1. Zasada 2. Podstawowy algorytm 3. Kodowanie adaptacyjne 4. Zastosowania

Kodowanie rónicowe. Plan 1. Zasada 2. Podstawowy algorytm 3. Kodowanie adaptacyjne 4. Zastosowania Kodowae rócowe Pla 1. Zasada. Podstawowy algorytm 3. Kodowae adaptacyje 4. Zastosowaa Kodowae rócowe zasada Jako kwatyzacj szeroko przedzału waracja, rozpto daych Obrazy, dwk korelacja w daych Wykorzystae

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, tr. 3 STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI Dorota Kozoł-Kaczorek Katedra Ekoomk Rolcta Mędzyarodoych Stoukó Gopodarczych Szkoła

Bardziej szczegółowo

WYBRANE NARZĘDZIA GRUPOWEGO WSPOMAGANIA DECYZJI W ZARZĄDZANIU MIASTEM

WYBRANE NARZĘDZIA GRUPOWEGO WSPOMAGANIA DECYZJI W ZARZĄDZANIU MIASTEM WYBRANE NARZĘDZIA GRUPOWEGO WSPOMAGANIA DECYZJI W ZARZĄDZANIU MIASTEM Mrosław DYTCZAK, Grzegorz GINDA, Mrosław KWIESIELEWICZ Streszczee: Zarządzae współczesym mastem wąże sę z rozwązywaem szeregu zagadeń

Bardziej szczegółowo

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD:

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD: //4 Gry o sue zero - gry rozgrywae w strategach eszaych STRATEGIE IESZANE - OTYWACJA. ROZWAśY PRZYKŁAD: 5 DEFINICJA..6 Strategą eszaą π gracza P azyway kaŝdy rozkład prawdopodobeństwa określoy a zborze

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

ĆWICZENIE 5 TESTY STATYSTYCZNE

ĆWICZENIE 5 TESTY STATYSTYCZNE ĆWICZENIE 5 TESTY STATYSTYCZNE Cel Przedstawee wybraych testów statystyczych zasad wyboru właścwego testu przeprowadzea go oraz terpretac wyów. Wprowadzee teoretycze Testem statystyczym azywamy metodę

Bardziej szczegółowo

ź Ł Ą Ę Ź Ę Ę Ą Ę Ę Ę Ę Ę Ź Ą Ę Ą Ź Ę Ź Ó ć Ź Ó Ę Ź Ź ć ć Ę ć Ó Ó Ę Ę Ę Ę Ó Ę Ę ć Ć Ł Ó Ź ć ć ć Ę ć Ę Ł Ź Ź Ł ć ź ź Ę ć Ś Ą ć ć Ą ć Ś Ę Ź Ę Ź Ę ć Ó Ń Ę Ś Ę ź Ź Ę Ę Ć Ę Ń Ę Ę ć Ą Ę ć Ę ć Ę Ź Ę Ć Ę ź ć

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA

SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA Załączk r do Regulamu I kokursu GIS PROGRAM PRIORYTETOWY: SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA. Cel opracowaa Celem opracowaa jest spója metodyka oblczaa efektu ograczaa emsj gazów ceplaraych,

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12. Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystyczne) MIARY POŁOśENIA

CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystyczne) MIARY POŁOśENIA D. Mszczyńsa, M.Mszczyńs, Materały do wyładu ze Statysty, 009/0 [] CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (Parametry statystycze) PARAMETRY STATYSTYCZNE - lczby słuŝące do sytetyczego opsu strutury

Bardziej szczegółowo

Metoda Monte-Carlo i inne zagadnienia 1

Metoda Monte-Carlo i inne zagadnienia 1 Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

ESTYMATORY ODPORNE ZMIENNOŚCI W MODELU BLACKA - SCHOLESA WSTĘP

ESTYMATORY ODPORNE ZMIENNOŚCI W MODELU BLACKA - SCHOLESA WSTĘP Justya Majewska Katedra Statystyk, Akadema Ekoomcza w Katowcach e-mal: majewskaj@wp.pl ESTYMATORY ODPORNE ZMIENNOŚCI W MODELU BLACKA - SCHOLESA Streszczee: NajwaŜejszym etapem przy wycee opcj jest właścwe

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 26 listopada 2015

Lista 6. Kamil Matuszewski 26 listopada 2015 Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy

Bardziej szczegółowo

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty Zeo Zwerzewcz Szczec Zeo Zwerzewcz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty W artyle

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982.

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982. Wyłady z Aalzy rzeczywstej zespoloej w Matematyce stosowaej Lteratura W Rud: Podstawy aalzy matematyczej, PWN, Warszawa, 1982 W Rud: Aalza rzeczywsta zespoloa, PZWS, Warszawa, 1986 W Szabat: Wstęp do aalzy

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki PORZĄDKOWANIE WARIANTÓW PRZY NIEKOMPLETNYCH MACIERZACH PORÓWNAŃ PARAMI Mosław Kweselewcz Poltechka Gdańska Wydzał Elektotechk Automatyk PORZĄDKOWANIE WARIANTÓW PRZY NIEKOMPLETNYCH MACIERZACH PORÓWNAŃ PARAMI

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

ELEMENTY TEORII MOŻLIWOŚCI

ELEMENTY TEORII MOŻLIWOŚCI ELEMENTY TEORII MOŻLIWOŚCI Opracował: M. Kweselewcz Zadeh (978) wprowadzł pojęce rozkładu możlwośc jako rozmyte ograczee, kóre odzaływuje w sposób elastyczy a wartośc przypsae daej zmeej. Defcja. Nech

Bardziej szczegółowo

Modelowanie i Analiza Danych Przestrzennych

Modelowanie i Analiza Danych Przestrzennych Modelowae Aalza Daych Przestrzeych Wykład 8 Adrze Leśak Katedra Geoformatyk Iformatyk Stosowae Akadema Górczo-Hutcza w Krakowe Jaką postać ma warogram daych z tredem? Moża o wylczyć teoretycze prostego

Bardziej szczegółowo

i i i = (ii) TAK sprawdzamy (i) (i) NIE

i i i = (ii) TAK sprawdzamy (i) (i) NIE Egzam uaruszy z aźdzera 009 r. Maemaya Fasowa Zadae ( ) a a& a ( Da) a&& ( Ia) a a&& D I a a&& a a ( ) && ( ) 0 a a a 0 ( ) a 4 0 ( ) a () K srawdzamy () ( ) a& a ( ) a ( ) a&& a&& ( ) a&& ( ) a&& () NIE

Bardziej szczegółowo

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu.

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu. W 1 Rachu maroeoomcze 1. Produ rajowy bruo Sprzedaż fala - sprzedaż dóbr usług osumeow lub frme, órzy osaecze je zużyują, e poddając dalszemu przeworzeu. Sprzedaż pośreda - sprzedaż dóbr usług zaupoych

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Uczenie nienadzorowane (bez nauczyciela) Uczenie nienadzorowane - przykłady

Plan wykładu. Sztuczne sieci neuronowe. Uczenie nienadzorowane (bez nauczyciela) Uczenie nienadzorowane - przykłady Plan yładu Wyład 10: Sec samoorganzuce s na zasadze spółzaodncta Sec samoorganzuace s na zasadze spółzaodncta: uczene nenadzoroane uczene onurencyne reguła WTA reguła WTM antoane etoroe mapa cech Kohonena

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Gaz neuronowy (ang. Neural Gas - NG) NG - zasada działania. Gaz neuronowy. Rosncy gaz neuronowy

Plan wykładu. Sztuczne sieci neuronowe. Gaz neuronowy (ang. Neural Gas - NG) NG - zasada działania. Gaz neuronowy. Rosncy gaz neuronowy Pla wykładu Wykład : Sec samoorgazujce s Małgorzata Krtowska Katedra Oprogramowaa e-mal: mmac@.pb.balystok.pl Gaz euroowy Roscy gaz euroowy Se z kotrpropagacj Sec rezoasowe: ART 2 Gaz euroowy (ag. Neural

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

O ocenie mrozoodporno ci ceramicznych elementów murowych

O ocenie mrozoodporno ci ceramicznych elementów murowych MATERIA Y CERAMICZNE /CERAMIC MATERIALS/, 63,, (0), 83-87 www.ptcer.pl/mccm O ocee mrozoodporoc ceramczych elemetów murowych VADZIM NIKITIN, BEATA BACKIEL BRZOZOWSKA Poltechka Baostocka, Wydza Budowctwa

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW

ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW ZASTOSOWANIE PROGRAOWANIA DYNAICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EISJI GAZÓW ANDRZEJ KAŁUSZKO Instytut Bada Systemowych Streszczene W pracy opsano zadane efektywnego przydzału ogranczonych rodków

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

IV. ZMIENNE LOSOWE DWUWYMIAROWE

IV. ZMIENNE LOSOWE DWUWYMIAROWE IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Iormaa - Wład 9 - dr Bogda Ćmel cmelbog@ma.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec

Bardziej szczegółowo

Podstawy matematyki finansowej i ubezpieczeniowej

Podstawy matematyki finansowej i ubezpieczeniowej Podstawy matematy fasowej ubezpeczeowej oreślea, wzory, przyłady, zadaa z rozwązaam KIELCE 2 SPIS TREŚCI WSTEP... 7 STOPA ZWROTU...... 9 2 RACHUNEK CZASU W MATEMATYCE FINANSOWEJ. 0 2. DOKŁADNA LICZBA DNI

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Badania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć

Badania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć Algorytm smpleks adaa operacyje Wykład adaa operacyje dr hab. ż. Joaa Józefowska, prof.pp Istytut Iformatyk Orgazacja zajęć 5 godz wykładów dr hab. ż. J. Józefowska, prof. PP Obecość a laboratorach jest

Bardziej szczegółowo

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz System M/M// System ten w odrónenu do wczenej omawanych systemów osada kolejk. Jednak jest ona ogranczona, jej maksymalna ojemno jest wartoc skoczon

Bardziej szczegółowo

Matematyczny opis ryzyka

Matematyczny opis ryzyka Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee

Bardziej szczegółowo

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 WYBRANE ZAGADNIENIA Z TEORII LICZB 1. Wybrane zagadnena z teor lczb Do onstruowana systemów ryptografcznych u Ŝ ywa sę czę sto wyrafnowanego aparatu matematycznego,

Bardziej szczegółowo

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj

Bardziej szczegółowo

ANALIZA INPUT - OUTPUT

ANALIZA INPUT - OUTPUT Aalza put - output Notatk S Dorosewcz J Staseńko Stroa z 28 SŁAWOMIR DOROSIEWICZ JUSTYNA STASIEŃKO ANALIZA INPUT - OUTPUT NOTATKI Istytut Ekoometr SGH Aalza put - output Notatk S Dorosewcz J Staseńko Stroa

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

WYKORZYSTANIE IDEI AUTOMATYCZNEGO GENEROWANIA POWIERZCHNI INDYFERENCJI DO BUDOWY SYSTEMU OCENY OFERT NEGOCJACYJNYCH W SYSTEMIE WSPOMAGANIA NEGOCJACJI

WYKORZYSTANIE IDEI AUTOMATYCZNEGO GENEROWANIA POWIERZCHNI INDYFERENCJI DO BUDOWY SYSTEMU OCENY OFERT NEGOCJACYJNYCH W SYSTEMIE WSPOMAGANIA NEGOCJACJI Jakub Brzostowsk Poltechka Śląska Tomasz Wachowcz Uwersytet Ekoomczy w Katowcach WYKORZYSTANIE IDEI AUTOMATYCZNEGO GENEROWANIA POWIERZCHNI INDYFERENCJI DO BUDOWY SYSTEMU OCENY OFERT NEGOCJACYJNYCH W SYSTEMIE

Bardziej szczegółowo