Kodowanie rónicowe. Plan 1. Zasada 2. Podstawowy algorytm 3. Kodowanie adaptacyjne 4. Zastosowania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kodowanie rónicowe. Plan 1. Zasada 2. Podstawowy algorytm 3. Kodowanie adaptacyjne 4. Zastosowania"

Transkrypt

1 Kodowae rócowe Pla 1. Zasada. Podstawowy algorytm 3. Kodowae adaptacyje 4. Zastosowaa

2 Kodowae rócowe zasada Jako kwatyzacj szeroko przedzału waracja, rozpto daych Obrazy, dwk korelacja w daych Wykorzystae korelacj kwatyzacja wektorowa. Problem złooa mplemetacja Bezstrata kompresja predykcyja poprawa stopa kompresj Kompresja strata zamast wartoc cgu próbek berzemy cg róc. To daje zmejszee rozptoc daych, zmejszee waracj pozwala a zmejszee szerokoc kwatyzacj, czyl popraw jej jakoc.

3 Kodowae rócowe zasada c.d. Przesyłae formacj poprzez przesyłae róc kodowae rócowe. Przykład 1 Sygał harmoczy, próbkoway z czstoc 30 próbek/cykl y s(π ) 30 Kwatyzacja 4-pozomowa: Cg róc: d y y 1 π cos( π ) Kwatyzacja róc: y y 4 max m 0.5 d max d 4 m π

4 Kodowae rócowe zasada c.d. Przykład

5 Podstawowy algorytm Warat 1 oblczamy cg róc, kwatyzujemy. To bdze podstawa do wyzaczea rekostrukcj. Przykład: cg daych: x cg róc: d kwatyzacja cgu róc (kwatyzator 7-pozomowy): D

6 X Podstawowy algorytm c.d. Rekostrukcja, błdy rekostrukcj: e Problem błdy rekostrukcj zacze wksze od oczekwaych Aalza waratu 1: d 1 x 1 -x 0, D 1 d 1 +q 1, X 1 X 0 +D 1 x 0 +x 1 -x 0 +q 1 x 1 +q 1 d x -x 1, D d +q, X X 1 +D x 1 +q 1 +x -x 1 +q x +q 1 +q d 3 x 3 -x, D 3 d 3 +q 3, X 3 X +D 3 x +q 1 +q +x 3 -x +q 3 x 3 +q 1 +q +q 3 Wosek warat 1 powoduje kumulacj błdów X x + k 1 q k Koder dekoder korzystaj z ych formacj Warat : d x X -1

7 Podstawowy algorytm c.d. Aalza waratu : d 1 x 1 -X 0, D 1 d 1 +q 1, X 1 X 0 +D 1 X 0 +x 1 -X 0 +q 1 x 1 +q 1 d x -X 1, D d +q, X X 1 +D X 1 +x -X 1 +q x +q d 3 x 3 -X, D 3 d 3 +q 3, X 3 X +D 3 X +x 3 -X +q 3 x 3 +q 3 ogóle: X x + q Przykład umeryczy x d D X e Warat 1: sgma 51.5; warat : sgma 6.61

8 Podstawowy algorytm c.d. Przykład: fukcja harmocza Warat 1: krok kwat. 0.1 Warat : krok kwat. 0. Schemat podstawowego algorytmu

9 Modyfkacje. Ogóly algorytm DPCM Kompresja maksymala, gdy róce jak ajmejsze Lepsze oszacowae x X -1 moe da pewa a fukcja zmeych zrekostruowaych Uogólee algorytmu podstawowego zamast bloku opóajcego predyktor Na wyjcu predyktora: p f(x -1, X -,..., X 0 )

10 Okrelee predyktora Algorytm DPCM wypracoway pod koec lat 40-tych w Bell Labs. Powszeche stosoway w systemach telefoczych Podstawowe podsystemy: predyktor kwatyzator Projektowae predyktora Dobór fukcj predyktora, by zmmalzowa róce: σ E[( x p d W ogólym przypadku bardzo trudo rozwzywale Zwykle stosuje s załoea upraszczajce: ) 1. Delkate załoee kwatyzacyje długo kroku kwatyzacj tak mała, e moemy zastp X k przez x k. Predyktor jest fukcj low: p N 1 a X ] N rzd predyktora

11 Okrelee predyktora przypadek lowy Problem: zale {a }, 1,..N by zmmalzowa Waruk: Wykorzystujc delkate załoee kwatyzacyje stacjoaro mamy: 1 N N d X a x E σ 0 d a σ ) ( ) (... ( ) ) ( (1) 1) ( N R N R a R R a R R a xx xx N xx xx N xx xx N gdze: ] [ ) ( k xx x x E k R + fukcja autokorelacj zmeej x

12 Predyktor lowy - przykład N a Stos. Var / Peły układ DPCM specyfkacja kwatyzatora. Zakładamy: rozkład reszt Laplace kwatyzator rówomery szeroko kwatyzacj zalea od dyspersj

13 Predyktor lowy przykład c.d. Kwatyz. N SNR SPER 4-pozom. Bez pozom. Bez SPER 1. Wyraa poprawa przy zmae z N1 a N M 1 M 1 ( x x p ). Wysycee dla N> 3. Zekształcee w obszarach małego sygału

14 Adaptacyje DPCM Czsto dae ró s w róych obszarach cho s lokale stacjoare, to e s globale stacjoare. Molwe rozwzae adaptacja układu Typy adaptacj: Tylko adaptacja kwatyzatora (z ustaloym predyktorem) Adaptacja predyktora łcze z adaptacj kwatyzatora Kwatyzacja adaptacyja w DPCM Adaptacja w przód (podzał a blok, estymacja parametrów kwatyzatora, przekazae parametrów dodatkowych). Problem kwatyzator w ptl sprzea zwrotego, kłopot z wejcem, które mogłoby by uyte do wyzaczea parametrów adaptacj Adaptacja wstecz bardzej populara, zwykle odmaa kwatyzatora Jayata

15 Predykcja adaptacyja w DPCM DPCM APF (adaptve predcto-forward) Podzał daych a blok (dla mowy próbkowaej z f8 khz 18 próbek/blok, 16 ms; dla obrazów 8 x 8 pksel) Wylczee współczyków autokorelacj a astpe parametrów predyktora dla bloku Kwatyzacja parametrów przedyktora z wysok red btow, przesłae ch odborcy Wada: koeczo buforowaa daych, opóee w trasmsj. Gdy koeczo welu połcze arastae opóea. DPCM APB (adaptve predcto-backward) Rówaa Weera-Hopfa wyprowadzoe przy załoeu stacjoaroc daych

16 Predykcja adaptacyja w DPCM Rezygujemy z załoea o stacjoaroc, próba zalezea algebraczej reguły adaptacj Prosty przypadek predyktor rzdu 1. Kwadratowa zaleo kwadratu reszty od a 1 : d ( x p ) ( x a1 X 1 ) Pochoda kwadratu reszty po a 1 ujema a lewo, dodata a prawo od wartoc optymalej; roe z odchyleem od optymaloc. Postulat korekta proporcjoala do pochodej: a d ( + 1) ( ) ( ) 1 a1 α a1 + α D X 1 a1 Uogólee a przypadek wyszego rzdu: a + 1) j a + α D ( ) j X ( Algorytm LMS j

17 Modulacja delta Prosta odmaa schematu DPCM z jedobtowym kwatyzatorem (róca kodowaa jak lub +) Gdy róca odbega od wzrost zekształcea. Aby temu zapobec: Dua czstotlwo próbkowaa (f p >> f max ) Adaptacja kroku kwatyzatora Rodzaje zekształce Słabo zmee wejce obszar zarsty (artefakt duej czstoc próbkowaa sposobu kwatyzacj) koeczo fltrowaa Szybko zmee wejce obszar przecoych zboczy (obszar admaru)

18 Modulacja delta c.d. DM kwatyzator ustaloy DM kwatyzator adaptacyjy

19 Modulacja delta adaptacja CFDM (Costat Factor Delta Modulato) Zasada: w obszarze zarstym zmejszamy szeroko, w obszarze admaru zwkszamy Jak ustal w jakm obszarze s zajdujemy? W obszarze zarstym zak wyjca kwatyzatora aprzemey, w obszarze admaru stały Realzacja adaptacj: s 1 gdy D > 0, s -1 gdy D < 0 M1 M 1 1,, s s s 1 1 M1 1/M M > 1 (a ogół M<) s Gdy zwkszamy pam (berzemy pod uwag wcej próbek) moemy popraw dopasowae

20 Modulacja delta adaptacja c.d. System z pamc : rozwaamy s, s -1, s - Molwe przypadk: 1. System włae przeósł s do obszaru zarstego: s s 1 s, M 0.4. System cały czas w obszarze zarstym s s s, M System włae wszedł w obszar admaru s s 1 s, M System cały czas w obszarze admaru s s 1 s, M.0 Zastosowae: prom kosmczy, DM z pamc 7.

21 Zastosowaa Bardzo populare w kodowau mowy Uywae powszeche w Systemach telefoczych Systemach poczty głosowej Aplkacjach multmedalych Stadardy przemysłowe opsae w zaleceach ITU-T: G.71 G.73 G.76 G.7 Kodowae obrazów rzadzej stosowae

22 Zastosowaa kodowae obrazów Lewy: kodowae rócowe 1bpp, SNR.33 db Kwatyzator 4 pozomowy, predyktor: p[ j, k ] X [ j, k 1] dla k > 0 X [ j 1, k ] dla k 0, j > 18 dla k 0, j 0 0 Prawy: JPEG 1bpp, SNR 3.5 JPEG wyrae lepszy

23 Zastosowaa kodowae obrazów Zmaa predyktora dla kadego pksela oblczamy: },, { ], [ / ]) 1, [ 1] 1, [ ( / 1]), [ 1] 1, [ ( / 1]), [ ] 1, [ ( p p p medaa k j p k j X k j X p k j X k j X p k j X k j X p To poprawa SNR do 9.0 db.

24 Podsumowae DPCM daje gorsze wyk kompresj kwatyzacja wektorowa, ale jest prostsze w mplemetacj Wyjtkowo dobrze adaje s do kodowaa mowy; stadardy przemysłowe Budowa: predyktor + kwatyzator Molwo adaptacj kwatyzatora lub predyktora kwatyzatora

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

Kwantyzacja wektorowa. Kodowanie różnicowe.

Kwantyzacja wektorowa. Kodowanie różnicowe. Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12. Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e

Bardziej szczegółowo

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce.

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce. Metody probablstycze statystyka Wykład 7: Statystyka opsowa. Rozkłady prawdopodobestwa wystpujce w statystyce. Podstawowe pojca Populacja geerala - zbór elemetów majcy przyajmej jed włacwo wspól dla wszystkch

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 6 Metody predykcyjne. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 6 Metody predykcyjne. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 6 Metody predykcyjne Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

Kompresja danych DKDA (7)

Kompresja danych DKDA (7) Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów

Bardziej szczegółowo

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW Źródło Kompresja Kanał transmsj sek wdeo 60 Mbt 2 mn muzyk (44 00 próbek/sek, 6 btów/próbkę) 84 Mbt Dekompresja Odborca. Metody bezstratne 2. Metody stratne 2 Kodowane

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

Liniowe relacje między zmiennymi

Liniowe relacje między zmiennymi Lowe relacje mędzy zmeym Marta Zalewska Zakład Proflaktyk ZagrożeńŚrodowskowych Alergolog Ocea lowych relacj mędzy zmeym Metoda korelacj - określee rodzaju sły zależośc mędzy cecham. Metoda regresj 1 Uwaga

Bardziej szczegółowo

Algorytmy kodowania predykcyjnego

Algorytmy kodowania predykcyjnego Algorytmy kodowania predykcyjnego 1. Zasada kodowania 2. Algorytm JPEG-LS 3. Algorytmy CALIC, LOCO-I 4. Algorytmy z wielokrotn rozdzielczoci. Progresywna transmisja obrazów Kompresja obrazów - zestawienie

Bardziej szczegółowo

Podstawy Informatyki. Jednostki informacji. Metalurgia, I rok. Systemy pozycyjne. Konwersja kodu dziesiętnego na dwójkowy. System dwójkowy (binarny)

Podstawy Informatyki. Jednostki informacji. Metalurgia, I rok. Systemy pozycyjne. Konwersja kodu dziesiętnego na dwójkowy. System dwójkowy (binarny) Podstawy Iformatyk Metalurga, I rok Wykład 3 Lczby w komuterze Jedostk formacj Bt (ag. bt) (Shao, 948) Najmejsza lość formacj otrzeba do określea, który z dwóch rówe rawdoodobych staów rzyjął układ. Jedostka

Bardziej szczegółowo

Kwantowanie sygnałów analogowych na przykładzie sygnału mowy

Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Treść wykładu: Sygnał mowy i jego właściwości Kwantowanie skalarne: kwantyzator równomierny, nierównomierny, adaptacyjny Zastosowanie w koderze

Bardziej szczegółowo

MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22

MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22 MODULACJE IMPULSOWE TSIM W10: Modulacje impulsowe 1/22 Fala nośna: Modulacja PAM Pulse Amplitude Modulation Sygnał PAM i jego widmo: y PAM (t) = n= x(nt s ) Y PAM (ω) = τ T s Sa(ωτ/2)e j(ωτ/2) ( ) t τ/2

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

KOMPRESJA STRATNA SYGNAŁU MOWY. Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP

KOMPRESJA STRATNA SYGNAŁU MOWY. Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP KOMPRESJA STRATNA SYGNAŁU MOWY Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP Śledzenie i upraszczanie zmian dynamicznych sygnałów ADPCM

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIV, 06.06.06 STATYSTYKA BAYESOWSKA CD. Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Matematyka II. x 3 jest funkcja

Matematyka II. x 3 jest funkcja Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.

Bardziej szczegółowo

Statystyka Opisowa Wzory

Statystyka Opisowa Wzory tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:

Bardziej szczegółowo

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =? Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych

Bardziej szczegółowo

Probabilistyka i statystyka. Korelacja

Probabilistyka i statystyka. Korelacja 06-05-08 Probablstyka statystyka Korelacja Probablstyka statystyka - wykład 9 dla Elektrok Korelacja Aalza korelacj zajmuje sę badaam stea zależośc lowej mędzy dwema cecham X Y. Podstawową marą jest współczyk

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz System M/M// System ten w odrónenu do wczenej omawanych systemów osada kolejk. Jednak jest ona ogranczona, jej maksymalna ojemno jest wartoc skoczon

Bardziej szczegółowo

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

Metoda Monte-Carlo i inne zagadnienia 1

Metoda Monte-Carlo i inne zagadnienia 1 Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów

Bardziej szczegółowo

Kwantyzacja skalarna. Plan 1. Definicja 2. Kwantyzacja równomierna 3. Niedopasowanie, adaptacja 4. Kwantyzacja nierównomierna

Kwantyzacja skalarna. Plan 1. Definicja 2. Kwantyzacja równomierna 3. Niedopasowanie, adaptacja 4. Kwantyzacja nierównomierna Kwantyzacja salarna Plan. Defncja. Kwantyzacja równomerna 3. Nedopasowane, adaptacja 4. Kwantyzacja nerównomerna Pojce wantyzacj Defncja: Kwantyzacja reprezentacja duego w szczególnoc nesoczonego) zboru

Bardziej szczegółowo

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania

Bardziej szczegółowo

ESTYMATORY ODPORNE ZMIENNOŚCI W MODELU BLACKA - SCHOLESA WSTĘP

ESTYMATORY ODPORNE ZMIENNOŚCI W MODELU BLACKA - SCHOLESA WSTĘP Justya Majewska Katedra Statystyk, Akadema Ekoomcza w Katowcach e-mal: majewskaj@wp.pl ESTYMATORY ODPORNE ZMIENNOŚCI W MODELU BLACKA - SCHOLESA Streszczee: NajwaŜejszym etapem przy wycee opcj jest właścwe

Bardziej szczegółowo

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach

Bardziej szczegółowo

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne TATYTYKA MATEMATYCZNA WYKŁAD Wadomośc wstępe tatystyka to dyscypla aukowa, której zadaem jest wykrywae, aalza ops prawdłowośc występujących w procesach masowych. Populacja to zborowość podlegająca badau

Bardziej szczegółowo

KWANTYZACJA. kwantyzacja

KWANTYZACJA. kwantyzacja KWATYZACJA Adam Głogowski kwantyzacja W tej części prezentacji zostanie omówiony problem kwantyzacji. Przedstawiony będzie takŝe przykład kwantowania sygnału, charakterystyka kwantyzera oraz podstawowe

Bardziej szczegółowo

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci Rozkłady tatytyk z próby Metody probabilitycze i tatytyka Wykład : Rozkłady tatytyk z próby. rzedziały ufoci Małgorzata Krtowka Wydział Iformatyki olitechika Białotocka e-mail: mmac@ii.pb.bialytok.pl troa

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZA. Wkład węp. Teora prawdopodobeńwa elemet kombatork 3. Zmee losowe 4. Populace prób dach 5. Teowae hpotez emaca parametrów 6. Te t 7. Te 8. Te F 9. Te eparametrcze 0. Podsumowae dotchczasowego

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

2. Rozkład zawartości popiołu w węglu jako mieszanina rozkładów

2. Rozkład zawartości popiołu w węglu jako mieszanina rozkładów Górctwo Geożyera Rok 3 Zeszyt 4 007 Tomasz Nedoba* OCENA ZAWARTOŚCI POPIOŁU W POKŁADACH WĘGLA ZA POMOCĄ NIEPARAMETRYCZNYCH METOD STATYSTYCZNYCH**. Wprowadzee W procese przeróbk węgla ezwykle ważym problemem

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) Praca Domowa:.. ( α β ( α β α β ( ( α Γ( β α,,..., ~ B, Γ + f Γ ( α + α ( α + β + ( α + β Γ α + β Γ α + Γ α + β Γ α + + β E Γ α Γ β Γ α Γ α + + β Γ α + Γ β α α + β β α β Γ α + β Γ α + Γ α + β Γ α + + β

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona: Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t

Bardziej szczegółowo

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą. Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,

Bardziej szczegółowo

Propagacja wielodrogowa. Paweł Kułakowski

Propagacja wielodrogowa. Paweł Kułakowski Propagacja welodrogowa Paweł Kułakowsk Pla wykładu. Propagacja welodrogowa ops zjawska w dzedze czasu częstotlwośc przypadek propagacj przyzemej. Zak sygału radowego 3. Iterferecje mędzysymbolowe . Propagacja

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka

Bardziej szczegółowo

KRYTERIA STOSOWANIA MODELI STOCHASTYCZNYCH W PREDYKCJI RYNKOWEJ WARTOŚCI NIERUCHOMOŚCI

KRYTERIA STOSOWANIA MODELI STOCHASTYCZNYCH W PREDYKCJI RYNKOWEJ WARTOŚCI NIERUCHOMOŚCI KRYTERIA STOSOWANIA MODELI STOCHASTYCZNYCH W PREDYKCJI RYNKOWEJ WARTOŚCI NIERUCHOMOŚCI Aa Barańska Katedra Iformacj o Teree, Akadema Górczo-Hutcza w Krakowe SFORMUŁOWANIE TEZ PRACY Do ajczęścej stosowaych

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Sie Hopfielda. Sieci Hopfielda w praktyce. Wykład 9: Sieci rekurencyjne. Sieci rekurencyjne:

Plan wykładu. Sztuczne sieci neuronowe. Sie Hopfielda. Sieci Hopfielda w praktyce. Wykład 9: Sieci rekurencyjne. Sieci rekurencyjne: Pla wkładu Sec rekurece: Wkład 9: Sec rekurece Se Hammga Se tpu BAM Se RRN Se Elmaa Małgorzata Krtowska Katedra Oprogramowaa e-mal: mmac@.pb.balstok.pl Se Hopfelda Włacwoc: weca to wca ch euroów brak własego

Bardziej szczegółowo