BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH
|
|
- Zdzisław Kurowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTOICZYCH ISTYTUT SYSTEMÓW ELEKTOICZYCH WYDZIAŁ ELEKTOIKI WOJSKOWA AKADEMIA TECHICZA PODSTAWY EKSPLOATACJI SYSTEMÓW ĆWICZEIE LABOATOYJE 5 BADAIE WYBAYCH STUKTU IEZAWODOŚCIOWYCH. arzędza wspomagając ralzację ćwczna: kompurowy program Uszkodzna.x umożlwający badan nzawodnośc obków o wybranych srukurach nzawodnoścowych. 2. Przdmo ćwczna: wrualn modl srukur nzawodnoścowych. 3. Cl ćwczna: wyznaczn wybranych funkcj wskaźnków nzawodnoścowych dla ypowych srukur nzawodnoścowych Warszawa 208
2 . PODSTAWY TEOETYCZE I ZAŁOŻEIA Ćwczn pośwęcon js prakycznmu wyznaczanu wskaźnków nzawodnoścowych obków o ypowych srukurach nzawodnoścowych. OBIEKT S Obk S ma najprosszą srukurę, zawra jdn lmn jak na ys.. ys.. Obk o srukurz jdnolmnowj Zakładamy, ż prawdopodobńswo nuszkodzna sę (czyl prawdopodobńswo zachowana sanu zdanośc) go lmnu ma znaną posać rozkładu wykładnczgo: λ () () gdz: nnsywność uszkodzń (paramr rozkładu wykładnczgo). Przyjmjmy, ż: = cons; oraz, ż warość n js znana. Dla rozkładu wykładnczgo: λ (2) T u gdz: OBIEKT S2 T u warość oczkwana czasu do uszkodzna sę obku. Obk S2 składa sę z równolgl połączonych lmnów jak na ys.2a. Obk n przdsawa równolgłą srukurę nzawodnoścową z rzrwą obcążoną. Obk js wdy zdany, gdy co najmnj jdn jgo lmn js zdany. Zauważmy, ż w ym przypadku wszysk lmny pracują w dnycznych warunkach. 2 ys. 2a. Obk o równolgłj srukurz nzawodnoścowj z rzrwą obcążoną Prawdopodobńswo zdanośc (czyl nuszkodzna sę) akgo obku zapsujmy nasępująco: Obc 2 ; 0 2 (3) 2
3 Warość oczkwaną czasu do uszkodzna wyznaczyć można z nasępującgo wyrażna: Jśl przyjmmy, ż: λ λ λ o orzymamy: () (4) 2 λ Obc T uobc Obc 0 0 0,577 ln Tu 2 ()d λ d (5) W ćwcznu laboraoryjnym poddajmy badanu obk 2-lmnowy o srukurz jak na ys.2b. 2 ys.2b. Obk o srukurz równolgłj, dwulmnowj z rzrwą obcążoną Elmny obku mają dnyczn właścwośc nzawodnoścow, ak sam jak w obkc. Zam dla = 2: OBIEKT S3 T,5 uobc2,5 T u oraz 2 Obc2 () λ (6) Obk S3 składa sę z równolgl połączonych lmnów jak na ys.3a. Obk n przdsawa równolgłą srukurę nzawodnoścową z rzrwą nobcążoną. Obk js wdy zdany, gdy co najmnj jdn jgo lmn js zdany. Zauważmy, ż w ym przypadku funkcjonowan obku rozpoczyna sę od uruchomna -go lmnu (podsawowgo). Pozosał lmny począkowo n pracują. Po uszkodznu prwszgo lmnu zosaj uruchomony drug lmn (rzrwowy), po jgo uszkodznu nasępny, d. Zakładamy, ż przłączna odbywają sę nzawodn. 2 ys. 3a. Obk o równolgłj srukurz nzawodnoścowj z rzrwą nobcążoną Warość oczkwana czasu do uszkodzna wynos w ym przypadku: T a prawdopodobńswo zdanośc: uobc Tu Tu2 Tu (7a) 3
4 obc 2 3 λ λ λ... 2! 3!! λ (7b) W ćwcznu poddajmy badanu obk 2-lmnowy o srukurz jak na ys.3b. 2 ys.3b. Obk o srukurz równolgłj, dwulmnowj z rzrwą nobcążoną Elmny mają jdnakow właścwośc nzawodnoścow, ak sam jak w obkc. Zam (dla = 2): - oczkwana warość czasu do uszkodzna (czyl czasu zdanośc): - prawdopodobńswo sanu zdanośc: OBIEKT S4 Tuobc2 2 Tu (8a) Obc λ λ (8b) Obk S4 składa sę z szrgowo połączonych lmnów jak na ys.4a. Obk n przdsawa szrgową srukurę nzawodnoścową. Oznacza o, ż obk js ylko wdy zdany, gdy wszysk jgo lmny są zdan. 2 3 ys. 4a. Obk o szrgowj srukurz nzawodnoścowj Prawdopodobńswo nuszkodzna sę akgo obku zapsujmy w posac: SZ 2 λ λ λ 2 2 (9) gdz: nnsywność uszkodzń lmnu. Można wykazać, ż w przypadku akgo obku warość oczkwana czasu do uszkodzna moż być wyznaczona z zalżnośc: Jśl przyjmmy, ż: λ λ λ o orzymamy: 2 λ SZ T usz λ () oraz (0) Σ λ λ TuSZ () 4
5 W ćwcznu poddajmy badanu obk 2-lmnowy o srukurz jak na ys.4b. Są o lmny o jdnakowych właścwoścach nzawodnoścowych, akch samych jak w obkc. 2 ys.4b. Obk o srukurz szrgowj, dwulmnowj Zam, dla = 2, orzymujmy: SZ2 2 2λ () oraz 2λ TuSZ2 (2) 2. ZADAIE 2.. Informacj wsępn Korzysając z kompurowgo programu Uszkodzna.x przprowadzć badana właścwośc nzawodnoścowych obków lkroncznych o srukurach S S4. Lczność każdgo zboru obków poddawanych badanu wynos. Obków uszkodzonych n zasępuj sę nowym, a badan rwa do chwl uszkodzna sę wszyskch obków worzących badany zbór (ys. 5). Całkowy czas badana wynos T b jdnosk umownych czasu (np. godz.). Czas n dzl sę na m jdnakowych przdzałów o długośc: Δ = Δ = T b /m; ( =,2,..., m). Każdy przdzał opsuj sę nasępującym waroścam czasu: czas p lczony od chwl rozpoczęca ksprymnu do począku przdzału Δ (oczywśc dla = p = 0) czas s lczony od chwl rozpoczęca ksprymnu do środka przdzału Δ (oczywśc dla = s = 0,5 ) W ksprymnc symulacyjnym nalży wyznaczyć (ys. 6): lczbę n lmnów uszkodzonych w każdym przdzal czasowym Δ ; lczbę lmnów n, kór uszkodzły sę od chwl rozpoczęca badana do środka przdzału Δ (oczywśc dla = n = 0,5 n ) a podsaw wynków ksprymnów można wyznaczyć dla poszczgólnych srukur: prawdopodobńswo zdanośc (czyl nuszkodzna sę) dowolngo obku o srukurz S (w funkcj czasu badana lub numru przdzału czasu) (ys. 7): s n prawdopodobńswo uszkodzna sę obku: Q s n n (3) (4) 5
6 częsość uszkodzń obku: f s n (5) nnsywność uszkodzń obku: n n s (6) śrdn czas do uszkodzna sę obku: T u m n s (7) Uwaga:. Warygodn wynk ksprymnu uzyskuj sę w badanach odpowdno lcznych zborów obków. a ogół lczność a pownna wynosć co najmnj klkas. 2. Gwazdka w symbolach oznacza, ż wyznaczon warośc uzyskano w ksprymnc Polcna wykonawcz Wynk badań symulacyjnych nzbędnych oblczń umścć w ablach Wykonać wykrsy funkcj nuszkadzalnośc obków o badanych srukurach j.: * ( s ) * () W wnoskach skomnować uzyskan wynk odnośn funkcj nuszkadzalnośc, warośc śrdnj czasu do uszkodzna oraz wskaźnka nnsywnośc uszkodzń obków o okrślonych srukurach. Zrzuy kranow programu Uszkodzna.x ys. 5. Wynk badana nzawodnośc zboru obków o srukurz S 6
7 ys. 6. Hsogram nuszkadzalnośc zboru obków o srukurz S ys. 7. Wykrs funkcj nuszkadzalnośc obków o srukurz S 7
8 Pyana konroln. Wymń podsawow srukury nzawodnoścow. 2. Co oznacza rmn srukura nzawodnoścowa? 3. Jak js różnca mędzy srukurą nzawodnoścową a na przykład konsrukcyjną, funkcjonalną czy dagnosyczną? 4. Po co sosuj sę różn, złożon srukury nzawodnoścow? 5. Co o js nuszkadzalność obku? 6. Jak js zwązk mędzy nuszkadzalnoścą () a nnsywnoścą uszkodzń obku λ()? 7. Jak można wyznaczyć warość oczkwaną czasu do uszkodzna T u obku ksploaacj? 8. Jaką zalżność przdsawa wzór Wnra? 9. W przypadku jakch obków jakch uszkodzń można przyjmować, ż gęsość prawdopodobńswa czasu zdanośc posada charakr rozkładu wykładnczgo? 0. Jaka js różnca w aspkc nzawodnoścowym mędzy obkm o srukurz równolgłj nobcążonj a równolgłj obcążonj? 8
9 Tabl wynków badań T b = [jucz]; = 400 [jucz]; m = 25 Tabla 5.. = S max = Obky o srukurz S n n s * ( s ) * () * T u * λ Tabla 5.2. = S max = Obky o srukurz S n n s * ( s ) * () T u *
10 Tabla 5.3. = S max = Obky o srukurz S n n s * ( s ) * () T u * Tabla 5.4. = S max = Obky o srukurz S n n s * ( s ) * () T u * 0
BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH
ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTOICZYCH ISTYTUT SYSTEMÓW ELEKTOICZYCH WYDZIAŁ ELEKTOIKI WOJSKOWA AKADEMIA TECHICZA ---------------------------------------------------------------------------------------------------------------
ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH
ĆWICZEIE 5 BADAIE WYBAYCH STUKTU IEZAWODOŚCIOWYCH Cl ćwczna: lustracja praktyczngo sposobu wyznaczana wybranych wskaźnków opsujących nzawodność typowych struktur nzawodnoścowych. Przdmot ćwczna: wrtualn
Proces stochastyczny jako funkcja dwóch zmiennych. i niepusty podzbiór zbioru liczb rzeczywistych T. Proces stochastyczny jest to funkcja
POJĘCI PROCSU STOCHSTYCZNGO Przykład mpluda napęca gnrowango przz prądncę prądu zmnngo zalży od czynnków losowych moż być zapsana jako funkcja X sn c c - sała okrślająca częsolwość - zmnna losowa o rozkładz
LABORATORIUM ESBwT. Optymalizacja niezawodnościowa struktury elektronicznego systemu bezpieczeństwa
ZESPÓŁ LAORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LAORATORIUM ESwT INSTRUKCJA DO ĆWICZENIA nr Opymalizacja nizawodnościowa srukury
E2. BADANIE OBWODÓW PRĄDU PRZEMIENNEGO
E. BADANE OBWODÓW PĄDU PZEMENNEGO ks opracowały: Jadwga Szydłowska Bożna Janowska-Dmoch Badać będzmy charakrysyk obwodów zawrających różn układy lmnów akch jak: opornk, cwka kondnsaor, połączonych z sobą
gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera
San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola
LABORATORIUM ESBwT. Program,,Wspomaganie Decyzji Niezawodnościowo-Eksploatacyjnych Transportowych Systemów Nadzoru
ZESPÓŁ LAORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LAORATORIUM ESwT Program,,Wspomagani Dcyzji Nizawodnościowo-Eksploaacyjnych Transporowych
POLITECHNIKA WARSZAWSKA WYDZIAŁ TRANSPORTU
POLITECHNIKA WARSZAWSKA WYDZIAŁ TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE EKSPLOATACJA SYSTEMÓW TELEKOMUNIKACYJNYCH LAORATORIUM Program,,Wspomagani Dcyzji Nizawodnościowo- Eksploaacyjnych Transporowych
ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA
ĆWICZENIE OPTYMALIZACJA NIEZAWODNOŚCIOWA STUKTUY ELEKTONICZNEGO SYSTEMU EZPIECZEŃSTWA Cl ćwicznia: zapoznani z analizą nizawodnościowo-ksploaacyjną lkronicznych sysmów bzpiczńswa; wyznaczni wybranych wskaźników
Matematyka ubezpieczeń majątkowych r.
Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.
A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna
9. WYBRANE ZAGADNIENIA DYNAMIKI KONSTRUKCJI
9. WYBRANE ZAGADNIENIA DYNAMIKI KONSRUKCJI 9. WYBRANE ZAGADNIENIA DYNAMIKI KONSRUKCJI W rozdzal 5 wyprowadzlśmy równan równowag saycznj dla cała analzowango modą lmnów skończonych. Równan o można równż
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa
przegrody (W ) Łukasz Nowak, Instytut Budownictwa, Politechnika Wrocławska, e-mail:lukasz.nowak@pwr.wroc.pl 1
1.4. Srawdzn moŝlwośc kondnsacj ary wodnj wwnątrz ścany zwnętrznj dla orawngo oraz dla odwrócongo układu warstw. Oblczn zawlgocna wysychana wlgoc. Srawdzn wykonujmy na odstaw skrytu Matrały do ćwczń z
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Algorytmy numeryczne w Delphi. Ksiêga eksperta
IDZ DO PRZYK ADOWY ROZDZIA SPIS TREŒCI KALOG KSI EK KALOG ONLINE ZAMÓW DRUKOWANY KALOG Algorymy numryczn w Dlph Ksêga kspra Auorzy: Brnard Baron, Arur Pasrbk, Marcn Mac¹ k ISBN: 83-736-95-8 Forma: B5,
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Pomiary parametrów akustycznych wnętrz.
Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków
2. Wprowadzenie. Obiekt
POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.
Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
XXXV Konferencja Statystyka Matematyczna
XXXV Konferencja Saysyka Maeayczna MODEL OTOWOŚCI SYSTEMU TECHNICZNEO Karol J. ANDRZEJCZAK karol.andrzejczak@pu.poznan.pl Polechnka Poznańska hp://www.pu.poznan.pl/ PRORAM REERATU 1. WPROWADZENIE 2. ORMALIZACJA
ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH
ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor
BADANIE NIEZAWODNOŚCI DIAGNOZ
ZAKŁA EKSOATACJI SYSTEMÓW EEKTOICZYCH ISTYTUT SYSTEMÓW EEKTOICZYCH WYZIAŁ EEKTOIKI WOJSKOWA AKAEMIA TECHICZA -------------------------------------------------------------------------------------------------------------------------------
Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu
PODSTAWY EKSPLOATACJI
WOJSKOWA AKADEMIA TECHNICZNA m. Jarosława Dąbrowskgo LESŁAW BĘDKOWSKI, TADEUSZ DĄBROWSKI PODSTAWY EKSPLOATACJI CZĘŚĆ PODSTAWY DIAGNOSTYKI TECHNICZNEJ WARSZAWA Skrypt przznaczony jst dla studntów Wydzału
LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka
Wpływ stóp procentowych na wartoêç indeksu giełdowego WIG * Influence of Interest Rates on the WIG Stock Index
62 Rynk Insyucj Fnansow Bank Krdy srpń 28 Wpływ sóp procnowych na waroêç ndksu głdowgo WIG * Influnc of Inrs Ras on h WIG Sock Indx Jrzy Rmbza **, Grzgorz Przkoa *** prwsza wrsja: 26 lsopada 27 r., osaczna
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Metody symulacji w nanotechnologii - ćwiczenia
Moy symulacj w nanochnolog - ćwczna Ćwczna w laboraorum kompurowym Prakyczn zasosowan moy casngo wązana o numrycznych oblczń pasm nrgycznych wybranych srukur grafnowych Ćwczn : Jnowymarowy łańcuch aomowy.
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie
Jak zwększyć fktywność radość z wykonywanj pracy? Motywacja do pracy - badan, szkoln czym sę zajmujmy? szkolna, symulacj Komunkacja, współpraca Cągł doskonaln Zarządzan zspołm Rozwój talntów motywacja
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
Wykład 2 Metoda Klasyczna część I
Tora Obwodów 2 Wykład 2 Moda Klasyczna część I Prowadzący: dr nż. Toasz Skorsk Insyu Podsaw lkrochnk lkrochnolog Wydzał lkryczny Polchnka Wrocławska D-1, 205/8 l: (071) 320 21 60 fax: (071) 320 20 06 al:
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE
JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano
Badanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
Ł Ł ć ć ż ż ż ź ź Ć ń ł ź ż ś ł ź ń ś ż ś ś ś ś ż ź ż ż ź ł ż ż ż ś ś ś ś ż ś ś ź Ś ś ż ś ś ł ż ś ś ł ź ź Ź ś ź ł ż ż ń ł ść ł ś ść ś ż ć ś ż ś ś ź ń ć ź ść ź ż ż ść ć ść ść Ź Ź ł ś ń ł ś ś ł ł ś ś ś ś
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych
ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.
Pracownia fizyczna i elektroniczna
Pracowna fzyczna lkronczna koordynaor Krzyszof Korona Wydzał Fzyk pok. 3.65, pęro -mal: kkorona@fuw.du.pl Srona WWW Pracown Elkroncznj: hp://p.fuw.du.pl Program pracown A. Podsawow prawa ( analza danych
Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,
Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje
Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykła 0: Rówae Schrögera Dr ż. Zbgew Szklarsk Kaera lekrok paw. C- pok.3 szkla@agh.eu.pl hp://layer.uc.agh.eu.pl/z.szklarsk/ 0.06.07 Wyzał Iforayk lekrok Telekoukacj - Teleforayka Rówae Schrögera jeo z
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR
LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje
Systemy nawigacji satelitarnej. Przemysław Bartczak
Sysemy nawgacj saelarnej Przemysław Barczak Częsolwość nośna Wszyske saely GPS emują neprzerwane sygnały na dwóch częsolwoścach nośnych L1 L2 z pograncza mkrofalowych fal L S, kóre z punku wdzena nazemnego
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Pańswowa Wyższa Szkoła Zawoowa w Kaliszu Ć wiczenia laboraoryjne z fizyki Ćwiczenie Wyznaczanie współczynnika rozszerzalności objęościowej cieczy za pomocą piknomeru Kalisz, luy 25 r. Opracował: Ryszar
Dobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
1 n 0,1, exp n
8. Właścwośc trmczn cał stałych W trakc zajęć będzmy omawać podstawow własnośc trmczn cał stałych, a szczgóln skupmy sę na cpl właścwym. Klasyczna dfncja cpła właścwgo wygląda następująco: C w Q (8.) m
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak
Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.
PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia
PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK
Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce
Ekonomiczno-chniczn aspky wykorzysania gazu w nrgyc anusz oowicz Wydział Inżynirii i Ochrony Środowiska Polichnika Częsochowska zacowani nakładów inwsycyjnych na projky wykorzysania gazu w nrgyc anusz
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Kier. MTR Programowanie w MATLABie Laboratorium
Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu
{ } ( ) p(t) = p(0)p(t) Dyskretne procesy Markowa. =,...,
Dyrn rocy Marowa. Rozarumy roc ochayczny, w órym aramr cągły zwyl. Będzmy załadać, ż zbór anów co nawyż rzlczalny. Proc, rocm Marowa, śl dowolngo n, dowolnych chwl czau <
Zbigniew Palmowski. Analiza Przeżycia
Zbgnew Palmowsk Analza Przeżyca Wrocław 9 Zbgnew Palmowsk Docendo dscmus (Ucząc nnych, sam sę uczymy) Seneka Mos of he me I fnd myself workng n heorecal problems, because I am neresed n applcaons. I also
I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E
Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony
Przyjmijmy, że moment obciążenia jest równy zeru, otrzymamy:
aszyy prąy sałgo yaka Dla aszyy prą sałgo, ykorzysyaj jako l aoayk, yzaczy ybra rasacj. Sygał jścoy oż być p. apęc orka (la aszyy obcozbj) a sygał yjścoy prękość obrooa. óa Krchhoffa la obo orka oży apsać
Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.
MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko
Szeregi trygonometryczne Fouriera. sin(
Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś
Analiza wybranych własności rozkładu reszt
Analiza wybranych własności rozkładu rsz Poprawni skonsruowany i oszacowany modl, kóry nasępni ma być wykorzysany do clów analizy i prdykcji, poza wysokim sopnim odzwircidlania zmian warości mpirycznych
Symulacja czasu wychładzania powietrza w przewodzie wentylacyjnym
Por Prybycn Symulacja casu ychłaana pora pro nylacyjnym Symulacja casu ychłaana pora pro nylacyjnym ) Do cgo służy program: Program służy o okrślna sybkośc ychłaana, lub ograna pora nąr prou nylacyjngo
DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH
Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego
Układ realizujący funkcję AND
Zadane 5. Zaprojekoać spradzć dzałane synchroncznych asynchroncznych rejesró akumulaora umożlających realzację operacj: odejmoana arymeycznego, AN, NOT, EX-OR. C x b C odoane: a a : odejmoane A-B, A AN
1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy
.7 Zagadnna zczgółow zwązan z równan ruchu.7. ont bzwładnośc ont zaachowy Równan równowag ł dzałających na lnt ay d poazany na ry..8 będz ało potać: df a tąd lntarny ont dynaczny: d d ϑ d r * d d ϑ r d
XI Konferencja Naukowa WZEE Rzeszów - Czarna, wrzesień 2013 r.
XI Konferencja Naukowa WZEE 203 Rzeszów - Czarna, 27-30 wrzeseń 203 r. XI Konferencja Naukowa WZEE 203 Rzeszów - Czarna, 27-30 wrzeseń 203 r. CYFROWE PRZEWARZANIE IMPULSOWEGO SYGNAŁU CZĘSOLIWOŚCIOWEGO
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Równania ruchu konstrukcji głównej z dołączonymi tłumikami drgań opisanymi standardowym modelem reologicznym
Budownicwo i Archiura 9 (211) 23-38 Równania ruchu onsrucji głównj z dołączonymi łumiami drgań opisanymi sandardowym modlm rologicznym Pior Wilgos Kadra Mchanii Budowli, Polichnia Lublsa, Wydział Budownicwa
Podstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
METODY KOMPUTEROWE 10
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Teoria Sygnałów. II Inżynierii Obliczeniowej. Wykład /2019 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Tora Sygałów II Iżyr Oblczowj Wyład 8 8/9 Rozważy sończoy sygał δ () spróboway z częsolwoścą : Aalza częsolwoścowa dysrych sygałów cyfrowych f p óra js dwa razy węsza od częsolwośc asyalj f a. Oblczy jgo
Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych