Autorzy: Andrzej Jabłoński, Tomasz Palewski Korekta: Alicja Bakalarz ZASADY OBLICZEŃ
|
|
- Filip Włodzimierz Wróbel
- 6 lat temu
- Przeglądów:
Transkrypt
1 Autorzy: Adrzej Jłoński, Tomsz Plewski Korekt: Alij Bklrz ZASADY OBLICZEŃ Jedostki SI Ukłd SI oprty jest siedmiu wielkośih podstwowyh i dwóh uzupełijąyh. Dl kżdej z tyh wielkośi przyjęto jedą jedostkę. Ukłd SI pokzo w teli l. Tel l. Ukłd jedostek SI Wielkośi Zlee ozzei wielkośi Jedostki mir Ozzei jedostek Podstwowe długość l metr m ms m kilogrm kg zs t sekud s tężeie prądu elektryzego I mper A tempertur T kelwi K świtłość J kdel d lizość mterii mol mol Uzupełijąe kąt płski rdi rd kąt ryłowy sterdi sr Wszystkie ie wielkośi fizyze moż zdefiiowć z pomoą wielkośi podstwowyh. Podstwiją do wzoru defiiująego dą wielkość fizyzą, zmist wielkośi podstwowyh, odpowidjąe im jedostki podstwowe i opuszzją występująe we wzorze współzyiki lizowe, uzyskuje się jedostkę dej wielkośi fizyzej. Tk uzyske jedostki pohode wrz z jedostkmi podstwowymi zyw się jedostkmi główymi. Niektóre jedostki pohode, poz symolmi utworzoymi z symoli jedostek podstwowyh, uzyskły osoe zwy, p. kulom (C = A s), dżul (J= m kg s - ), pskl (P = N m - = kg m -1 s - ). Opróz główyh jedostek mir, ukłd SI dopuszz stosowie jedostek krotyh (wielokrotyh i podwielokrotyh). W elu utworzei jedostki krotej stosuje się odpowiedie przedrostki (tel ). Przedrostki ie ędąe wielokrotośią trzeiej potęgi (h, d, ) leży stosowć tylko dl tyh jedostek, dl któryh są dotyhzs w użyiu, p. moż używć jedostkę dm (deymetr) le ie leży używć jedostki hm (hektometr). Ukłd SI przyjmuje zsdę, że jedostki krote ie mogą mieć włsyh zw, tkih jk dwiej stosowy gsztrem, mikro itp., ih zwy tworzoe są z pomoą tylko jedego przedrostk, p. dwy milimikro (10-9 m) to w ukłdzie SI ie milimikrometr, lez ometr (tel 3). Dltego też krotość jedostki msy tworzy się ietypowo, ie od kg, lez od g, wię l000 kg to ie kkg (kilokilogrm) lez g (meggrm). W wypdku jedostek pohodyh zle się stosowie krotośi jedyie w liziku, wię p. jko jedostkę 1000-krotie większą od kg/m 3 lepiej jest używć ie kg/dm 3 = g/m 3 lez g/m 3.
2 Tel. Nzwy i ozzei przedrostków (jedostek krotyh) Przedrostek Zzeie Ozzeie eks E pet P ter 10 1 T gig 10 9 G meg 10 6 kilo 10 3 k hekto 10 h dek 10 1 d dey 10-1 d ety 10 - mili 10-3 m mikro 10-6 o 10-9 piko 10-1 p femto f tto Tel 3. Przelizeie iektóryh jedostek dwiej stosowyh jedostki SI gsztrem l Å = 0,1 m litr l l = l dm 3 tmosfer fizyz milimetr słup rtęi stopień Celsjusz klori l tm = P (dokłdie) l mmhg = 133,3 P L C = l K. t ( C) = T(K) - 73,15 l l = 4,1868 J (dokłdie) Jk podo już w teli l wielkośią opisują ilość mterii jest lizość mterii, jej jedostką jest mol. ol defiiuje się jko lizość mterii występująą gdy liz ząstek (ząstek, tomów, joów itp.) jest rów lizie tomów zwrtyh w 0,01 kg (dokłdie) uklidu 1 C. To zzy, że mol jest jedostką tego smego typu, o tuzi zy kop i jest rówozzy z termiem liz Avogdro. s mol różyh sustji jest róż i p. jede mol sirki m msę 3 g główą jedostką msy molowej jest kg/mol. Nleży przy tym zwróić uwgę, ze podoie rzmiąe pojęi ms tomow i ms ząstezkową są wielkośimi ezwymirowymi (względymi), które są określoe stępująo: ms tomow (ząstezkow) jest to stosuek średiej msy tomu dego pierwistk (ząstezki dego związku) do 1/1 (dokłdie) msy tomu uklidu 1 C. N przykłd ms tomow yku wyosi: (1, kg) / (1, ) kg = 65,37.
3 Dokłdość olizeń Nuki tkie jk fizyk zy hemi zjmują się ilośiowymi zleżośimi między różymi wielkośimi fizyzymi. Wrtość określoej wielkośi jest ilozyem lizy przez odpowiedią jedostkę miry (p. 5 kmol/m 3 ). Wrtośi lizowe uzyskuje się z pomirów. Pomiry wielkośi fizyzyh są wykoe z pewą skońzoą dokłdośią. Celem poprwego pomiru jest ustleie przedziłu, wewątrz którego zjduje się rzezywist wrtość. W wyiku pomiru otrzymuje się wrtość wielkośi fizyzej (w), orzoą pewym łędem ezwzględym, o zpisuje się stępująo: w=,37 ± 0,03 lu ogólie w = ±. Często dej wielkośi fizyzej ie mierzy się ezpośredio, lez jej wrtość oliz się z wrtośi kilku iyh wielkośi fizyzyh. W tkim przypdku leży, korzystją ze zyh gri dokłdośi pierwotyh wrtośi, określić łąd wrtośi olizoej. A ztem: A. Jeżeli jest mksymlym łędem wrtośi, to: l) mksymly łąd sumy różiy kilku wrtośi jest sumą łędów poszzególyh wrtośi: ) (, łąd względy / sumy jest zwrty między jmiejszym jwiększym łędem względym i / i, poszzególyh skłdików ) łąd względy ilozyu lu ilorzu kilku wrtośi jest rówy sumie łędów względyh poszzególyh zyików, stąd wyik, że: 1 B. Jeżeli jest wrtośią średią, uzyską z pomirów, tomist jest średim łędem wrtośi średiej olizoym ze wzoru: 1) ( f i i, gdzie f jest różią między wyikiem i-tego pomiru, to moż przyjąć, że; 1. ) (..
4 Ze względu uiążliwość zpisu wrtośi lizowyh z podwiem ih łędu moż stosowć zpis uproszzoy, zkłdją, że ostti zpis yfr jest iepew w grih ±1. Jeżeli tkie uproszeie jest dl podjąego wyik ie do przyjęi leży wtedy podć zrówo wrtość średią jk i łąd. Ay łąd wrtośi uzyskej z olizeń ył zgody z łędem wyikjąym z łędów dyh wyjśiowyh, trze przy wykoywiu rhuków stosowć pewe zsdy oprte pojęiu yfry zząej. Cyfry zząe są to wszystkie yfry, poząwszy od pierwszej ie ędąej zerem do osttiej zpisej po przeiku. Np. liz 0, m 6 yfr zząyh. W przypdku gdy liz ie m yfr po przeiku, końowe zer ie muszą yć yfrmi zząymi i dltego p. lizę leży zpisywć: (3 yfry zząe), 1, (4 yfry zząe) lu 1, (5 yfr zząyh). l. Przy możeiu i dzieleiu wrtośi lizowyh leży zhowć w wyiku tyle yfr zząyh, ile jest ih w tej wrtośi, któr m jmiejszą lizę yfr zząyh, p.: W =,7 1,34 3,618, W = 3,6, le,700 1,34 =3,6. Podoie, przy podoszeiu do potęgi i wyiągiu pierwistk z wrtośi lizowej, w wyiku leży zhowć tyle yfr zząyh, ile ih m d wrtość.. Przy dodwiu i odejmowiu łędy mogą się sumowć, le mogą się rówież wzjemie kompesowć. Przy dodwiu iewielu liz (p. dwóh) dl uproszzei olizeń zwykle przyjmuje się, że dokłdość wyiku jest tk sm jk jmiej dokłdego skłdik sumy, z tki przyjmuje się lizę, któr m miej miejs po przeiku. N przykłd,7 jest przy dodwiu miej dokłdą lizą iż 0,07, liz,7 jest miej dokłdą od,700, liz 1,3710 3, zyli 1370, jest miej dokłdą iż 18,1. W przypdku liz łkowityh ez miejs dziesiętyh liz miej dokłd m osttią yfrę ie ędąą zerem położoą jrdziej w lewo w stosuku do jedośi. N przykłd liz 1,3710 3, zyli 1370, zyli , jest miej dokłdą iż 18. Przykłdy: =, , ,34 ~ 64,3657, = 64,37, = 83,4 + 0,003 ~ 83,403, = 83,4, = 7,38 7,38 ~ 0,00, = 0, Logrytmy liz o lu więej yfrh zząyh mją mtysy o tkiej smej ilośi yfr zząyh o liz logrytmow dokłdość mtysy wyosi ±4 osttiej yfrze zząej. N przykłd: log 0,0 = -1,70, log, = 1, We wszystkih olizeih pośredih leży zhowć o jedą yfrę zząą więej, iż to wyik z reguł podyh w pukth 1-3. Np.,7 1,34 ~ 3,618 do dlszyh olizeń leży wziąć lizę 3,6 ie 3,6 lez osttezy wyik zokrąglić do dwóh yfr zząyh. 5. Przy zokrągleiu wyików olizeń do lizy yfr wyikjąej z dokłdośi dyh stosuje się stępująe reguły: ) jeżeli zokrągl końówk m yfrę od 0 do 4, lu od 0 do 49 lu od 0 do 499 itd., to się je odrzu. Przykłdowo, zokrąglją lizę 4,6 do dwóh yfr zząyh otrzymmy 4,6 lizę 6,73 do dwóh yfr zząyh podjemy ją jko rówą 6,7 o zokrągl
5 końówk w lizie 6,73 to 3 i jest o miejsz od 49 ) przy odrzuej końówe, zzyjąej się od yfr 6,7,8 lu 9 (lu od 51 do 99, zy też od 501 do 999 itd.) osttią yfrę pozostjąą powiększ się o l p. 6,753 = 6,8 ) jeżeli odrzuoą końówką jest yfr 5 lu yfr 5 po której są sme zer, pozostją yfr powi yć przyst, p. 6,650 = 6,6 le 6,75 = 6,8 6. W olizeih, w któryh de wyjśiowe mją rdzo dużą dokłdość, leży przed wykoiem dziłń zokrąglić wyjśiowe wrtośi lizowe tk, y miły jwyżej o jedą yfrę zząą więej (przy dzieleiu lu możeiu) lu o jedo miejse dziesięte więej (przy odejmowiu lu dodwiu), iż jmiej dokłd wrtość. Nleży przy tym pmiętć, że dokłdość otrzymego wyiku zleży ie tylko od dokłdośi dyh wyjśiowyh i użytyh stłyh fizyzyh, lez zęsto tkże od dokłdośi zstosowyh prw fizyzyh, i tk: prwo pv = RT ie jest prwdziwe z dowolą dokłdośią dl gzów rzezywistyh. Wykoj stępująe zdi 1. Ile jest yfr zząyh w stępująyh lizh ) 1,010; ) l = 0,50 m; ) (37,8 ± 0,04)%; d),990; e) 3,0%; f) m = 0,0563 g; g) stł rdy = 96500±10 C.. Zokrąglić stępująe lizy do dwóh yfr zząyh ) 37,; ) 0,505; ) 1, Zokrąglić stępująe lizy do trzeh yfr zząyh ) 145,11; ) 8945,71; ) 7,3986; d) 0,05557; e) 3, Zokrąglić stępująe lizy, zostwiją tylko dwie yfry po przeiku ) 3645; ) 3,655; ) 0,0747; d) 0,0087; e) 0, Olizyć ilozyy: =,53 3,8. 48,14; = 4,0 0, ,855; = 68 0,531 3,55. Olizyć grię dokłdośi wyików przy jmiej korzystym ułożeiu się łędów poszzególyh wrtośi. 6. Olizyć sumy: = 34,5 + 0, ,347; = 1, , + 6,3; = (1,76 0,004730) -, (0,001 0,01); d =(1,76 0,000473)-, (0, ,0113). 7. Olizyć wrtość lizową wyrżei: w = {0,5 (63,4 +3,9)/(344,5-340,1)} 8. Zleźć logrytmy liz: ; 0; 300; 0,5; 0,0103 i 98,7 i określić jkie są rzezywiste grie dokłdośi powyższyh logrytmów, wyikjąe z gri dokłdośi liz logrytmowyh.
LABORATORIUM CHEMICZNE sprzęt, BHP, zasady obliczeń
Ali Czerihowski, Krzysztof Skudlrski PODSTAWOWY SPRZĘT l. Sprzęt szkly LABORATORIU CHEICZNE sprzęt, BHP, zsdy olizeń Większość pr wykoywyh w lortorih hemizyh przeprowdz się w zyih szklyh. Szkło jest odpore
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:
METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH
METODY NUMERYCZNE Wykłd. Cłkowie umeryze dr h. iż. Ktrzy Zkrzewsk, pro. AGH Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rihrdso Metod Romerg Metod Simpso wzór prol Metod Guss Cłkowie umeryze -
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać
met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe
METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1
METODY NUMERYCZNE Wykłd 5. Cłkowie umeryze dr. iż. Ktrzy Zkrzewsk, pro. AGH Met.Numer. wykłd 5 Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rirdso Metod Romerg Metod Simpso wzór prol Metod Guss
GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa
/ WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego
CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.
CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH
pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego
FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.
Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,
Zasada indukcji matematycznej. Dowody indukcyjne.
Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
Od wzorów skróconego mnoŝenia do klasycznych nierówności
Hery Pwłowsi IV LO Toruń O wzorów sróoego moŝei o lsyzyh ierówośi Uzą w szole wzorów sróoego moŝei zzymy o owozei wóh toŝsmośi: () ( ) () ( ) Nstępie uŝywmy ih o przesztłi wyrŝeń Tym rzem zrómy z ih iy
MATEMATYKA W EKONOMII I ZARZĄDZANIU
MATEMATYA W EONOMII I ZARZĄDZANIU Wykłd - Alger iiow) eszek S Zre Wektore zywy iąg liz ) p 567) 5) itp W ekooii koszyk dór zpisuje się jko wektory Np 567) jko koszyk dór wyspie Hul Gul oŝe ozzć 5 jłek
2. Funktory TTL cz.2
2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Rys Wyrównanie spostrzeżeń zawarunkowanych jednakowo dokładnych C. KRAKOWIANY
Rys. 9.. Wyrównnie spostrzeżeń zwrunkownyh jednkowo dokłdnyh C. KRAKOWIANY 9.9. Informje wstępne o krkowinh Krkowin jest zespołem liz rozmieszzonyh w prostokątnej teli o k kolumnh i w wierszh, dl którego
i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zdi Odpowiedzi Pukty Bde umiejętości Obszr stdrdu. B 0 pluje i wykouje obliczei liczbch rzeczywistych,
Je eli m, n! C i a, b! R[ m a. = -x. a a. m = d n pot ga ilorazu. m m m. l = a pot ga pot gi. a $ b = a $ b pierwiastek stopnia trzeciego
0 Podzi kàtów ze wzgl du mir Przyk dy kàtów 0 B B W soêi Kàt wkl s y m mir wi kszà od 80 i miejszà od 60. Kàty wyuk e to kàty, któryh mir jest wi ksz àdê rów 0 i miejsz àdê rów 80, lu rów 60. Ni ej rzedstwimy
MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory
MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,
Macierze w MS Excel 2007
Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY
. Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest
Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP
Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +
MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań
MATEMATYKA Przed próbą mturą Sprwdzi (poziom rozszerzoy) Rozwiązi zdń Zdie ( pkt) P Uczeń oblicz potęgi o wykłdikc wymieryc i stosuje prw dziłń potęgc o wykłdikc wymieryc 5 ( ) 7 5 Odpowiedź: C Zdie (
Collegium Novum Akademia Maturalna
Collegium Novum Akdemi Mturl wwwcollegium-ovumpl 0- -89-66 Mtemtyk (GP dt: 00008 sobot Collegium Novum Akdemi Mturl Temt 5: CIĄGI Prowdzący: Grzegorz Płg Termi: 0007 godzi 9:00-:0 8 Zdie Które wyrzy ciągu
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.
WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna WIELOMIANY SZACHOWE
MAEMAYKA DYKENA (0/0) r h. iż. Młgorzt ter mlgorzt.ster@s.put.poz.pl www.s.put.poz.pl/mster/ WIELOMIANY ZACHOWE Mtemtyk Dyskret Młgorzt ter B WIELOMIANY ZACHOWE Wielomiy szhowe opisują lizę możliwyh rozmieszzeń
Scenariusz lekcji matematyki w klasie II LO
Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi
Metoda superpozycji: Sesja poprawkowa. Wykład 1
Elektrotehnik wykłd Metod superpozyji: E i 8V, E i V Sesj poprwkow Wykłd Zdni Wykłd e d e d E U U E e d 0.77..087 0.7 0.9 0.9.7... Grup : d pkt, d pkt, dst 8 pkt Termin 0. Symole stosowne n shemth. Zsdy
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n
CIĄGI ciąg jest rosący (iemlejący), jeżeli dl kżdego < ( ) ciąg jest mlejący (ierosący), jeżeli dl kżdego > ( ) ciąg zywmy rytmetyczym, jeżeli dl kżdego r - costs - r > 0 - ciąg rosący - r 0 - ciąg stły
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
ELEMENTÓW PRĘTOWYCH. Rys.D3.1
DODATEK N. SZTYWNOŚĆ PZY SKĘANIU ELEMENTÓW PĘTOWYH Zgdieie skręci prętów m duże zczeie prktycze. Wyzczeie sztywości pręt przy skręciu jest iezęde do określei skłdowych mcierzy sztywości prętów rmy przestrzeej
ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH
Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
ph ROZTWORÓW WODNYCH
ph ROZTWORÓW WODNYCH ph roztworów monyh kwsów i zsd H O H O A α 00 % MeOH Me OH MeOH α 00 % np.: HCl, r, HI, HNO, HClO i HClO NOH, OH, CsOH i ROH [H O [OH MeOH ph - log poh - log MeOH Mone kwsy dwuprotonowe,
3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.
WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
Podstawy Automatyki. Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania.
Politehik Gdńsk Wydził Elektrotehiki i Automtyki Ktedr Iżyierii Systemów Sterowi Podstwy Automtyki Lizy zesoloe Mteriły omoize do ćwizeń termi T5 Orowie: Kzimierz Duzikiewiz, dr h. iż. Mihł Grohowski,
symbol dodatkowy element graficzny kolorystyka typografia
Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /
Algebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?
INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY
Przykłdowy zestw zdń r z mtemtyki Odpowiedzi i schemt puktowi poziom rozszerzoy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod
Rozmaite techniki dowodzenia nierówności
Rozmite tehiki dowodzei ierówośi Pweł Józik 5 styzi 07 N kółku gimzjlym zjmujemy się rozdziłmi -6; kółku lielym zjmujemy się rozdziłmi 4-8; kółku olimpijskim zjmujemy sie rozdziłmi 9-. Dziś zkłdmy, że
Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.
Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania
Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne
Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod rozwiązi ( PITAGORAS ): Sporządzeie rysuku w ukłdzie współrzędych: p C A y 0
Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy
Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzmin mturlny mj 009 INFORMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Informtyk poziom podstwowy CZ I Nr zdni Nr podpunktu Mks. punktj z z zdni Mks. punktj z zdnie 1. Z poprwne uzupe nienie
Fizyka. w. 03. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015
Fizyka w. 03 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Jednostki miar SI Jednostki pochodne wielkość nazwa oznaczenie definicja czestotliwość herc Hz 1 Hz = 1 s 1 siła niuton N 1 N = 1 kgm 2 s 2 ciśnienie
CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).
MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
ZADANIA NA POCZA n(n + 1) = 1 3n(n + 1)(n + 2).
ZADANIA NA POCZA TEK Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 4 3 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4
METODY NUMERYCZNE. Wykład 6. Rozwiązywanie układów równań liniowych. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer.
ETODY NUERYCZNE Wykłd 6. Rozwiązywie ukłdów rówń liiowych dr hb. iż. Ktrzy Zkrzewsk, prof. AGH et.numer. wykłd 6 Pl etody dokłde etod elimicji Guss etod Guss-Seidl Rozkłd LU et.numer. wykłd 6 Ukłd rówń
Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów.
Zestw wzoów mtemtyzy zostł pzygotowy dl potze egzmiu mtulego z mtemtyki oowiązująej od oku 00. Zwie wzoy pzydte do ozwiązi zdń z wszystki dziłów mtemtyki, dltego może służyć zdjąym ie tylko podzs egzmiu,
BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ
ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
3. RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Układ m równań liniowych z n niewiadomymi zapisujemy w postaci. b...
RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Ukłd rówń liiowch iewidoi isuje w ostci Z ukłde () wiąe są ciere A X B które w: A cierą wsółcików X koluą iewidoch B koluą wrów wolch Wkorstując owżse ocei ukłd
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.
KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,
Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna
lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci
Montaż żaluzji i rolet
Montż żluzji i rolet Nrzędzi Uwg! W większośi przypdków śruby moująe są złązone do rolet i żluzji. NIEZBĘDNE NARZĘDZIA I MATERIAŁY Êrubokr t Êruby i ko ki poziomni wiertrk o ówek mirk linijk Zdejmownie
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Szkice rozwiązań zadań zawody rejonowe 2019
XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.
1. Wstęp. Pojęcie grafu przepływowego. Niech pewien system liniowy będzie opisany układem liniowych równań algebraicznych
Owody i Ukłdy Anliz ukłdów z pomoą grfów przepływowy Mteriły Pomonize. Wstęp. Pojęie grfu przepływowego. Nie pewien system liniowy ędzie opisny ukłdem liniowy równń lgerizny x + x x + x gdzie: x, x - zmienne
WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY Ia TECHNIKUM
WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA UCZNIÓW KLASY I TECHNIKUM Egzmin poprwkowy n ocenę dopuszczjącą będzie obejmowł zdni zgodne z poniższymi wymgnimi n ocenę dopuszczjącą. Egzmin poprwkowy n wyższą ocenę
PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP
CZAKI THERMO-PRODUCT ul. 19 Kwietni 58 05-090 Rszyn-Ryie tel. (22) 7202302 fx. (22) 7202305 www.zki.pl hndlowy@zki.pl PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP-201-10 INSTRUKCJA OBSŁUGI GWARANCJA Spis treśi 1.
Materiały diagnostyczne z matematyki poziom podstawowy
Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:
AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim (
AM11 zadaia 8 Przypom e kilka dosyć ważyh grai, które już pojawiły się a zajeiah e 1 lim 1 l(1+) (1+) 1, lim 1, lim a 1 si a, lim 1 0 0 0 0 l 2 lim 0, lim a 0 dla każdego a R, lim (1 + 1 e ) e, lim 1/
Układy równań liniowych Macierze rzadkie
5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -
I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.
I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń
Małgorzata Żak. Zapisane w genach. czyli o zastosowaniu matematyki w genetyce
Młgorzt Żk Zpisne w gench czyli o zstosowniu mtemtyki w genetyce by opisć: - występownie zjwisk msowych - sznse n niebieski kolor oczu potomk - odległość między genmi - położenie genu n chromosomie Rchunek
Wykład 8: Całka oznanczona
Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy
WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH
Politehni Śląs WYDZIŁ CHEMICZNY KTEDR FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNCZNIE STŁEJ RÓWNOWGI KWSOWO ZSDOWEJ W ROZTWORCH WODNYCH Opieun: Miejse ćwizeni: Ktrzyn Kruiewiz Ktedr Fizyohemii i Tehnoii
ARYTMETYKA LICZB RZECZYWISTYCH
Treść: ARYTMETYKA LICZB RZECZYWISTYCH. Tbliczk moŝei. ----------------------------------------------------------------------------------------------------------------------------------. Nzwy dziłń i ich
MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic
MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,
SYSTEM WIELKOŚCI CHARAKTERYZUJĄCY POTENCJALNĄ I ODDZIELONĄ CZĄSTKĘ ZUŻYCIA TRIBOLOGICZNEGO
6-0 T B O L O G 8 Piotr SDOWSK * SYSTEM WELKOŚC CKTEYZUĄCY POTECLĄ ODDZELOĄ CZĄSTKĘ ZUŻYC TBOLOGCZEGO SYSTEM OF VLUES CCTEZED POTETL D SEPTED WE PTCLE Słow kluczowe: prc trci, zużywie ściere, cząstk zużyci,
Metody numeryczne. Wykład nr 4. dr hab. Piotr Fronczak
Metody meryze Wyłd r 4 dr hb. Piotr Froz Oblizie wrtośi włsyh i wetorów włsyh Nieh M będzie wdrtową mierzą. Wówzs M wyzz przesztłeie liiowe przestrzei R w siebie. Nieh v R będzie pewym iezerowym wetorem
Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II
Egzmin mturlny z informtyki MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II Numer zdni Numer punktu Etpy rozwiązni Z podnie poprwnego przedziłu dl firmy D1: [1 ; 3617,62] 2 punkty. W przypdku
W praktycznym doświadczalnictwie, a w szczególności w doświadczalnictwie polowym, potwierdzono występowanie zależności pomiędzy wzrastającą liczbą
W prktyczym doświdczlictwi, w zczgólości w doświdczlictwi polowym, potwirdzoo wytępowi zlżości pomiędzy wzrtjącą liczą oiktów doświdczlych w lokch, wzrotm orwowgo łędu ytmtyczgo. Podcz plowi doświdczń
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i
Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B).
Roztwory rzezywiste (1) Również w tep. 98,15K, le dl CCl 4 () i CH 3 OH (). 15 Τ S 5 H,,4,6,8 1-5 - -15 G - Che. Fiz. TCH II/1 1 Roztwory rzezywiste () Ty rze dl (CH 3 ) CO () i CHCl 3 (). 15 5 Τ S -5,,4