Rozmyta klasyfikacja k-średnich dla danych interwałowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozmyta klasyfikacja k-średnich dla danych interwałowych"

Transkrypt

1 Marci Pełka Uiwersytet Ekooiczy we Wrocławiu Rozyta klasyfacja k-średich dla daych iterwałowych. Wrowadzeie W aalizie daych syboliczych zarooowao wiele różorodych etod klasyfac, które geeralie oża odzielić a dwie główe gruy etod. Pierwszą z ich są etody sekwecyje (iteracyje), które otyalizują (wykorzystując w ty celu ewą fukcję-kryteriu) oczątkowy odział obiektów zgodie z ewy algoryte. Wśród tych etod wyróżia się: etody tworzące skuieia rozłącze (. klasyfacja dyaicza, etoda COBWEB Michalskiego i ie) oraz etody tworzące skuieia ierozłącze (rozyta klasyfacja k-średich dla daych syboliczych, adatacyja rozyta klasyfacja k-średich dla daych syboliczych). Wśród etod tworzących skuieia ierozłącze waże iejsce zajują etody klasyfac rozytej. Drugą gruą etod są etody hierarchicze wśród tych etod wyróżia się: etody agloeracyje (. etoda Brito, etoda klasyfac Gowdy-Didaya i ie), etody degloeracyje (etoda odziałowa oarta a kryteriach Chavet, etoda EPAM Sioa oraz Feigebaua i ie), etody tworzące skuieia ierozłącze (etoda iraid Brito). Przegląd różorodych etod klasyfac daych syboliczych rezetują. i. race: De Carvalho [007], Verde [004], Pełka [009]. Obiekty sybolicze ze względu a ziee które je oisują, oraz fakt, że obiekty sybolicze drugiego rzędu są agregatai (gruai, złożeiai) obiektów ierwszego rzędu [zob. Bock, Diday i i. 000], w wielu rzyadkach ie ależą tylko i wyłączie do jedej klasy, lecz wielu klas tworząc skuieia ierozłącze. Wya z tego otrzeba tworzeia etod klasyfac ierozłączej, w ty etod klasyfac rozytej. Cele artykułu jest zarezetowaie etody ieadatacyjej rozytej klasyfac k-średich dla daych iterwałowych, którą zarooował De Carvalho [007]. Cele dodatkowy jest róba ocey wływu wielkości araetru rozycia a hoogeiczość otrzyaych klas.

2 W części eiryczej rzedstawioo rzykład ilustracyjy zastosowaia ieadatacyjej rozytej klasyfac k-średich a rzykładowych daych syboliczych. Wykorzystao tu dae dostęe w akiecie SODAS oraz dae o zaej strukturze klas wygeerowae z wykorzystaie rocedury cluster.ge z akietu clustersi dla rograu R.. Tyy zieych w aalizie daych syboliczych W rzyadku obiektów syboliczych ożey ieć do czyieia z rodzajai zieych, takii jak [Bock, Diday i i. 000, s. -3]: ) ilorazowe, rzedziałowe, orządkowe, oiale; ) kategorie,. biały, zieloy; 3) iterwałowe, czyli rzedziały liczbowe, rozłącze lub ierozłącze,. ilość salaej bezyy a 00k w ewy saochodzie (6 litrów; 3 litrów); 4) wielowariatowe, rzykłade oże być ty adwozia saochodu ewej arki: seda, hatchback, iiva, coué, co ozacza, że dostęy jest o w czterech różych wariatach adwozia; 5) wielowariatowe z wagai (rawdoodobieństwai), gdzie orócz listy kategorii wystęują wagi (rawdoodobieństwa), z jakii obiekt osiada wybraą kategorię,. jeżeli wybrać zieą wybrae kolory adwozia dla ewej arki i odelu saochodu: biały (0,45), zieloy (0,30), czary (0,5), to ozacza to, że ożey kuić saochód w kolorze biały i zieloy, atoiast kolor czary jest o wiele iej sotykay. Sytuacja taka oże wyać. i. z olityki roduceta, czy oularości kolorów; 6) ziee strukturale [Bock, Diday i i. 000, s. -3; 33-37] w literaturze rzediotu wyróżia się orócz wyżej wyieioych tyów zieych także ziee strukturale: a) ziee o zależości fukcyjej, lub logiczej oiędzy oszczególyi zieyi, gdzie a riori ustaloo reguły fukcyje lub logicze decydujące o ty, jaką wartość rzye daa ziea; b) ziee hierarchicze, w których a riori ustaloo waruki, od których zależy, czy ziea dotyczy daego obiektu, czy też ie; c) ziee taksooicze, w których a riori ustaloo systeatykę, według której rzyjuje oa swoje realizacje. 3. Nieadatacyja rozyta klasyfacja k-średich Metodę rozytej klasyfac k-średich dla daych w rozuieiu klasyczy zarooował Du [973], astęie jej odyfację zarooował Bezdek [98].

3 De Carvalho [007] zarooował odyfację rozytej klasyfac k-średich dla daych klasyczych, która uożliwia klasyfację obiektów syboliczych oisywaych wyłączie zieyi iterwałowyi [zob. De Carvalho [007], s. 44]. Algoryt ieadatacyjej rozytej klasyfac k-średich dla daych iterwałowych rzedstawia się astęująco [De Carvalho 007, s. 45]:. Ustal liczbę klas c a które zostaie dokoay odział zbioru obiektów.. Wybierz wielkość araetru rozycia. 3. Ustal aksyalą liczbę iterac T oraz kryteriu stou Dla każdego obiektu ustal stoień rzyależości do i -tej klasy c u 0 u, gdzie i,, c liczba klas. i 5. Dla ustaloych u wyzacz wsółrzęde rototyów klas zgodie ze wzorai: u u a k, () k u u b k, () gdzie: doly ( góry) kraiec rzedziału j -tej zieej j,, w i -tej i,,c klasie. k,, uer obiektu. k 6. Dla obliczoych, oblicz stoień rzyależości obiektów do klas zgodie ze wzore: gdzie: u a doly ( obiekcie, h j j a b a b jh jh b góry) kraiec rzedziału j -tej zieej j,, ozostałe ozaczeia jak we wzorach i., w k -ty 7. Oblicz wartość fukc-kryteriu W wykorzystując wzór: c Wt u a b, (4) i k j 3 (3)

4 gdzie: ozaczeia jak we wzorach, i 3. Jeżeli t t W W lub osiągięto aksyalą ustaloą liczbę iterac T wówczas ależy zakończyć działaie algorytu w rzeciwy rzyadku rzejdź do kroku 5, zwiększając liczbę dokoaych iterac o jede. Do ocey jakości rozytej klasyfac k-średich dla daych syboliczych zarooowao iary heterogeiczości: R i R (overall heterogeeity idex). Jedakże ze względu a sosób ich iterretac oraz rzyjoway zakres wartości tych iar w artykule roouje się azwę iary hoogeiczości R i R. Miary te rzyjują wartości z zakresu [0; ]. I wyższe wartości tych iar, ty otrzyae klasy są bardziej hoogeicze, a rerezetaci klas w leszy i ełiejszy sosób odzwierciedlają (rerezetują) obiekty zajdujące się w tych klasach [De Carvalho 007, s. 48]. Miary hoogeiczości R i R są obliczae zgodie ze wzorai: gdzie: B R R B, (5) B W B, (6) B W c u i j j, i j (7) B c u i i j, (8) j j W, (9) c u a kj b kj i k j W, (0) c u a kj b kj i k j, u ahk hi bhk hi u a b h k, j, () k ozostałe ozaczeia jak we wzorach,, 3, 6 i 7. Paraetr hk hi hk to wektor wag związaych z odległościai obiektów od rototyów klas. Paraetr te a szczególe zaczeie dla adatacyjej rozytej klasyfac k-średich dla daych iterwałowych, gdzie odlega obliczaiu w każdy kroku itera- hi 4

5 cyjy, a jego zastosowaie a a celu otrzyaie bardziej jedorodych klas [zob. De Carvalho 007, s ]. 4. Przykład eiryczy Zbiór ierwszy (odel I) to dae ochodzące z rograu SODAS (l CAR.SDS) oisujący 33 arki saochodów zieyi różych tyów. Do badaia wybrao fraget zbioru daych (0 arek saochodów) oraz ziee sybolicze iterwałowe (.i. cea w euro, rzysieszeie, długość, wysokość, szerokość, rozstaw osi). Zbiór drugi (odel II) to rówież dae ochodzące z rograu SODAS (l ABALO- NE.SDS) oisujący 4 gatuki śliaków orskich z rodziy uchowców (Haliotidae). Zbiór oisyway jest siedioa zieyi syboliczyi iterwałowyi (.i. długość, średica uszli, waga ięczaka). Zbiór trzeci (odel III) to 50 obiektów odzieloych a ięć iezbyt dobrze searowaych klas oisywaych rzez dwie ziee sybolicze iterwałowe. Ziee w ty zbiorze są losowae iezależie z dwuwyiarowego rozkładu oralego o średich (5, 5), ( 3, 3), (3, 3), (0, 0), ( 5, 5) oraz acierzy kowariac, 0,9). ( jj jl Zbiór te wygeerowao z wykorzystaie fukc cluster.ge z akietu cluster- Si. Model te ie zawiera zieych zakłócających czy obserwac odstających. Klasyfac dokoao rzyjując liczbę klas od do 5 rzy dwóch araetrach rozycia i 4. Wyi klasyfac (w sesie iar hoogeiczości R i R ) zawarto w tab. i. Tabela. Wartości iar hoogeiczości w zależości od liczby klas ( ) R L. Nr odelu Liczba klas I 0,34 0,45 0,65 0,79. II 0,3 0,6 0,89 0,67 3. III 0,37 0,53 0,78 0,98 R. I 0,37 0,50 0,7 0,83. II 0,6 0,66 0,88 0,7 3. III 0,43 0,57 0,8 0,99 Źródło: obliczeia włase z wykorzystaie rograu Excel. Wielkości araetru rozycia jest jedy z częściej wykorzystywaych w literaturze rzediotu (or. De Carvalho 007; El-Sobaty i Isail 998). Paraetr 4 rzyjęto cele srawdzeia wływu zia jego wielkości a hoogeiczość klas. 5

6 Tabela. Wartości iar hoogeiczości w zależości od liczby klas ( 4) R L. Nr odelu Liczba klas I 0, 0,3 0,44 0,64. II 0,06 0,0 0,63 0,43 3. III 0, 0,6 0,40 0,75 R. I 0,30 0,38 0,5 0,69. II 0,09 0,6 0,70 0,48 3. III 0,0 0,33 0,5 0,85 Źródło: obliczeia włase z wykorzystaie rograu Excel. Niezależie od rzyjętego w badaiu araetru rozycia otrzyao takie sae wyi (w sesie jej hoogeiczości oszczególych klas). Dla zbioru saochodów osobowych ajleszą strukturą jest struktura ięciu klas. W rzyadku zbioru śliaków orskich ajleszy odziałe jest odział a cztery klasy. Dla sztuczie wygeerowaego zbioru daych rozyta klasyfacja k-średich dla daych syboliczych wskazuje a strukturę ięciu klas. W rzyadku tego odelu orówao wyi klasyfac rozytej ze zaą strukturą klas, rzyjując że obiekt jest rzydzieloy do klasy o ajwiększy stoiu rzyależości. Otrzyao w te sosób trafość klasyfac a ozioie 0,74. Miary ocey hoogeiczości klas R oraz R wskazują w rzyadku tych zbiorów daych oraz rzyjętych araetrów odobą hoogeiczość struktur klas. 5. Podsuowaie Istoty ograiczeie rozytej klasyfac k-średich dla daych iterwałowych jest fakt, że ozwala a aalizowaie obiektów syboliczych oisywaych wyłączie zieyi iterwałowyi. Pewe rozwiązaie tego ograiczeia jest rooowae w artykule Yag, Hwag, Che [004]. Drugi z ograiczeń rozytej klasyfac k-średich dla daych iterwałowych jest fakt, że wykorzystuje o w obliczeiach odległość euklidesową, leszy rozwiązaie w rzyadku daych syboliczych jest wykorzystaie iar odległości adekwatych dla tego tyu daych (. De Carvalho, Hausdorffa czy Ichio i Yaguchiego). Z rzerowadzoych badań wya, że zwiększaie liczby klas oraz wielkości araetru rozycia rowadzi do sadku hoogeiczości klas. Wyi w odoby brzieiu są forułowae dla rozytej klasyfac k-średich dla daych klasyczych [or. Lasek 00, s. 46]. 6

7 Kierukie dalszych rac owio stać się orówaie rozytej klasyfac k-średich dla daych syboliczych oraz adatacyjej rozytej klasyfac k-średich dla daych syboliczych z iyi etodai klasyfac rozytej dla daych syboliczych (. etodą iraid). Iy obszare dalszych badań owio stać się zbadaie skuteczości rozytej klasyfac k-średich dla daych syboliczych w rzyadku, gdy w zbiorze zieych zajdują się ziee zakłócające, a zbiorze daych obserwacje odstające. Literatura: Bezdek J.C. (98), Patter recogitio with fuzzy objective fuctio algoriths, Pleu Press, New York. Bock H.-H., Diday E., (red.) (000), Aalysis of sybolic data. Exlaatory ethods for extractig statistical iforatio fro colex data, Sriger-Verlag, Berli- Heidelberg. De Carvalho F.A.T. (007), Fuzzy c-eas clusterig ethods for sybolic iterval data, Patter Recogitio Letters, Volue: 8, Issue: 4, s Du J.C. (973), A fuzzy relative of the ISODATA rocess ad its use i detectig coact well-searated clusters, Joural of Cyberetics 3, s El-Sobaty Y., Isail M.A. (998), Fuzzy clusterig for sybolic data, IEEE Trasactios o Fuzzy Systes, Volue: 6, No., s Lasek M. (00), Data iig. Zastosowaie w aalizach i oceach klietów bakowych. Biblioteka Meedżera i Bakowca, Warszawa. Milliga G.W. (996), Clusterig validatio: results ad ilicatios for alied aalyses, I: P. Arabie, L.J. Hubert, G. de Soete (Eds.), Clusterig ad classificatio. World Scietific, Sigaore, s Pełka M. (009), Porówaie strategii klasyfac daych syboliczych, Prace Naukowe UE we Wrocławiu (w druku). Verde R. (004), Clusterig ethods i sybolic data aalysis, [w:] D. Baks, L. House, E. R. McMorris, P. Arabie, W. Gaul (red.), Classificatio, clusterig ad data iig alicatios, Sriger-Verlag, Heidelberg, s Yag M.S., Hwag P.Y., Che D.H. (004), Fuzzy clusterig algoriths for ixed feature variables, Fuzzy Sets ad Systes, Volue: 4, Issue:, s

8 Marci Pełka Uiwersytet Ekooiczy we Wrocławiu Rozyta klasyfacja k-średich dla daych syboliczych (Streszczeie) Artykuł rzedstawia adatacyją i ieadatacyją klasyfację k-średich dla daych syboliczych. Obydwie te etody zajdują zastosowaie wyłączie dla iterwałowych zieych syboliczych. W artykule rzedstawioo także tyy zieych syboliczych. W części eiryczej zastosowao ieadatacyją klasyfację k-średich dla rzykładowych daych syboliczych. Fuzzy c-eas clusterig for sybolic data (Suary) This aer itroduces adative ad o-adative fuzzy c-eas clusterig ethods for sybolic data. Both ethods are suitable oly for iterval-valued sybolic data. Article resets also tyes of sybolic variables. I the eirical art of the aer o-adative fuzzy c-eas clusterig ethod was alied to exelary sybolic data. 8

Rozkłady statystyk z próby Twierdzenia graniczne

Rozkłady statystyk z próby Twierdzenia graniczne Rozkłady statystyk z róby Twierdzeia graicze PRÓBA LOSOWA Próbą losową rostą azyway ciąg -zieych losowych iezależych i osiadających jedakowe rozkłady takie jak rozkład zieej losowej w oulacji geeralej

Bardziej szczegółowo

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji

Bardziej szczegółowo

PRACE NAUKOWE AKADEMII EKONOMICZNEJ WE WROCŁAWIU. Ekonometria 15. Marek Walesiak. 1. Wstęp

PRACE NAUKOWE AKADEMII EKONOMICZNEJ WE WROCŁAWIU. Ekonometria 15. Marek Walesiak. 1. Wstęp PRACE NAUKOWE AKADEMII EKONOMICZNEJ WE WROCŁAWIU Nr 1096------------------------------------------------ 2005 Ekooetria 15 Marek Walesiak UOGÓLNIONA MIARA ODLEGŁOŚCI GDM A WSPÓŁCZYNNIK KORELACJI LINIOWEJ

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.

Bardziej szczegółowo

Anna Czapkiewicz Przykłady zależności pomiędzy dochodem a wydatkami na konsumpcję w przypadku losowości zmiennej niezależnej

Anna Czapkiewicz Przykłady zależności pomiędzy dochodem a wydatkami na konsumpcję w przypadku losowości zmiennej niezależnej Przykłady zależości poiędzy dochode a wydatkai a kosupcję w przypadku losowości zieej iezależej Maagerial Ecooics, 65-74 27 Ekooia Meedżerska 27, r, s. 65 74 * Przykłady zależości poiędzy dochode a wydatkai

Bardziej szczegółowo

χ 2 = + 2π 2 Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: σ

χ 2 = + 2π 2 Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: σ χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep d π Rozważy

Bardziej szczegółowo

CZ.2. SYNTEZA STRUKTURY MECHANIZMU

CZ.2. SYNTEZA STRUKTURY MECHANIZMU CZ.. SYNTEZA STRUKTURY MECHANIZMU rzystęując do sytezy struktury mechaizmu łaskiego stawiamy astęujące ytaia: jaki ruch ma wykoywać czło lub człoy robocze: ostęowy (w szczególości ostęowy rostoliiowy),

Bardziej szczegółowo

Agenda. Piotr Sawicki Optymalizacja w transporcie. Politechnika Poznańska WIT ZST 1. Kluczowe elementy wykładu

Agenda. Piotr Sawicki Optymalizacja w transporcie. Politechnika Poznańska WIT ZST 1. Kluczowe elementy wykładu trasporcie Tytuł: 05 Klasyfikaca odeli plaowaia sieci Modele: PoPr_KT; PoPr_KT+KM Zastosowaie prograowaia liiowego Autor: Piotr SAWICKI Zakład Systeów Trasportowych WIT PP piotr.sawicki@put.poza.pl piotr.sawicki.pracowik.put.poza.pl

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Statystyka Wzory I. Analiza struktury

Statystyka Wzory I. Analiza struktury Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej

Bardziej szczegółowo

4. MODELE ZALEŻNE OD ZDARZEŃ

4. MODELE ZALEŻNE OD ZDARZEŃ 4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału Istrukcja do ćwiczeń laboratoryjych z przediotu: Badaia operacyje Teat ćwiczeia: Probley przydziału Zachodiopoorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki Szczeci 20 Opracował:

Bardziej szczegółowo

Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej:

Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: Rozkład χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

Rozdział 4 Model teoretyczny 40

Rozdział 4 Model teoretyczny 40 4. Model teoretyczy ozdział 4 Model teoretyczy 4 4. ówaia fizycze. Klasycze odele teoretycze oisujące zachowaie się betou zwye ostulują istieie lastyczości tego ateriału [7, 5]. W ostatich latach coraz

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby METODY PROBABILISTYCZE I STATYSTYKA WYKŁAD 0: ROZKŁADY STATYSTYK Z PRÓBY. PRZEDZIAŁY UFOŚCI. Rozkłady tatytyk z róby Statytyką azyway zieą loową, będącą fkcją zieych loowych,,..., taowiących róbę. Statytyka

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

Materiał pomocniczy dla nauczycieli kształcących w zawodzieb!

Materiał pomocniczy dla nauczycieli kształcących w zawodzieb! Projekt wsp,ł.iasoway ze 4rodk,w Uii Europejskiej w ramach Europejskiego Fuduszu Społeczego Materiał pomociczy dla auczycieli kształcących w zawodzieb "#$%&'( ")*+,"+(' -'#.,('#. przygotoway w ramach projektu

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

O PEWNEJ MOŻLIWOŚCI UWZGLĘDNIENIA SUBSTYTUCJI NAKŁADÓW W MODELACH DEA. 1. Wstęp

O PEWNEJ MOŻLIWOŚCI UWZGLĘDNIENIA SUBSTYTUCJI NAKŁADÓW W MODELACH DEA. 1. Wstęp B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2007 Bogusław GUZIK* O PEWNEJ MOŻLIWOŚCI UWZGLĘDNIENIA SUBSTYTUCJI NAKŁADÓW W MODELACH DEA W klasyczych wariatach etody DEA (p. CCR czy super-efficiecy

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Autoatyki Katedra Inżynierii Systeów Sterowania Metody otyalizacji Metody rograowania nieliniowego II Materiały oocnicze do ćwiczeń laboratoryjnych T7 Oracowanie:

Bardziej szczegółowo

METODY SKALOWANIA WIELOWYMIAROWEGO OBIEKTÓW SYMBOLICZNYCH

METODY SKALOWANIA WIELOWYMIAROWEGO OBIEKTÓW SYMBOLICZNYCH Marcin Pełka Akademia Ekonomiczna we Wrocławiu METODY SKALOWANIA WIELOWYMIAROWEGO OBIEKTÓW SYMBOLICZNYCH 1. Wprowadzenie Metody skalowania wielowymiarowego obiektów symbolicznych, podobnie jak w przypadku

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Ćwiczeie 5 OKREŚLENIE CARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Wykaz ważiejszych ozaczeń c 1 rędkość bezwzględa cieczy a wlocie do wirika, m/s c rędkość bezwzględa cieczy a wylocie

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Analiza nośności pionowej pojedynczego pala

Analiza nośności pionowej pojedynczego pala Poradnik Inżyniera Nr 13 Aktualizacja: 09/2016 Analiza nośności ionowej ojedynczego ala Program: Plik owiązany: Pal Demo_manual_13.gi Celem niniejszego rzewodnika jest rzedstawienie wykorzystania rogramu

Bardziej szczegółowo

Chemiczne metody analizy ilościowej (laboratorium)

Chemiczne metody analizy ilościowej (laboratorium) Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay

Bardziej szczegółowo

Podejścia w skalowaniu wielowymiarowym obiektów symbolicznych

Podejścia w skalowaniu wielowymiarowym obiektów symbolicznych Marcin Pełka Uniwersytet Ekonomiczny we Wrocławiu Katedra Ekonometrii i Informatyki Podejścia w skalowaniu wielowymiarowym obiektów symbolicznych 1. Wprowadzenie Metody skalowania wielowymiarowego obiektów

Bardziej szczegółowo

130 Nr 11 Listopad 2014 r.

130 Nr 11 Listopad 2014 r. orówaie mocy strat eergetyczych w omie wyorowej o zmieej wydajości, określoych bez uwzględieia bądź z uwzględieiem mocy ściskaia oleju hydrauliczego Zygmut aszota 1. Wrowadzeie W racach [1 4] autor dokoał

Bardziej szczegółowo

Wykład 10 Wnioskowanie o proporcjach

Wykład 10 Wnioskowanie o proporcjach Wykład 0 Wioskowaie o roorcjach. Wioskowaie o ojedyczej roorcji rzedziały ufości laowaie rozmiaru róby dla daego margiesu błędu test istotości dla ojedyczej roorcji Uwaga: Będziemy aalizować roorcje odobie

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Rynek funduszu inwestycyjnych RYNEK. Liczba FI działających w Polsce. Lokaty funduszy inwestycyjnych 2015-05-17. Liczba TFI i FI działających w Polsce

Rynek funduszu inwestycyjnych RYNEK. Liczba FI działających w Polsce. Lokaty funduszy inwestycyjnych 2015-05-17. Liczba TFI i FI działających w Polsce 199 1993 1994 1995 1996 1997 1998 1999 1 3 4 5 6 7 8 9 1 15-5-17 11 1 13 Liczba TFI i FI działających w Polce yek uduzu iwetycyjych YNEK 7 6 5 4 3 1 416 364 71 79 313 194 81 94 11 11 144 6 1 1 1 3 7 1

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności

Estymacja przedziałowa - przedziały ufności Estymacja rzedziałowa - rzedziały ufości Próbę -elemetową charakteryzujemy jej arametrami ( x, s, s ). SłuŜą oe do ocey wartości iezaych arametrów oulacji (m, σ, σ). Nazywamy je estymatorami uktowymi iezaych

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Wp lyw optymalizacji kopalń odkrywkowych na rozwiazanie bilateralnego monopolu: kopalnia & elektrownia w d lugim okresie

Wp lyw optymalizacji kopalń odkrywkowych na rozwiazanie bilateralnego monopolu: kopalnia & elektrownia w d lugim okresie MPRA Muich Persoal RePc Archive W lyw otymalizacji koalń odkrywkowych a rozwiazaie modelu bilateralego mooolu: koalia & elektrowia w d lugim okresie Leszek Jurdziak 23. October 2006 Olie at htt://mra.ub.ui-mueche.de/531/

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnoolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Koernika w Toruniu Wyższa Szkoła Informatyki i Ekonomii

Bardziej szczegółowo

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora. D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Składka ubezpieczeniowa

Składka ubezpieczeniowa Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014. Tomasz Zapart *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014. Tomasz Zapart * A C T A N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014 Toasz Zapart * CZYNNIKI WPŁYWAJĄCE NA WSKAŹNIK SZKODOWOŚCI ZE SZCZEGÓLNYM WZGLĘDNIENIEM BEZPIECZENIA FLOTY POJAZDÓW 1.

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

WYGRYWAJ NAGRODY z KAN-therm

WYGRYWAJ NAGRODY z KAN-therm Regulami Kokursu I. POSTANOWIENIA OGÓLNE. 1. Regulami określa zasady KONKURSU p. Wygrywaj agrody z KAN-therm (dalej: Kokurs). 2. Orgaizatorem Kokursu jest KAN Sp. z o.o. z siedzibą w Białymstoku- Kleosiie,

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Jak określić stopień wykorzystania mocy elektrowni wiatrowej?

Jak określić stopień wykorzystania mocy elektrowni wiatrowej? Jak określić stoień wykorzystania mocy elektrowni wiatrowej? Autorzy: rof. dr hab. inŝ. Stanisław Gumuła, Akademia Górniczo-Hutnicza w Krakowie, mgr Agnieszka Woźniak, Państwowa WyŜsza Szkoła Zawodowa

Bardziej szczegółowo

Podstawowe pojęcia. Próba losowa. Badanie próby losowej

Podstawowe pojęcia. Próba losowa. Badanie próby losowej METODY PROBABILISTYCZNE I STATYSTYKA WYKŁAD 8: STATYSTYKA OPISOWA. ROZKŁADY PRAWDOPODOBIEŃSTWA WYSTĘPUJĄCE W STATYSTYCE. Małgorzata Krętowska Wydział Iforatyki Politechika Białostocka Podstawowe pojęcia

Bardziej szczegółowo

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS Ekoomia Meedżerska 2011, r 10, s. 161 172 Jacek Wolak *, Grzegorz Pociejewski ** Aaliza popytu a alkohol w Polsce z zastosowaiem modelu korekty błędem AIDS 1. Wprowadzeie Okres trasformacji, zapoczątkoway

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Ciągi liczbowe z komputerem

Ciągi liczbowe z komputerem S t r o a 1 dr Aa Rybak Istytut Iformatyki Uiwersytet w Białymstoku Ciągi liczbowe z komputerem Wprowadzeie W artykule zostaie zaprezetoway sposób wykorzystaia arkusza kalkulacyjego do badaia własości

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION JEMIELITA Grzegorz 1 KOZYRA Zofia drgaia, belka, odłoŝe sręŝyste DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM Praca dotyczy wyzaczaia drgań belki a dwuarametrowym odłoŝu sręŝystym obciąŝoej symetryczie

Bardziej szczegółowo

Podstawy matematyki nansowej

Podstawy matematyki nansowej Podstawy matematyki asowej Omówimy tutaj odstawowe oj cia matematyki asowej. Jest to dobre miejsce, gdy» zagadieia te wi» si z ci gami, w szczególo±ci z ci giem arytmetyczym i geometryczym. Omówimy zagadieie

Bardziej szczegółowo

Mirosława Gazińska. Magdalena Mojsiewicz

Mirosława Gazińska. Magdalena Mojsiewicz STUDIA DEMOGRAFICZNE 1(145) 2004 Mirosława Gazińska Katedra Ekoometrii i Statystyki Magdalea Mojsiewicz Katedra Ubezpieczeń i Ryków Kapitałowych Uiwersytet Szczeciński MODELOWANIE CZASU TRWANIA ŻYCIA BEZ

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

OPTYMALIZACJA LOKALIZACJI DLA NOWOPOWSTAŁEGO OBIEKTU

OPTYMALIZACJA LOKALIZACJI DLA NOWOPOWSTAŁEGO OBIEKTU STUDI I PRCE WYDZIŁU NUK EKONOMICZNYCH I ZRZĄDZNI NR 36, T. a Turczak * Zachodiopoorska Szkoła Bizesu w Szczeciie Patrycja Zwiech ** Uiwersytet Szczeciński 2 OPTYMLIZCJ LOKLIZCJI DL NOWOPOWSTŁEGO OBIEKTU

Bardziej szczegółowo

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci Rozkłady tatytyk z próby Metody probabilitycze i tatytyka Wykład : Rozkłady tatytyk z próby. rzedziały ufoci Małgorzata Krtowka Wydział Iformatyki olitechika Białotocka e-mail: mmac@ii.pb.bialytok.pl troa

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami.

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami. Procesy Markowa Proces stochastyczny { X } t t nazywamy rocesem markowowskim, jeśli dla każdego momentu t 0 rawdoodobieństwo dowolnego ołożenia systemu w rzyszłości (t>t 0 ) zależy tylko od jego ołożenia

Bardziej szczegółowo

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej

Bardziej szczegółowo

Janusz Górczyński. Prognozowanie i symulacje w zadaniach

Janusz Górczyński. Prognozowanie i symulacje w zadaniach Wykłady ze statystyki i ekonometrii Janusz Górczyński Prognozowanie i symulacje w zadaniach Wyższa Szkoła Zarządzania i Marketingu Sochaczew 2009 Publikacja ta jest czwartą ozycją w serii wydawniczej Wykłady

Bardziej szczegółowo

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI

KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI KOMPETENCJE EKSPERTÓW W INFORMATYCZNYM SYSTEMIE WSPOMAGANIA DECYZJI Ryszard Budziński, Marta Fukacz, Jarosław Becker, Uiwersytet Szczeciński, Wydział Nauk Ekoomiczych i Zarządzaia, Istytut Iformatyki w

Bardziej szczegółowo

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Anna Janiga-Ćmiel WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Wrowadzenie W rozwoju każdego zjawiska niezależnie od tego, jak rozwój ten jest ukształtowany rzez trend i wahania, można wyznaczyć

Bardziej szczegółowo

2. Szybka transformata Fouriera

2. Szybka transformata Fouriera Szybka transforata Fouriera Wyznaczenie ciągu (Y 0, Y 1,, Y 1 ) przy użyciu DFT wyaga wykonania: nożenia zespolonego ( 1) razy, dodawania zespolonego ( 1) razy, przy założeniu, że wartości ω j są już dane

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW dr Bartłoiej Rokicki Katedra akroekonoii i Teorii Handlu Zagranicznego Wydział Nauk konoicznych UW dr Bartłoiej Rokicki Założenia analizy arshalla-lernera Chcey srawdzić, czy derecjacja waluty krajowej

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Dokładność pomiaru wybranymi dalmierzami laserowymi w środowisku leśnym*

Dokładność pomiaru wybranymi dalmierzami laserowymi w środowisku leśnym* Michał Brach, Kail Bielak, Staisław Drozdowski Dokładość poiaru wybrayi dalierzai laserowyi w środowisku leśy* sylwa 57 (9): 67 677, 03 Measureets accuracy of selected laser ragefiders i the forest eviroet

Bardziej szczegółowo

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW

BADANIE STATYSTYCZNEJ CZYSTOŚCI POMIARÓW INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII RODUKCJI I TECHNOLOGII MATERIAŁÓW OLITECHNIKA CZĘSTOCHOWSKA RACOWNIA DETEKCJI ROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-6 BADANIE STATYSTYCZNEJ CZYSTOŚCI OMIARÓW

Bardziej szczegółowo

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA?

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA? EKONOMETRIA Temat wykładu: Co to jest model ekoometryczy? Dobór zmieych objaśiających w modelu ekoometryczym Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapata Tarapata@isi.wat..wat.edu.pl http://

Bardziej szczegółowo