Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania"

Transkrypt

1 Politechnika Gdańska Wydział Elektrotechniki i Autoatyki Katedra Inżynierii Systeów Sterowania Metody otyalizacji Metody rograowania nieliniowego II Materiały oocnicze do ćwiczeń laboratoryjnych T7 Oracowanie: Piotr Hirsch, gr inż. Kaziierz Duzinkiewicz, dr hab. inż. Gdańsk,

2 1. Wstę Istnieje wiele algorytów nuerycznego rozwiązywania zadania otyalizacji nieliniowej z ograniczeniai, tj. zadania ostaci: in f() g() = 0 (1) h() 0 Algoryty te odzielić ożna na dwie gruy: Algoryty bezośrednie, w których w kolejnych iteracjach oszukuje się unktów będących wrost rzybliżonyi rozwiązaniai zadania (1), tzn. że każde z ośrednich rozwiązań usi sełniać układ ograniczeń Algoryty ośrednie, w których rozwiązanie zadania uzyskuje się, zastęując ierwotne zadanie inializacji z ograniczeniai zadanie lub ciągie zadań bez ograniczeń Do gruy algorytów bezośrednich zaliczyć ożna etody oszukiwań losowych (etody Monte Carlo), które, w duży uroszczeniu, olegają na wybraniu i systeatyczny rzeszukiwaniu ewnej losowej rerezentacji zbioru douszczalnego. Kolejnyi ważnyi algorytai z tej gruy są etody sekwencyjnego rograowania liniowego i kwadratowego. Polegają ona na rzybliżony rozwiązywaniu zadania ierwotnego, orzez zastąienie go ciągie zadań rograowania liniowego (kwadratowego). Każde z tych zadań otrzyuje się, orzez zastąienie funkcji celu i funkcji ograniczeń w dany unkcie ich odowiednii (liniowyi lub kwadratowyi) rzybliżeniai. Wsonieć ożna także o należących do tej kategorii etodach kierunków douszczalnych. W gruie algorytów ośrednich wyróżniay iędzy innyi: algoryt transforacji ziennych i zasługujące na szczególną uwagę algoryty funkcji kary. Algoryty transforacji ziennych olegają na odwzorowaniu zbioru douszczalnego w rzestrzeń R n, w której, orzez odstawienia nowych ziennych, zadanie rzyjie ostać bez ograniczeń. 2. Metody funkcji kary Metody z tej gruy olegają na odyfikacji funkcji celu rzez wrowadzenie do niej wyrażenia rerezentującego karę za rzekroczenie ograniczeń (tzw. Funkcję kary). Nastęnie do tak zienionej funkcji stosujey którąś z etod oszukiwania ekstreu bez ograniczeń. W zależności od ostaci oraz sosobu wrowadzenia funkcji kary ożna wyróżnić trzy jej tyy: a) Wewnętrzną funkcję kary (nazywaną często funkcją barierową) bariera unieożliwiająca ouszczenie zbioru rozwiązań douszczalnych b) Zewnętrzną funkcję kary kara za niesełnienie warunków ograniczeń c) Mieszaną funkcję kary ołączenie oddziaływań zewnętrznej i wewnętrznej funkcji kary. Kara owinna być funkcją ciągła i rzyjować wartości większe do 0, gdy dany unkt nie sełnia ograniczeń zadania, oraz być równa 0, gdy jest unkte douszczalny.

3 3. Wewnętrzna funkcja kary Wewnętrzna funkcja kary jest stosowana wyłącznie w odniesieniu do ograniczeń nierównościowych. Zadanie rozatrywane w ty rzyadku a nastęującą ostać: in f() h i () 0, i = 1,, W etodach wewnętrznej funkcji kary unkt oczątkowy oraz wszystkie unkty wyznaczone w kolejnych iteracjach uszą należeć do wnętrza zbioru unktów douszczalnych. Kara jest nakładana za zbliżanie się do brzegu zbioru unktów douszczalnych. Zadanie o wrowadzeniu funkcji kary rzyjuje ostać: in f() + μk() K() = φ[h i ()] i=1

4 Funkcja kary usi być funkcją jednej ziennej rzeczywistej, ciągła na zbiorze {y: y < 0} i usi onadto sełniać warunek: φ(y) 0, jeśli y < 0 i li φ(y) = + y 0 Najczęściej stosuje się dwie rzykładowe ostacie kary K(): 1 K() = i=1 funkcja odwrotna h i () K() = i=1 ln( h i ()) funkcja logaryticzna W etodzie funkcji barierowej stosuje się ściśle alejący, zbieżny do 0 ciąg wartości araetru kary μ. 4. Zewnętrzna funkcja kary Zewnętrzna funkcja kary oże być stosowana zarówno do ograniczeń równościowych jak i nierównościowych. W niniejszy oracowaniu rzedstawione zostanie jedynie zastosowanie w rzyadku wystąienia ograniczeń równościowych: in f() g j () = 0, j = 1,, Zadanie oocnicze w ty wyadku a ostać: in f() + P() P() = α j θ[g j ()] Karę nakłada się za niesełnienie ograniczeń i usi sełniać warunek: = 0, dla X P() = { > 0, dla X gdzie orzez X oznaczony został zbiór rozwiązań douszczalnych. Poularnie stosuje się funkcję kary ostaci: P() = α j g j 2 () W etodzie zewnętrznej funkcji kary stosuje się araetr kary większy od 0 i ściśle rosnący.

5 5. Mieszana funkcja kary Zastosowanie ieszanej funkcji kary jest bardzo wygodne rzy rozwiązywaniu zadań z ograniczeniai zarówno równościowyi jak i nierównościowyi, tj. dla zadania ostaci: in f() g j () = 0, j = 1,, h i () 0, i = 1,, Za ieszaną funkcję kary rzyjujey ołączenie dwóch orzednich etod: in f() + M() M() = μk() + P() Wybierając funkcję barierową w ostaci logaryticznej i funkcje zewnętrzną kary w ostaci nory l 2 otrzyujey: M() == μ ln( h i ()) + α j g 2 j () i=1

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING Maszyna Wektorów Nośnych Suort Vector Machine SVM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami.

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami. Procesy Markowa Proces stochastyczny { X } t t nazywamy rocesem markowowskim, jeśli dla każdego momentu t 0 rawdoodobieństwo dowolnego ołożenia systemu w rzyszłości (t>t 0 ) zależy tylko od jego ołożenia

Bardziej szczegółowo

Opis kształtu w przestrzeni 2D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH

Opis kształtu w przestrzeni 2D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Ois kształtu w rzestrzeni 2D Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Krzywe Beziera W rzyadku tych krzywych wektory styczne w unkach końcowych są określane bezośrednio

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna

Pracownia elektryczna i elektroniczna Pracownia elektryczna i elektroniczna Srawdzanie skuteczności ochrony rzeciworażeniowej 1.... 2.... 3.... Klasa: Grua: Data: Ocena: 1. Cel ćwiczenia: Celem ćwiczenia jest zaoznanie ze sosobami srawdzania

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna

Pracownia elektryczna i elektroniczna Pracownia elektryczna i elektroniczna Srawdzanie skuteczności ochrony rzeciworażeniowej 1.... 2.... 3.... Klasa: Grua: Data: Ocena: 1. Cel ćwiczenia: Celem ćwiczenia jest zaoznanie ze sosobami srawdzania

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Obciążenie ciągłe równoierne ecanika teoretyczna Wykład nr Wyznaczanie reakcji. eki rzegubowe. ay. Siły wewnętrzne. Obciążenie ciągłe trójkątne iara wyadkowej obciążenia rozłożonego iniowo równa jest ou

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego:

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego: ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1 Wykład 3 3. Otymalizacja z ograniczeniami Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia otymalizacyjnego: g i HxL 0, i = 1, 2,..., m (3.1)

Bardziej szczegółowo

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017 Teoria informacji i kodowania Ćwiczenia Sem. zimowy 06/07 Źródła z amięcią Zadanie (kolokwium z lat orzednich) Obserwujemy źródło emitujące dwie wiadomości: $ oraz. Stwierdzono, że częstotliwości wystęowania

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Politechnika Gdańska Wydział Elektrotechniki i Autoatyki Katedra Inżynierii Systeów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone prograowanie produkcji z wykorzystanie etody

Bardziej szczegółowo

PROSTA I ELIPSA W OPISIE RUCHU DWU CIAŁ

PROSTA I ELIPSA W OPISIE RUCHU DWU CIAŁ D I D A C T I C S O F M A T H E M A T I C S No. 4 (8) 007 (Wrocław) PROSTA I ELIPSA W OPISIE RUCHU DWU CIAŁ Abstract. In this aer is shown a concet of exlanation of the oveent and collision of two objects

Bardziej szczegółowo

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość

Bardziej szczegółowo

Praca dyplomowa inżynierska

Praca dyplomowa inżynierska Wydział Mateatyki kierunek studiów: Mateatyka Stosowana secjalność: - Praca dyloowa inżynierska PODWÓJNY MODEL Q-WYBORCY Z NONKONFORMIZMEM NA SIECIACH MAŁEGO ŚWIATA Paweł Górecki słowa kluczowe: odel q-wyborcy

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże o Imerium Liczb Część 08. Liczby Mersenne a, Fermata i Inne Liczby Rozdział 5 5. Okresy rozwinięć liczb wymiernych Andrzej Nowicki 20 maja 2012, htt://www.mat.uni.torun.l/~anow Sis treści 5 Okresy

Bardziej szczegółowo

Prawa wzajemności Gaussa

Prawa wzajemności Gaussa Kamil Sikorski Prawa wzajemności Gaussa Pytanie 1. Dla jakich liczb ierwszych kongruencja x 2 a() ma rozwiązanie? 1. Theorema Aureum Celem tej części jest okazanie, że x 2 q() ma rozwiązanie ma je x 2

Bardziej szczegółowo

Rachunek zdań. Prawa logiczne (tautologie) Tautologią nazywamy taką funkcję logiczną, która przy dowolnym podstawieniu wartości

Rachunek zdań. Prawa logiczne (tautologie) Tautologią nazywamy taką funkcję logiczną, która przy dowolnym podstawieniu wartości Prawa logiczne (tautologie) Tautologią nazywamy taką funkcję logiczną, która rzy dowolnym odstawieniu wartości zmiennych jest zawsze rawdziwa. Zadaniem logiki jest m.in. oisanie tych schematów za omocą

Bardziej szczegółowo

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA

INTERPRETACJA WYNIKÓW BADANIA WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA Górnictwo i Geoinżynieria Rok 3 Zeszyt 008 Janusz aczmarek* INTERPRETACJA WYNIÓW BADANIA WSPÓŁCZYNNIA PARCIA BOCZNEGO W GRUNTACH METODĄ OPARTĄ NA POMIARZE MOMENTÓW OD SIŁ TARCIA 1. Wstę oncecję laboratoryjnego

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. Badanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimiady Matematycznej Gimnazjalistów Liga zadaniowa 01/01 Seria VII styczeń 01 rozwiązania zadań 1. Udowodnij, że dla dowolnej dodatniej liczby całkowitej n liczba n! jest odzielna rzez n!

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

GLOBALNE OBLICZANIE CAŁEK PO OBSZARZE W PURC DLA DWUWYMIAROWYCH ZAGADNIEŃ BRZEGOWYCH MODELOWANYCH RÓWNANIEM NAVIERA-LAMEGO I POISSONA

GLOBALNE OBLICZANIE CAŁEK PO OBSZARZE W PURC DLA DWUWYMIAROWYCH ZAGADNIEŃ BRZEGOWYCH MODELOWANYCH RÓWNANIEM NAVIERA-LAMEGO I POISSONA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s.8-86, Gliwice 007 GLOBALNE OBLICZANIE CAŁEK PO OBSZARZE W PURC DLA DWUWYMIAROWYCH ZAGADNIEŃ BRZEGOWYCH MODELOWANYCH RÓWNANIEM NAVIERA-LAMEGO I POISSONA EUGENIUSZ

Bardziej szczegółowo

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych J. Szantyr Wykład nr 6 Przeływy w rzewodach zamkniętych Przewód zamknięty kanał o dowolnym kształcie rzekroju orzecznego, ograniczonym linią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW dr Bartłoiej Rokicki Katedra akroekonoii i Teorii Handlu Zagranicznego Wydział Nauk konoicznych UW dr Bartłoiej Rokicki Założenia analizy arshalla-lernera Chcey srawdzić, czy derecjacja waluty krajowej

Bardziej szczegółowo

Kalorymetria paliw gazowych

Kalorymetria paliw gazowych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

Ć W I C Z E N I E N R C-5

Ć W I C Z E N I E N R C-5 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII ATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-5 WYZNACZANIE CIEPŁA PAROWANIA WODY ETODĄ KALORYETRYCZNĄ

Bardziej szczegółowo

Stan wilgotnościowy przegród budowlanych. dr inż. Barbara Ksit

Stan wilgotnościowy przegród budowlanych. dr inż. Barbara Ksit Stan wilgotnościowy rzegród budowlanych dr inż. Barbara Ksit barbara.ksit@ut.oznan.l Przyczyny zawilgocenia rzegród budowlanych mogą być nastęujące: wilgoć budowlana wrowadzona rzy rocesach mokrych odczas

Bardziej szczegółowo

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ

WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Anna Janiga-Ćmiel WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Wrowadzenie W rozwoju każdego zjawiska niezależnie od tego, jak rozwój ten jest ukształtowany rzez trend i wahania, można wyznaczyć

Bardziej szczegółowo

Ćwiczenie nr 1. Oznaczanie porowatości otwartej, gęstości pozornej i nasiąkliwości wodnej biomateriałów ceramicznych

Ćwiczenie nr 1. Oznaczanie porowatości otwartej, gęstości pozornej i nasiąkliwości wodnej biomateriałów ceramicznych Ćwiczenie nr 1 Oznaczanie orowatości otwartej, gęstości ozornej i nasiąkliwości wodnej biomateriałów ceramicznych Cel ćwiczenia: Zaoznanie się z metodyką oznaczania orowatości otwartej, gęstości ozornej

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

Roboty Przemysłowe. 1. Pozycjonowane zderzakowo manipulatory pneumatyczne wykorzystanie cyklogramu pracy do planowania cyklu pracy manipulatora

Roboty Przemysłowe. 1. Pozycjonowane zderzakowo manipulatory pneumatyczne wykorzystanie cyklogramu pracy do planowania cyklu pracy manipulatora Roboty rzemysłowe. ozycjonowane zderzakowo maniulatory neumatyczne wykorzystanie cyklogramu racy do lanowania cyklu racy maniulatora Celem ćwiczenia jest raktyczne wykorzystanie cyklogramu racy maniulatora,

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: KONWEKCJA SWOBODNA W POWIETRZU OD RURY Konwekcja swobodna od rury

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Systemy sterowania i wspomagania decyzji

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Systemy sterowania i wspomagania decyzji Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Systemy sterowania i wsomagania decyzji Synteza regulatora wieloobszarowego stabilizującego ołożenie wahadła

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: WYZNACZANIE WILGOTNOŚCI WZGLĘDNEJ I STOPNIA ZAWILŻENIA POWIETRZA HIGROMETREM

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

ANALIZA ZALEśNOŚCI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA CELU I STANOWISKA OGNIOWEGO

ANALIZA ZALEśNOŚCI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA CELU I STANOWISKA OGNIOWEGO ZESZYTY NAUKOWE WSOWL Nr (148) 8 ISSN 1731-8157 Sławomir KRZYśANOWSKI ANALIZA ZALEśNOŚI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA ELU I STANOWISKA OGNIOWEGO Jednym z ierwszych etaów nauczania rzedmiotu

Bardziej szczegółowo

This article is available in PDF-format, in coloured version, at: www.wydawnictwa.ipo.waw.pl/materialy-wysokoenergetyczne.html

This article is available in PDF-format, in coloured version, at: www.wydawnictwa.ipo.waw.pl/materialy-wysokoenergetyczne.html Z. Surma, Z. Leciejewski, A. Dzik, M. Białek This article is available in PDF-format, in coloured version, at: www.wydawnictwa.io.waw.l/materialy-wysokoenergetyczne.html Materiały Wysokoenergetyczne /

Bardziej szczegółowo

ŁĄCZENIA CIERNE POŁĄ. Klasyfikacja połączeń maszynowych POŁĄCZENIA. rozłączne. nierozłączne. siły przyczepności siły tarcia.

ŁĄCZENIA CIERNE POŁĄ. Klasyfikacja połączeń maszynowych POŁĄCZENIA. rozłączne. nierozłączne. siły przyczepności siły tarcia. POŁĄ ŁĄCZENIA CIERNE Klasyfikacja ołączeń maszynowych POŁĄCZENIA nierozłączne rozłączne siły sójności siły tarcia siły rzyczeności siły tarcia siły kształtu sawane zgrzewane lutowane zawalcowane nitowane

Bardziej szczegółowo

Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar i ocena hałasu w pomieszczeniu

Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar i ocena hałasu w pomieszczeniu nstrukcja do laboratorium z fizyki budowli Ćwiczenie: Pomiar i ocena hałasu w omieszczeniu 1 1.Wrowadzenie. 1.1. Energia fali akustycznej. Podstawowym ojęciem jest moc akustyczna źródła, która jest miarą

Bardziej szczegółowo

DOWODY NIERÓWNOŚCI HÖLDERA I MINKOWSKIEGO (DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA)

DOWODY NIERÓWNOŚCI HÖLDERA I MINKOWSKIEGO (DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA) DOWODY NIERÓWNOŚCI HÖLDERA I MINKOWSKIEGO (DO UŻYTKU WEWNȨTRZNEGO I DO SPRAWDZENIA) R R Tematem niniejszych notatek jest zbadanie warunków istnienia normy na ewnej rzestrzeni funkcji rzeczywistych określonych

Bardziej szczegółowo

Ćw. 11 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej

Ćw. 11 Wyznaczanie prędkości przepływu przy pomocy rurki spiętrzającej Ćw. Wyznaczanie rędkości rzeływu rzy omocy rurki siętrzającej. Cel ćwiczenia Celem ćwiczenia jest zaoznanie się z metodą wyznaczania rędkości rzeływu za omocą rurek siętrzających oraz wykonanie charakterystyki

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Podstawy Metrologii - Ćwiczenie 5. Pomiary dźwięku.

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Podstawy Metrologii - Ćwiczenie 5. Pomiary dźwięku. POITECHNIKA ŚĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Strona:. CE ĆWICZENIA Celem ćwiczenia jest zaoznanie się z odstawowymi ojęciami z zakresu omiarów dźwięku (hałasu), odstawowymi zależnościami oisującymi

Bardziej szczegółowo

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona dr inż. JAN TAK Akademia Górniczo-Hutnicza im. St. Staszica w Krakowie inż. RYSZARD ŚLUSARZ Zakład Maszyn Górniczych GLINIK w Gorlicach orównanie nacisków obudowy Glinik 14/35-Oz na sąg obliczonych metodą

Bardziej szczegółowo

Funkcje arytmetyczne

Funkcje arytmetyczne Funkcje arytmetyczne wersja robocza Jacek Cichoń Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Liczbami naturalnymi nazywany tutaj zbiór N = {1, 2, 3...}. Zbiór liczb ierwszych oznaczamy

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XL Egzamin dla Aktuariuszy z 9 października 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XL Egzamin dla Aktuariuszy z 9 października 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XL Egzamin dla Aktuariuszy z 9 aździernika 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile wynosi wartość

Bardziej szczegółowo

II zasada termodynamiki.

II zasada termodynamiki. II zasada termodynamiki. Według I zasady termodynamiki nie jest do omyślenia roces, w którym energia wewnętrzna układu doznałaby zmiany innej, niż wynosi suma algebraiczna energii wymienionych z otoczeniem.

Bardziej szczegółowo

Termodynamika techniczna

Termodynamika techniczna Termodynamika techniczna Wydział Geologii, Geofizyki i Ochrony Środowiska Ekologiczne Źródła Energii II rok Pomiar wilgotności owietrza Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń

Bardziej szczegółowo

Ćwiczenie 4. Wyznaczanie poziomów dźwięku na podstawie pomiaru skorygowanego poziomu A ciśnienia akustycznego

Ćwiczenie 4. Wyznaczanie poziomów dźwięku na podstawie pomiaru skorygowanego poziomu A ciśnienia akustycznego Ćwiczenie 4. Wyznaczanie oziomów dźwięku na odstawie omiaru skorygowanego oziomu A ciśnienia akustycznego Cel ćwiczenia Zaoznanie z metodą omiaru oziomów ciśnienia akustycznego, ocena orawności uzyskiwanych

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-1 OKREŚLENIE CHARAKTERYSTYK DŁAWIKÓW HYDRAULICZNYCH

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie H-1 OKREŚLENIE CHARAKTERYSTYK DŁAWIKÓW HYDRAULICZNYCH POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie H-1 Temat: OKREŚLENIE CHARAKTERYSTYK DŁAWIKÓW HYDRAULICZNYCH Konsutacja i oracowanie: dr ab. inż. Donat Lewandowski, rof. PŁ

Bardziej szczegółowo

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH ĆWICZENIE 4 Klasyczny Rachunek Zdań (KRZ): metoda tablic analitycznych, system aksjomatyczny S (aksjomaty, reguła dowodzenia), dowód w systemie S z dodatkowym zbiorem założeń, tezy systemu S, wtórne reguły

Bardziej szczegółowo

WYBÓR FORMY OPODATKOWANIA PRZEDSIĘBIORSTW NIEPOSIADAJĄCYCH OSOBOWOŚCI PRAWNEJ

WYBÓR FORMY OPODATKOWANIA PRZEDSIĘBIORSTW NIEPOSIADAJĄCYCH OSOBOWOŚCI PRAWNEJ ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 667 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 40 2011 ADAM ADAMCZYK Uniwersytet Szczeciński WYBÓR FORMY OPODATKOWANIA PRZEDSIĘBIORSTW NIEPOSIADAJĄCYCH OSOBOWOŚCI

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Mikroekonomia. Wykład 2

Mikroekonomia. Wykład 2 Mikroekonomia Wykład 2 1 Podatki ośrednie (od srzedaży) Podatki ośrednie (obrotowy, akcyza, VAT, itd.) owodują, że cena, jaką łaci nabywca, czyli konsument (P D ) jest wyższa od ceny, którą otrzymuje dostawca,

Bardziej szczegółowo

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ KINETYKA POLIKONDENSACJI POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ KINETYKA POLIKONDENSACJI POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDA FIZYKOCHEMII I TECHNOLOGII POLIMEÓW Prowadzący: Joanna Strzezi Miejsce ćwiczenia: Załad Chemii Fizycznej, sala 5 LABOATOIUM Z KATALIZY HOMOGENICZNEJ I HETEOGENICZNEJ

Bardziej szczegółowo

WYKŁAD 5 TRANZYSTORY BIPOLARNE

WYKŁAD 5 TRANZYSTORY BIPOLARNE 43 KŁAD 5 TRANZYSTORY IPOLARN Tranzystor biolarny to odowiednie ołączenie dwu złącz n : n n n W rzeczywistości budowa tranzystora znacznie różni się od schematu okazanego owyżej : (PRZYKŁAD TRANZYSTORA

Bardziej szczegółowo

Wyznaczanie ciepła właściwego powietrza metodą rozładowa- nia kondensatora I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV.

Wyznaczanie ciepła właściwego powietrza metodą rozładowa- nia kondensatora I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Ćwiczenie -5 Wyznaczanie cieła właściwego owietrza etodą rozładowania kondensatora I. el ćwiczenia: oznanie jednej z etod oiaru cieła właściwego gazów, zjawiska rozładowania kondensatora i sosobu oiaru

Bardziej szczegółowo

FIZYKA I ASTRONOMIA - POZIOM ROZSZERZONY Materiał diagnostyczny. SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ 60 punktów

FIZYKA I ASTRONOMIA - POZIOM ROZSZERZONY Materiał diagnostyczny. SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ 60 punktów FIZYKA I ASRONOMIA - POZIOM ROZSZERZONY Materiał diagnostyczny SZKIC ODPOWIEDZI I SCHEMA OCENIANIA ROZWIĄZAŃ ZADAŃ unktów UWAGA: Jeżeli zdający rozwiąże zadanie inną, erytorycznie orawną etodą, to za rozwiązanie

Bardziej szczegółowo

Notatki z Algorytmicznej Teorii Liczb

Notatki z Algorytmicznej Teorii Liczb Notatki z Algorytmicznej Teorii Liczb Jakub Pawlewicz 7 stycznia 00 Liczby ierwsze Podstawowy fakt udowodniony dawno temu rzez Euklidesa brzmi. Twierdzenie.. Liczb ierwszych jest nieskończenie wiele. Poniżej

Bardziej szczegółowo

5. PRZEMIANY GAZU DOSKONAŁEGO

5. PRZEMIANY GAZU DOSKONAŁEGO Przeiany gazu doskonałego /5 5. PZEMIANY GAZU DOSKONAŁEGO Przeianą gazu zawartego w układzie nazywa się ciągłą zianę jego stanu terodynaicznego (określanego rzez araetry stanu gazu, któryi są: ciśnienie,

Bardziej szczegółowo

Analiza nośności pionowej pojedynczego pala

Analiza nośności pionowej pojedynczego pala Poradnik Inżyniera Nr 13 Aktualizacja: 09/2016 Analiza nośności ionowej ojedynczego ala Program: Plik owiązany: Pal Demo_manual_13.gi Celem niniejszego rzewodnika jest rzedstawienie wykorzystania rogramu

Bardziej szczegółowo

Możliwość wykorzystania specyficznych mechanizmów uczenia maszynowego w nauczaniu człowieka

Możliwość wykorzystania specyficznych mechanizmów uczenia maszynowego w nauczaniu człowieka WÓJCIK Krzysztof 1 PIEKARCZYK Marcin 2 Możliwość wykorzystania secyficznych mechanizmów uczenia maszynowego w nauczaniu człowieka WSTĘP Uczenie maszynowe, wchodzące w zakres zagadnień Sztucznej Inteligencji

Bardziej szczegółowo

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa . Zabezieczenia instalacji ogrzewań wodnych systemu zamkniętego Zabezieczenia te wykonuje się zgodnie z PN - B - 0244 Zabezieczenie instalacji ogrzewań wodnych systemu zamkniętego z naczyniami wzbiorczymi

Bardziej szczegółowo

ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII INWESTYCYJNYCH NA RYNKACH KAPITAŁOWYCH WRAZ Z ZASTOSOWANIEM WAŻONEGO UŚREDNIANIA

ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII INWESTYCYJNYCH NA RYNKACH KAPITAŁOWYCH WRAZ Z ZASTOSOWANIEM WAŻONEGO UŚREDNIANIA STUDIA INFORMATICA 2012 Volume 33 Number 2A (105) Alina MOMOT Politechnika Śląska, Instytut Informatyki Michał MOMOT Instytut Techniki i Aaratury Medycznej ITAM ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII

Bardziej szczegółowo

Interpolacja. Interpolacja wykorzystująca wielomian Newtona

Interpolacja. Interpolacja wykorzystująca wielomian Newtona Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej

Bardziej szczegółowo

Metody numeryczne. materiały do ćwiczeń dla studentów. 1. Teoria błędów, notacja O

Metody numeryczne. materiały do ćwiczeń dla studentów. 1. Teoria błędów, notacja O Metody nueryczne ateriały do ćwiczeń dla studentów 1. Teoria błędów, notacja O 1.1. Błąd bezwzględny, błąd względny 1.2. Ogólna postać błędu 1.3. Proble odwrotny teorii błędów - zasada równego wpływu -

Bardziej szczegółowo

Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego.

Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego. owanie dynamicznych systemów biocybernetycznych Wykład nr 9 z kursu Biocybernetyki dla Inżynierii Biomedycznej rowadzonego rzez Prof. Ryszarda Tadeusiewicza Dotychczas rozważane były głownie modele biocybernetyczne

Bardziej szczegółowo

Projekt 9 Obciążenia płata nośnego i usterzenia poziomego

Projekt 9 Obciążenia płata nośnego i usterzenia poziomego Projekt 9 Obciążenia łata nośnego i usterzenia oziomego Niniejszy rojekt składa się z dwóch części:. wyznaczenie obciążeń wymiarujących skrzydło,. wyznaczenie obciążeń wymiarujących usterzenie oziome,

Bardziej szczegółowo

138 Forum Bibl. Med. 2011 R. 4 nr 1 (7)

138 Forum Bibl. Med. 2011 R. 4 nr 1 (7) Dr Tomasz Milewicz, Barbara Latała, Iga Liińska, dr Tomasz Sacha, dr Ewa Stochmal, Dorota Pach, dr Danuta Galicka-Latała, rof. dr hab. Józef Krzysiek Kraków - CM UJ rola szkoleń w nabywaniu umiejętności

Bardziej szczegółowo

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych. Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej

Bardziej szczegółowo

Z-ID-607b Semantyczne bazy danych Semantic Databases

Z-ID-607b Semantyczne bazy danych Semantic Databases KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-607b Semantyczne bazy danych Semantic Databases A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z rzedmiotu METOLOGIA Kod rzedmiotu: ESC 000 TSC 00008 Ćwiczenie t. MOSTEK

Bardziej szczegółowo

1. Model procesu krzepnięcia odlewu w formie metalowej. Przyjęty model badanego procesu wymiany ciepła składa się z następujących założeń

1. Model procesu krzepnięcia odlewu w formie metalowej. Przyjęty model badanego procesu wymiany ciepła składa się z następujących założeń ROK 4 Krzenięcie i zasilanie odlewów Wersja 9 Ćwicz. laboratoryjne nr 4-04-09/.05.009 BADANIE PROCESU KRZEPNIĘCIA ODLEWU W KOKILI GRUBOŚCIENNEJ PRZY MAŁEJ INTENSYWNOŚCI STYGNIĘCIA. Model rocesu krzenięcia

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Interpolacja metoda funkcji sklejanych Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba

Bardziej szczegółowo

Ćwiczenie 33. Kondensatory

Ćwiczenie 33. Kondensatory Ćwiczenie 33 Kondensatory Cel ćwiczenia Pomiar ojemności kondensatorów owietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε i rzenikalności względnych ε r różnych materiałów. Wrowadzenie

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

ODNAWIALNE ŹRÓDŁA ENERGII I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

ODNAWIALNE ŹRÓDŁA ENERGII I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Przedsiębiorczość i innowacje Nazwa modułu w języku angielskim enterrise and innovations Obowiązuje od roku akademickiego 2016/2017 A. USYTUOWANIE

Bardziej szczegółowo

Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron

Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron Modele sieciowe fizyki statystycznej i symulacje Monte Carlo Katarzyna Sznajd-Weron Perkolacja 2014 Katarzyna Sznajd-Weron Model erkolacji Model erkolacji : Każdy węzeł (wiązanie) sieci jest zajęty niezależnie

Bardziej szczegółowo

Zabezpieczenia upływowe w sieciach z przemiennikami częstotliwości w podziemiach kopalń

Zabezpieczenia upływowe w sieciach z przemiennikami częstotliwości w podziemiach kopalń dr inż. ADAM MARK Politechnika Śląska, Katedra lektryfikacji i Automatyzacji Górnictwa Zabezieczenia uływowe w sieciach z rzemiennikami częstotliwości w odziemiach koalń W artykule rzedstawiono wływ rzemiennika

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA TECHNIKI CIEPLNEJ ZASTOSOWANIE METOD KOMPUTEROWYCH W TECHNICE CIEPLNEJ

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA TECHNIKI CIEPLNEJ ZASTOSOWANIE METOD KOMPUTEROWYCH W TECHNICE CIEPLNEJ POLIECHNIK GDŃSK WYDZIŁ MECHNICZNY KEDR ECHNIKI CIEPLNEJ ZSOSOWNIE MEOD KOMPUEROWYCH W ECHNICE CIEPLNEJ NLIZ WPŁYWU PRMERÓW KONSRUKCYJNYCH CZUJNIK DO POMIRU WILGONOŚCI N JEGO CHRKERYSYKI SYCZNE I DYNMICZNE

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Odpowiedzi czasowe ciągłych i dyskretnych systemów dynamicznych Zadania do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Efektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania

Efektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania Efektywność energetyczna systemu ciełowniczego z ersektywy otymalizacji rocesu omowania Prof. zw. dr hab. Inż. Andrzej J. Osiadacz Prof. ndz. dr hab. inż. Maciej Chaczykowski Dr inż. Małgorzata Kwestarz

Bardziej szczegółowo

OGRANICZNIK PRĄDU ROZRUCHOWEGO DLA ELEKTROMAGNETYCZNEGO MODUŁU NAPĘDOWEGO Z SZYNAMI

OGRANICZNIK PRĄDU ROZRUCHOWEGO DLA ELEKTROMAGNETYCZNEGO MODUŁU NAPĘDOWEGO Z SZYNAMI Maszyny Elektryczne Zeszyty Problemowe Nr 3/2015 (107) 121 Jarosław Domin, Roman Kroczek Politechnika Śląska, Wydział Elektryczny, Katedra Mechatroniki OGRANICZNIK PRĄDU ROZRUCHOWEGO DLA ELEKTROMAGNETYCZNEGO

Bardziej szczegółowo

TERMODYNAMIKA OGNIWA GALWANICZNEGO

TERMODYNAMIKA OGNIWA GALWANICZNEGO Ćwiczenie nr 3 ERMODYNAMIKA OGNIWA GALWANICZNEGO I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie zmian funkcji termodynamicznych dla reakcji biegnącej w ogniwie Clarka. II. Zagadnienia wrowadzające 1.

Bardziej szczegółowo

WOJEWÓDZKI INSPEKTORAT OCHRONY ŚRODOWISKA WE WROCŁAWIU KLIMAT AKUSTYCZNY W WYBRANYCH PUNKTACH OŁAWY W ROKU 2003

WOJEWÓDZKI INSPEKTORAT OCHRONY ŚRODOWISKA WE WROCŁAWIU KLIMAT AKUSTYCZNY W WYBRANYCH PUNKTACH OŁAWY W ROKU 2003 WOJEWÓDZKI INSPEKTORAT OCHRONY ŚRODOWISKA WE WROCŁAWIU 50 349 Wrocław, ul. H. Sienkiewicza 3, tel./fax (071) 3-16-17, 37-13-06 e-mail: wios@wroclaw.ios.gov.l KLIMAT AKUSTYCZNY W WYBRANYCH PUNKTACH OŁAWY

Bardziej szczegółowo

Praca dyplomowa inżynierska/licencjacka/magisterska*

Praca dyplomowa inżynierska/licencjacka/magisterska* Wydział Matematyki kierunek studiów: matematyka stosowana secjalność: Praca dylomowa inżynierska/licencjacka/magisterska* MODEL q-wyborcy Z DYSKRETNYMI I CIĄGŁYMI OPINIAMI Joanna Śmieja słowa kluczowe:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnia dańsa Wydział Eletrotechnii i Automatyi Katedra Inżynierii Systemów Sterowania Podstawy Automatyi Transmitancyjne schematy bloowe i zasady ich rzeształcania Materiały omocnicze do ćwiczeń termin

Bardziej szczegółowo

Janusz Górczyński. Prognozowanie i symulacje w zadaniach

Janusz Górczyński. Prognozowanie i symulacje w zadaniach Wykłady ze statystyki i ekonometrii Janusz Górczyński Prognozowanie i symulacje w zadaniach Wyższa Szkoła Zarządzania i Marketingu Sochaczew 2009 Publikacja ta jest czwartą ozycją w serii wydawniczej Wykłady

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Obliczenia symboliczne w środowisku MATLAB Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności

Bardziej szczegółowo

Elastyczność popytu. Rodzaje elastyczności popytu. e p = - Pamiętajmy, że rozpatrujemy wielkości względne!!! Wzory na elastyczność cenową popytu D

Elastyczność popytu. Rodzaje elastyczności popytu. e p = - Pamiętajmy, że rozpatrujemy wielkości względne!!! Wzory na elastyczność cenową popytu D lastyczność oytu Rodzaje elastyczności oytu > lastyczność cenowa oytu - lastyczność mieszana oytu - e m = < lastyczność dochodowa oytu - e i lastyczność cenowa oytu - lastyczność cenowa oytu jest to stosunek

Bardziej szczegółowo

Inżynieria Proekologiczna Ecology Engeeniering. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki

Inżynieria Proekologiczna Ecology Engeeniering. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 203/203 Inżynieria Proekologiczna Ecology Engeeniering A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

Podstawy Obliczeń Chemicznych

Podstawy Obliczeń Chemicznych Podstawy Obliczeń Chemicznych Korekta i uzuełnienia z dnia 0.10.009 Autor rozdziału: Łukasz Ponikiewski Rozdział. Prawa Gazowe.1. Warunki normalne.1.1. Objętość molowa gazów rawo Avogadro.1.. Stała gazowa..

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Secjalność Transort morski Semestr II Ćw. 3 Badanie rzebiegów imulsowych Wersja oracowania Marzec 2005 Oracowanie:

Bardziej szczegółowo

SPIS TREŚCI WIADOMOŚCI OGÓLNE 2. ĆWICZENIA

SPIS TREŚCI WIADOMOŚCI OGÓLNE 2. ĆWICZENIA SPIS TEŚCI 1. WIADOMOŚCI OGÓLNE... 6 1.2. Elektryczne rzyrządy omiarowe... 18 1.3. Określanie nieewności omiarów... 45 1.4. Pomiar rezystancji, indukcyjności i ojemności... 53 1.5. Organizacja racy odczas

Bardziej szczegółowo

Dynamiczne struktury danych: listy

Dynamiczne struktury danych: listy Dynamiczne struktury danych: listy Mirosław Mortka Zaczynając rogramować w dowolnym języku rogramowania jesteśmy zmuszeni do oanowania zasad osługiwania się odstawowymi tyami danych. Na rzykład w języku

Bardziej szczegółowo

Konsumpcja. Powyższe założenia sprawiły, że funkcja konsumpcji Keynesa przyjmuje postać: (1) gdzie a > 0, 0 < c < 1

Konsumpcja. Powyższe założenia sprawiły, że funkcja konsumpcji Keynesa przyjmuje postać: (1) gdzie a > 0, 0 < c < 1 Konsumcja Do tej ory omawialiśmy różne modele analizujące wływ różnych zmiennych na krótko o długookresową równowagę w gosodarce. Nie koncentrowaliśmy się jednak na szczegółowym badaniu zachowania oszczególnych

Bardziej szczegółowo

Rys Zmniejszenie poziomu hałasu z odległością od źródła w pomieszczeniu zamkniętym i w przestrzeni otwartej

Rys Zmniejszenie poziomu hałasu z odległością od źródła w pomieszczeniu zamkniętym i w przestrzeni otwartej 6.4. HAŁAS W POMIESZCZENIACH ZAMKNIĘTYCH Uzmysłowienie sobie faktu, że większość oeracji rodukcyjnych w rzemyśle elektromaszynowym odbywa się w omieszczeniach zamkniętych, urzytomnia nam waę odjęteo zaadnienia.

Bardziej szczegółowo