zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE
|
|
- Małgorzata Brzozowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka Przebieg regresji liniowej: 1. Znaleźć funkcję y=f(x) (dopasowanie modelu) 2. Sprawdzić: a) Wsp. determinacji R 2 b) Test istotności dla wsp. Kierunkowego b H: B=0 c) analiza wariancji H: nie istnieje zależnośc miedzy X i Y d) czy resety mają rozkład normalny MODELE Wykładniczy: Y = e a + bx + ε Y = e a + bx + ε log logy = a + bx + log ε Y = a + bx + ε lny = log(y) model = lm(lny~x) Odwrotnościowy (względem Y) Y =a+bx oy = 1/y model = lm(oy~x) Odwrotnościowy (względem X) Y=a+bx + ε ox = 1/x model = lm(y~ox) model multiplikatywny(potęgowy) b Y ax ln Y ln a bln X ln Y' a' b' ' lnx = log(x) lny=log(y) model = lm(lny~lnx)
2 Zadanie 1 W zamieszczonej poniżej tabeli podano wysokość rocznego dochodu i wartość posiadanego domu dziewięciu rodzin wybranych w sposób losowy spośród mieszkańców pewnego okręgu: Roczny dochód ($ 1000) Wartość domu ($ 1000) a) Wyznaczyć prostą regresji wartości domu względem dochodu. dochod= c(36,64,49,21,28,47,58,19,32) dom = c(129, 310, 260, 92, 126, 242, 288, 81, 134) #Sprawdzam na oko czy da sie poprowadzić prostą plot(dochod,dom) model = lm(dom ~ dochod) # dopasowanie modelu linniowego (linnear model, szacuje metoda najmniejszych kwadratow) abline(model,col="red") # rysowanie linni I linia powinna w miarę przechodzić przez punkty, to będzie ok. = * dochod b) Przeanalizować dopasowanie modelu. Wsp. determinacji R 2 Multiple R-squared: ,12 % obserwacji jest "wyjaśnionych" przez regresje. W takim stopniu model wyjaśnia zmienność Y Test istotności dla wsp. Kierunkowego b H: B=0 (czyli ze x(dochod) nie jest istotny) p-valu (Pr(> t ) dla dochod) < ALFA -> odrzucamy H, dochód jest istotny Test Anovy H: nie istnieje zależnośc miedzy X i Y F-statistic: on 1 and 7 DF, p-value: 3.394e-06 p-vale < ALFA -> istnieje zależność shapiro.test(resid(model)) p-value > ALFA -> reszty mają rozkład normalny Wszystkie Hipotezy OK., R 2 duże -> model OK
3 c) Oszacować wartość domu rodziny, której roczny dochód wynosi $ d) Wyznaczyć 95% przedział ufności dla szacowanej wartości domu tej rodziny. nowe=data.frame(dochod=40) predict(model,nowe,interval='conf', level=0.95) fit oszacowanie lwr, upr przedział ufności Zadanie 3 W poniższej tabeli podano liczbę ludności USA (w mln) w latach : a) Przyjmując wykładniczy model wzrostu populacji, oszacować parametry tego modelu i zweryfikować jego dopasowanie. Y = e a + bx + ε R ma tylko lm wiec tarza przekształcić Y = e a + bx + ε log logy = a + bx + log ε Y = a + bx + ε Y'-log lud Y-lud x-rok rok=scan() lud=scan() loglud=log(lud) plot(rok,loglud) # widac, że jest całkiem OK model=lm(loglud~rok) abline(model) ## jak widac model jest ok model R-squared: Wsp. determinacji R 2 Test istotności dla wsp. Kierunkowego b H: B=0 (czyli ze x(rok) nie jest istotny)
4 p-val< ALFA -> odrzucamy Test Anovy H: nie istnieje zależnośc miedzy X i Y F-statistic: 2024 on 1 and 13 DF, p-value: 1.175e-15 p-val < ALFA -> odrzucamy H shapiro.test(resid(model)) p-val > ALFA -> przyjmujemy H -> reszty mają rozkład normalny plot(fitted(model),resid(model)) ## można sobie popatrzec model OK b) Oszacować przewidywaną wielkość populacji USA w 2015 i w 2020 roku. nowe=data.frame(rok=c(2015,2020)) predict(model,nowe,interval='conf') ## ale jako, że to wartosci zlogarytmowane to exp(predict(model,nowe,interval='conf')) Zadanie 4 Niech X oznacza przeciętną liczbę samochodów poruszających się autostradą w ciągu dnia, natomiast Y liczbę wypadków samochodowych, która ma miejsce w ciągu miesiąca na autostradzie. Na podstawie danych zamieszczonych w poniższej tabeli wyznaczyć następujący model regresji = a + bx, opisujący zależność liczby wypadków od natężenia ruchu na autostradzie. Oszacować liczbę wypadków, jakiej można się spodziewać przy natężeniu ruchu odpowiadającemu 3500 samochodom poruszającym się autostradą w ciągu dnia. X Y x=scan() y=scan() = a + bx + ε Y = a + bx + ε py=sqrt(y) model =lm(py~x) R-squared: ,~> taki sobie, anova i istotność b OK.
5 shapiro.test(resid(model)) ## test normalnosci dla reszt p-val > ALFA -> reszty maja rozklad normalny MODEL w miarę ok., lipa trochę to R 2 nowe=data.frame(x=3500) (predict(model,nowe,interval='conf'))^2 ## kwadrat bo taki model Lepiej patrzeć na przedział, bo słabe R 2 Zadanie 5 Dokonano osiem niezależnych pomiarów wielkości drgań pionowych gruntu powstałych w wyniku trzęsienia ziemi w różnej odległości od epicentrum trzęsienia. Otrzymano następujące wyniki: Odległość od epicentrum (km) Wielkość drgań pionowych (cm) a) Wyznaczyć funkcję regresji wielkości drgań gruntu względem odległości od epicentrum. Y=a+ b/x + ε x' = 1/x Y=a+bx + ε y~x' odl=scan() wielk=scan() 1: oodl=1/odl model =lm(wielk~oodl) = x + ε b) Zweryfikować dopasowanie modelu. plot(oodl,wielk) abline(model) R-squared: Wsp. determinacji R 2 Test istotności dla wsp. Kierunkowego b H: B=0 (czyli ze x(oodl) nie jest istotny) p-val< ALFA -> odrzucamy Test Anovy H: nie istnieje zależnośc miedzy X i Y F-statistic: on 1 and 6 DF, p-value: 2.411e-05 p-val < ALFA -> odrzucamy H
6 shapiro.test(resid(model)) p-val > ALFA -> przyjmujemy H -> reszty mają rozkład normalny plot(fitted(model),resid(model)) ## można sobie popatrzec c) Oszacować wielkość drgań w odległości 100 km od epicentrum. nowe=data.frame(oodl=c(1/100)) predict(model,nowe,interval='conf') Zadanie 7 W pewnej firmie postanowiono zbadać zależność między wielkością tygodniowej sprzedaży produktów chemicznych tej firmy, a wydatkami poniesionymi na reklamę radiowo-telewizyjną oraz wydatkami poniesionymi na pokazy w sklepach. Oto dane (w tyś. $) pochodzące z 10 tygodni: Wartość tygodniowej sprzedaży Wydatki na reklamę radiowo-telewizyjną Wydatki na pokazy w sklepach a) Wyznaczyć liniową funkcję regresji opisującą badaną zależność. Y= a 0 + a 1 x 1 + a 2 x 2 + ε sprzed - Y rtv -x 1 pok- x 2 sprzed=scan() rtv=scan() pok=scan() model=lm(sprzed~rtv+pok) model = x x 2 test istotności dla wyrazu wolnego Pv <ALFA, odrzucamy H H: a 0 =0 K: a 0 =/=0 b) Zweryfikować dopasowanie modelu.
7 H : a1=a2=0(test F czyli anova) ## bo sa 2 zmienne a nie 1 K H (czyli przynajmniej 1 zmienna jest istotna) jeśli nie odrzucimy tej hipotezy, to znaczy ze obie zmienne sa nie istotne i niema co robić zadania pval < ALFA -> odrzucamy = R^2 adj = testy istotności dla wsp kierunkowych H1: a 1 =0 K1: a 1 =/=0 pv odrzucamy H1 (Pr(> t )na prawo od zmiennej pv odrzucamy H2 shapiro.test(resid(model)) p-value >ALFA -> przyjmujemy H H2: a 2 =0 K2: a 2 =/=0 plot(fitted(model),resid(model)) ## można popatrzec Model OK. c) Wykorzystać uzyskane równanie regresji do prognozy wielkości sprzedaży, gdy wydatki na reklamę radiowo telewizyjną wyniosą 8000$, natomiast wydatki na pokazy w sklepach 12000$. nowe=data.frame(rtv=8,pok=12) predict(model,nowe,interval="conf") Zadanie 8 Pośrednik w handlu nieruchomościami jest zainteresowany oszacowaniem wpływu powierzchni budynku i jego odległości od centrum miasta na wartość budynku. Poniższa tabela zawiera informacje o dziewięciu losowo wybranych budynkach. Wartość budynku (tys.$) Powierzchnia (m2) Odległość Od centrum (km) a) Wyznaczyć liniową funkcję regresji opisującą zależność, którą interesuje się ów pośrednik. Y= a 0 + a 1 x 1 + a 2 x 2 + ε Wart - Y pow x 1 odl x 2 wart=scan() pow=scan()
8 odl=scan() model = lm (wart~pow+odl) = x x 2 test istotności dla wyrazu wolnego Pv >ALFA, przyjmujemy H H: a 0 =0 K: a 0 =/=0 wiec tworzymy nowy model model2 = lm (wart~pow+odl-1) #-1 czyli bez wyrazu wolnego summary(model2) = x x 2 b) Zweryfikować dopasowanie modelu. H : a1=a2=0(test F czyli anova) ## bo sa 2 zmienne a nie 1 K H (czyli przynajmniej 1 zmienna jest istotna) jeśli nie odrzucimy tej hipotezy, to znaczy ze obie zmienne sa nie istotne i niema co robić zadania pval < ALFA -> odrzucamy = R^2 adj = testy istotności dla wsp kierunkowych H1: a 1 =0 K1: a 1 =/=0 pv1 4.29e-06 odrzucamy H1 (Pr(> t )na prawo od zmiennej pv odrzucamy H2 shapiro.test(resid(model2)) p-value >ALFA -> przyjmujemy H H2: a 2 =0 K2: a 2 =/=0 plot(fitted(model2),resid(model2)) ## można popatrzec c) Podać przewidywaną wartość domu o powierzchni 160 m2, położonego w odległości 3 km od centrum miasta. nowe = data.frame(odl=3,pow=160) predict(model2,nowe,interval="conf")
9 KOLOWIUM Grupa A Zadanie 2 Badano zależność wzrostu niemowląt (w cm) od kilku czynników: wieku(w dniach), wzrostu w chwili urodzenia (w cm), oraz wagi w chwili urodzenia(w kg). Otrzymano następujące dane: Wzrost Wiek Wzrost w chwili urodzenia Waga w chwili urodzenia a) Wyznaczyć liniową funkcję regresji opisującą zależność wzrostu niemowląt od wymienionych czynników Y= a 0 + a 1 x 1 + a 2 x 2 + a 3 x 3 + ε wzrost - Y wiek -x 1 wzrost_ur- x 2 waga- x 3 wzrost=scan() wiek=scan() wzrost_ur=scan() waga=scan() model=lm(wzrost~wiek+ wzrost_ur +waga) Y = x x x 3 Ale ponieważ p-value x 2 (wzrost_ur) > alfa -> czyli jest nie istotny więc model2=lm(wzrost~wiek+waga) summary(model2) Y = x x 3 b) Przeanalizować dopasowanie modelu = R^2 adj = H : a1=a3=0(test F czyli anova) ## bo sa 2 zmienne a nie 1 K H (czyli przynajmniej 1 zmienna jest istotna p-val< ALFA testy istotności dla wsp kierunkowych H1: a 1 =0 K1: a 1 =/=0 pv1 < ALFA odrzucamy H1 (Pr(> t )na prawo od zmiennej
10 H2: a 3 =0 K2: a 3 =/=0 pv2 <ALFA odrzucamy H2 shapiro.test(resid(model2)) p-value >ALFA -> przyjmujemy H plot(fitted(model2),resid(model2)) ## można popatrzec c) Oszacować wzrost niemowlęcia mającego 90 dni, jeśli wiadomo, ze w chwili urodzenia miało 50 cm i ważyło 4,2 kg nowe=data.frame(wiek=90, waga=4,2) predict(model2,nowe,interval="conf") Grupa B Badano zależność czasu działania akumulatora od czasu eksploatacji tego urządzenia. Otrzymano następujące wyniki: Czas działania Y Czas eksploatacji X A) przyjmując model odwrotnościowy (względem Y) model regresyjny oszacować parametry tego modelu i zweryfikować jego dopasowanie. dzialanie = scan() ## Y ekspl=scan() ## X odzialanie = 1/ dzialanie model = lm(odzialanie ~ ekspl) plot(ekspl,odzialanie) abline(model) Y = x Y = Y =a+bx Wsp. determinacji R 2
11 Multiple R-squared: Test istotności dla wsp. Kierunkowego b H: B=0 (czyli ze x(czas eksploatacji) nie jest istotny) p-valu (Pr(> t ) dla ekspl) < ALFA -> odrzucamy H, czas eksploatacji jest istotny Test Anovy H: nie istnieje zależnośc miedzy X i Y F-statistic: on 1 and 7 DF, p-value: 8.13e-07 p-vale < ALFA -> istnieje zależność shapiro.test(resid(model)) p-value > ALFA -> reszty mają rozkład normalny plot(fitted(model),resid(model)) ## można sobie popatrzec widać, że może być zależność funkcyjna to minus Wszystkie Hipotezy OK., R 2 duże -> model OK B) Oszacować czas działania akumulatora po 25 mies. eksploatacji. nowe=data.frame(ekspl=25) predict(model,nowe,interval="conf")
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6
Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora
Szkice rozwiązań z R:
Szkice rozwiązań z R: Zadanie 1. Założono doświadczenie farmakologiczne. Obserwowano przyrost wagi ciała (przyrost [gram]) przy zadanych dawkach trzech preparatów (dawka.a, dawka.b, dawka.c). Obiektami
t y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
Ćwiczenia 10. Analiza regresji. Część I.
Ćwiczenia 10. Analiza regresji. Część I. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym należy przygotować lub wypełnić. Zadanie 10.1. (R/STATISTICA) Twoim zadaniem jest możliwie
WYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
STATYSTYKA MATEMATYCZNA, LISTA 3
STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:
Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów
LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,
Regresja liniowa wprowadzenie
Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno
WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Zestaw 6 (jednoczynnikowa i wieloczynnikowa analiza wariancji (ANOVA))
Zestaw 6 (jednoczynnikowa i wieloczynnikowa analiza wariancji (ANOVA)) ANOVA Hipoteza: H: µ 1(mi) = µ 2 = µ 3 = = µ r (Czynnik nie wpływa na zmienną objaśnianą) (Czynnik wpływa) Założenia ANOVY: 0) Próby
Wykład 4 Związki i zależności
Wykład 4 Związki i zależności Rozważmy: Dane z dwiema lub więcej zmiennymi Zagadnienia do omówienia: Zmienne objaśniające i zmienne odpowiedzi Wykres punktowy Korelacja Prosta regresji Słownictwo: Zmienna
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku.
Zajęcia 4. Estymacja i weryfikacja modelu model potęgowy Wersja rozszerzona W pliku Funkcja produkcji.xls zostały przygotowane przykładowe dane o produkcji, kapitale i zatrudnieniu dla 27 przedsiębiorstw
Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady
Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r
Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.
Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 02022015 Pytania teoretyczne 1. Podać treść twierdzenia GaussaMarkowa i wyjaśnić jego znaczenie. 2. Za pomocą jakich testów testuje się autokorelację? Jakiemu założeniu
Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna
Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna
Zmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
ANALIZA REGRESJI SPSS
NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Regresja logistyczna (LOGISTIC)
Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Przykład 1 ceny mieszkań
Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
ESTYMACJA. Przedział ufności dla średniej
ESTYMACJA Przedział ufności dla średniej W grupie 900 losowo wybranych pracowników przedsiębiorstwa średnia liczba dni nieobecności w pracy wynosiła 30, a odchylenie standardowe 3 dni. a) Przyjmując współczynnik
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
Stosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Analiza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań
Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
Statystyka w analizie i planowaniu eksperymentu
28 marca 2012 Analiza wariancji klasyfikacja jednokierunkowa - wst ep Przypuśćmy, że chcemy porównać wieksz a (niż dwie) liczbe grup. Aby porównać średnie w kilku grupach, można przeprowadzić analize wariancji.
Statystyka. Zadanie 1.
Statystyka Zadanie 1. W przedsiębiorstwie Statexport pracuje 100 pracowników fizycznych i 25 umysłowych. Typowy wiek pracownika fizycznego kształtuje się w przedziale od 30 do 40 lat. Średnia wieku pracowników
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu
X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15
X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1
LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie
Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna
Zadanie 1. Analiza Analiza rozkładu
Zadanie 1 data lab.zad 1; input czas; datalines; 85 3060 631 819 805 835 955 595 690 73 815 914 ; run; Analiza Analiza rozkładu Ponieważ jesteśmy zainteresowani wyznaczeniem przedziału ufności oraz weryfikacja
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji
Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.