Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Save this PDF as:
 WORD  PNG  TXT  JPG
Wielkość: px
Rozpocząć pokaz od strony:

Download "Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej"

Transkrypt

1 Ekonometria wiczenia 7 Modele nieliniowe (7) Ekonometria 1 / 19

2 Plan wicze«1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 2 / 19

3 Plan prezentacji 1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 3 / 19

4 Nieliniowo± Wpªyw X na Y zale»y od poziomu X... Jaka jest standardowa interpretacja wspóªczynników b i c? (...ceteris paribus...) Czy ma ona tutaj sens? (7) Ekonometria 4 / 19

5 Nieliniowo± Mo»e si zmieni interpretacja wspóªczynnika ln Y Y Y...tzn. wzrost LOGARYTMU NATURALNEGO zmiennej o 0,01 to wzrost tej samej zmiennej o 1% a) Nakªady inwestycyjne wzrastaªy ±rednio rocznie o 4,5%. (7) Ekonometria 5 / 19

6 Nieliniowo± Zadanie (7) Ekonometria 6 / 19

7 Nieliniowo± Poj cie elastyczno±ci pochodna Y wzgl dem X: elastyczno± Y wzgl dem X: zmiana Y {}}{ X }{{} mala zmiana X % zmiana Y {}}{ Y X X }{{} mala % zmiana X X X Y = ln Y ln X, a wi c parametr β 1 z modelu ln Y i = β 0 + β 1 ln X i + ε i to elastyczno± Y wzgl dem X a jaka jest elastyczno± Y wzgl dem X 1 w tych modelach? (w przypadku 2 mówimy o elastyczno±ci cz stkowej) 1 Y i = β 0 + β 1 X 1i + ε i 2 Y i = β 0 X β1 1i X β2 2i ε i (7) Ekonometria 7 / 19

8 Nieliniowo± Poj cie elastyczno±ci pochodna Y wzgl dem X: elastyczno± Y wzgl dem X: zmiana Y {}}{ X }{{} mala zmiana X % zmiana Y {}}{ Y X X }{{} mala % zmiana X X X Y = ln Y ln X, a wi c parametr β 1 z modelu ln Y i = β 0 + β 1 ln X i + ε i to elastyczno± Y wzgl dem X a jaka jest elastyczno± Y wzgl dem X 1 w tych modelach? (w przypadku 2 mówimy o elastyczno±ci cz stkowej) 1 Y i = β 0 + β 1 X 1i + ε i 2 Y i = β 0 X β1 1i X β2 2i ε i (7) Ekonometria 7 / 19

9 Nieliniowo± Poj cie elastyczno±ci pochodna Y wzgl dem X: elastyczno± Y wzgl dem X: zmiana Y {}}{ X }{{} mala zmiana X % zmiana Y {}}{ Y X X }{{} mala % zmiana X X X Y = ln Y ln X, a wi c parametr β 1 z modelu ln Y i = β 0 + β 1 ln X i + ε i to elastyczno± Y wzgl dem X a jaka jest elastyczno± Y wzgl dem X 1 w tych modelach? (w przypadku 2 mówimy o elastyczno±ci cz stkowej) 1 Y i = β 0 + β 1 X 1i + ε i 2 Y i = β 0 X β1 1i X β2 2i ε i (7) Ekonometria 7 / 19

10 Nieliniowo± Poj cie elastyczno±ci pochodna Y wzgl dem X: elastyczno± Y wzgl dem X: zmiana Y {}}{ X }{{} mala zmiana X % zmiana Y {}}{ Y X X }{{} mala % zmiana X X X Y = ln Y ln X, a wi c parametr β 1 z modelu ln Y i = β 0 + β 1 ln X i + ε i to elastyczno± Y wzgl dem X a jaka jest elastyczno± Y wzgl dem X 1 w tych modelach? (w przypadku 2 mówimy o elastyczno±ci cz stkowej) 1 Y i = β 0 + β 1 X 1i + ε i 2 Y i = β 0 X β1 1i X β2 2i ε i (7) Ekonometria 7 / 19

11 Plan prezentacji 1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 8 / 19

12 Funkcja produkcji Zadanie 8a Na podstawie danych z pliku cw_07_funkcja_produkcji.gdt szacujemy parametry funkcji produkcji Y i = α 0 L α 1 i K α 2 i ε i Wykorzystamy w tym celu znane ju» polecenia w Gretlu: Dodawanie zmiennych Logarytmy dla wybranych zmiennych, a nast pnie Model Klasyczna metoda najmniejszych kwadratów (7) Ekonometria 9 / 19

13 Funkcja produkcji Funkcja produkcji wªasno±ci im wi cej nakªadów czynników wytwórczych, tym produkcja... ka»da kolejna jednostka kapitaªu przynosi ceteris paribus... im wi cej kapitaªu na jednego zatrudnionego, tym jego produktywno± pracy jest... im wy»szy poziom technologii, tym produktywno± kapitaªu i pracy jest... aby osi gn t sam wielko± produkcji przy mniejszym zatrudnieniu, musimy... (7) Ekonometria 10 / 19

14 Funkcja produkcji Funkcja Cobba-Douglasa: oszacowanie Y t = α 0 L α 1 t K α 2 t ε t mówimy,»e model linearyzowany, gdy»: ln Y t = ln α 0 + α 1 ln L t + α 2 ln K t + ln ε t ln Y t = ln α 0 }{{} stala + α 1 ln L t + α 2 ln K t + ln ε t }{{} skl.losowy teraz model liniowy wzgl dem parametrów! (7) Ekonometria 11 / 19

15 Funkcja produkcji Zadanie 8b Na podstawie wyników zadania 8a wyznaczmy: elastyczno±ci cz stkowe (ˆα 1, ˆα 2 ) czy przychody wzgl dem skali produkcji s rosn ce, malej ce, czy staªe? (oce«na podstawie oszacowa«punktowych oraz odpowiedniego testu) kra«cow produkcyjno± pracy i kapitaªu ( L, K ) kra«cow stop substytucji mi dzy prac a kapitaªem (KSS = L / K ); wzrostowi L o jednostk powinien towarzyszy spadek K o... (miara nachylenia izokwanty) techniczne uzbrojenie pracy (TUP = K L ) elastyczno± substytucji ( TUP KSS / TUP KSS ) Przyjmij przy tym zaªo»enie o poziomie kapitaªu i pracy ±rednim dla okresu próby. (7) Ekonometria 12 / 19

16 Funkcja produkcji Elastyczno± substytucji TUP KSS TUP KSS = σ interpretacja: 1-procentowemu wzrostowi KSS towarzyszy σ-procentowy wzrost technicznego uzbrojenia pracy dla f. produkcji Cobba-Douglasa ta elastyczno± zawsze wynosi 1 miara szybko±ci zmian w nachyleniu izokwanty, czyli wypukªo±ci izowkanty σ = TUP KSS TUP KSS = ( K L ) ( L / K ) K L L / K = ( K L ) ( K L ) K L K L = ( K L ) ( α 1 α 2 KL ) K L α 1 α 2 KL = α 2 α 1 K L α 1 α KL 2 = 1 (7) Ekonometria 13 / 19

17 Funkcja produkcji Zadanie (7) Ekonometria 14 / 19

18 Funkcja produkcji Zadanie E5 (7) Ekonometria 15 / 19

19 Plan prezentacji 1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 16 / 19

20 Nieliniowa MNK NMNK do czego potrzebna? A gdyby zamiast Y t = α 0 L α 1 t K α 2 t ε t... Gretl:...zastosowa funkcj produkcji Y t = α 0 L α1 t To ju» model ±ci±le nieliniowy. K α2 t + ε t? Model Nieliniowa metoda najmniejszych kwadratów Równie» szukamy minimum sumy kwadratów reszt, ale ju» numerycznie. (7) Ekonometria 17 / 19

21 Nieliniowa MNK Zadanie 8b Oszacuj w Gretlu funkcj produkcji Cobba-Douglasa wg specykacji z poprzedniego slajdu. Zastosuj nieliniow MNK z parametrami otrzymanymi w zadaniu 1 jako warto±ciami startowymi. genr alpha0=exp(2.88) genr alpha1=0.85 genr alpha2=0.28 Y = alpha0*(l^alpha1)*(k^alpha2) deriv alpha0 = (L^alpha1)*(K^alpha2) deriv alpha1 = alpha0*(k^alpha2)*(l^alpha1)*ln(l) deriv alpha2 = alpha0*(k^alpha2)*(l^alpha1)*ln(k) (7) Ekonometria 18 / 19

22 Nieliniowa MNK Dodatkowe zadania 5.9, 5.10, 5.14, 5.17, 5.18 (7) Ekonometria 19 / 19

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele

Bardziej szczegółowo

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 7 i funkcja produkcji 1 / 23 Agenda 1 2 3 Jakub Mućk Ekonometria Wykład 7 i funkcja

Bardziej szczegółowo

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria

Bardziej szczegółowo

Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja

Bardziej szczegółowo

Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 4 Prognozowanie (4) Ekonometria 1 / 18 Plan wicze«1 Prognoza punktowa i przedziaªowa 2 Ocena prognozy ex post 3 Stabilno± i sezonowo± Sezonowo± zadanie (4) Ekonometria 2 / 18 Plan

Bardziej szczegółowo

Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych

Bardziej szczegółowo

I Kolokwium z Ekonometrii. Nazwisko i imi...grupa...

I Kolokwium z Ekonometrii. Nazwisko i imi...grupa... ZESTAW A1 I Kolokwium z Ekonometrii Nazwisko i imi...grupa... 1. Model teoretyczny ma posta: z t = α 0 + α 1 x t + α 2 p t + ξ t, (t = 1, 2,..., 28) (1) gdzie: z t - koszty produkcji w mln z, p t - wielko

Bardziej szczegółowo

Wykªad 6: Model logitowy

Wykªad 6: Model logitowy Wykªad 6: Model logitowy Ekonometria Stosowana SGH Model logitowy 1 / 18 Plan wicze«1 Modele zmiennej jako±ciowej idea 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3

Bardziej szczegółowo

Modele ARIMA prognoza, specykacja

Modele ARIMA prognoza, specykacja Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji

Bardziej szczegółowo

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13 Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Ekonometria. wiczenia 5 i 6 Modelowanie szeregów czasowych. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 5 i 6 Modelowanie szeregów czasowych. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 5 i 6 Modelowanie szeregów czasowych (5-6) Ekonometria 1 / 30 Plan prezentacji 1 Regresja pozorna 2 Testowanie stopnia zintegrowania szeregu 3 Kointegracja 4 Modele dynamiczne (5-6)

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

Wst p do ekonometrii II

Wst p do ekonometrii II Wst p do ekonometrii II Wykªad 1: Modele ADL. Analiza COMFAC. Uogólniona MNK (1) WdE II 1 / 36 Plan wykªadu 1 Restrykcje COMFAC w modelach ADL ADL(1,1) ADL(2,2) 2 Uogólniona MNK Idea UMNK Znajdowanie macierzy

Bardziej szczegółowo

Ekonometria Wykład 7 Modele nieliniowe, funkcja produkcji. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 7 Modele nieliniowe, funkcja produkcji. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 7 Modele nieliniowe, funkcja produkcji Dr Michał Gradzewicz atedra Ekonomii I AE Plan wykładu (Nie)liniowość modeli ekonomerycznych iniowość modeli ekonometrycznych Efekty krańcowe Elastyczności

Bardziej szczegółowo

Ekonometria. wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± (3) Ekonometria 1 / 29 Plan wicze«1 Wprowadzenie 2 Normalny rozkªad 3 Autokorelacja 4 Heteroskedastyczno± Test White'a Odporne bª

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Przychody skali. Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi:

Przychody skali. Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi: Przychody skali Proporcjonalne zwiększenie czynników = zwiększenie produkcji, ale czy również proporcjonalne? W zależności od odpowiedzi: Stałe przychody skali, CRS (constant returns to scale) Rosnące

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Nieliniowe. Liniowe. Nieliniowe. Liniowe. względem parametrów. Linearyzowane. sensu stricto

Nieliniowe. Liniowe. Nieliniowe. Liniowe. względem parametrów. Linearyzowane. sensu stricto Ekonometria jak dorać funkcję? Przykłady użyte w materiałach opracowano w większości na azie danych ze skryptu B.Guzik, W.Jurek Podstawowe metody ekonometrii (wyd. AE Poznań 3) W doorze postaci funkcji

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

Efekty przestrzenne w konwergencji polskich podregionów

Efekty przestrzenne w konwergencji polskich podregionów Efekty przestrzenne w konwergencji polskich podregionów Mikoªaj Herbst EUROREG UW Piotr Wójcik WNE UW Konferencja Ministerstwa Rozwoju Regionalnego Budowanie spójno±ci terytorialnej i przeciwdziaªanie

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

Modele wielorównaniowe. Problem identykacji

Modele wielorównaniowe. Problem identykacji Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje

Bardziej szczegółowo

Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

Wykªad 1+2: Klasyczny model regresji liniowej. Podstawy R

Wykªad 1+2: Klasyczny model regresji liniowej. Podstawy R Wykªad 1+2: Klasyczny model regresji liniowej Podstawy R Ekonometria Stosowana SGH KMNK i R 1 / 45 Plan wykªadu 1 Informacje organizacyjne 2 Wprowadzenie do ekonometrii Ekonometria Dane i postacie funkcyjne

Bardziej szczegółowo

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Proste modele o zªo»onej dynamice

Proste modele o zªo»onej dynamice Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj

Bardziej szczegółowo

Makroekonomia Zaawansowana

Makroekonomia Zaawansowana Makroekonomia Zaawansowana wiczenia 3 Racjonalne oczekiwania i krytyka Lucasa MZ 1 / 15 Plan wicze«1 Racjonalne oczekiwania 2 Krytyka Lucasa 3 Zadanie MZ 2 / 15 Plan prezentacji 1 Racjonalne oczekiwania

Bardziej szczegółowo

Modele wielorównaniowe. Estymacja parametrów

Modele wielorównaniowe. Estymacja parametrów Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Funkcja. Poj cie funkcji i podstawowe wªasno±ci. Dziedzina

Funkcja. Poj cie funkcji i podstawowe wªasno±ci. Dziedzina Poj cie unkcji i podstawowe wªasno±ci Alina Semrau-Giªka Uniwerstet Technoloiczno-Przrodnicz 30 stcznia 209 Funkcj ze zbioru X w zbiór Y nazwam odwzorowanie, które ka»demu elementowi ze zbioru X przporz

Bardziej szczegółowo

Ekonometria Przestrzenna

Ekonometria Przestrzenna Ekonometria Przestrzenna Wykªad 6: Zªo»one modele regresji przestrzennej (6) Ekonometria Przestrzenna 1 / 21 Plan wykªadu 1 Modele zªo»one 2 Model SARAR 3 Model SDM (Durbina) 4 Model SDEM 5 Zadania (6)

Bardziej szczegółowo

Stanisław Cichocki Natalia Neherbecka

Stanisław Cichocki Natalia Neherbecka Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z PODSTAW PSYCHOLOGII W KLASIE DRUGIEJ. Ocenianie wewnątrzszkolne na przedmiocie podstawy psychologii ma na celu:

PRZEDMIOTOWY SYSTEM OCENIANIA Z PODSTAW PSYCHOLOGII W KLASIE DRUGIEJ. Ocenianie wewnątrzszkolne na przedmiocie podstawy psychologii ma na celu: PRZEDMIOTOWY SYSTEM OCENIANIA Z PODSTAW PSYCHOLOGII W KLASIE DRUGIEJ Zasady ogólne Ocenianie wewnątrzszkolne na przedmiocie podstawy psychologii ma na celu: 1. informowanie ucznia o poziomie jego osiągnięć

Bardziej szczegółowo

KOLOKWIUM Z EKONOMETRII

KOLOKWIUM Z EKONOMETRII KOLOKWIUM Z EKONOMETRII Semestr zimowy: 20 grudnia 2004r. Imie:... Nazwisko:... Kolokwium sklada sie z dwoch czesci i trwa osiemdziesiat minut. W pierwszej znajdziecie Panstwo osiem pytan zwiazanych z

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Ekonometria. Zajęcia

Ekonometria. Zajęcia Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)

Bardziej szczegółowo

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

JEDNOCZYNNIKOWA i DWUCZYNNIKOWA FUNKCJA PRODUKCJI

JEDNOCZYNNIKOWA i DWUCZYNNIKOWA FUNKCJA PRODUKCJI JEDNOCZYNNIKOWA i DWUCZYNNIKOWA FUNKCJA PRODUKCJI Zadanie 1: Uzupełnij tabelę, gdzie: TP produkt całkowity AP produkt przeciętny MP produkt marginalny L nakład czynnika produkcji, siła robocza (liczba

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie

Bardziej szczegółowo

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16 Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ

Bardziej szczegółowo

Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x

Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x Przykład: Przedsiębiorstwo może produkować cztery wyroby A, B, C, i D. Ograniczeniami są zasoby dwóch surowców S 1 oraz S 2. Zużycie surowca na jednostkę produkcji każdego z wyrobów (w kg), zapas surowca

Bardziej szczegółowo

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania

Bardziej szczegółowo

Ekonometria egzamin 07/03/2018

Ekonometria egzamin 07/03/2018 imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

8. WYBRANE ZASTOSOWANIA MODELI EKONOMETRYCZNYCH

8. WYBRANE ZASTOSOWANIA MODELI EKONOMETRYCZNYCH 39 8. WYBRANE ZASTOSOWANIA MODELI EKONOMETRYCZNYCH 8.1. Funkcje popytu i elastyczności popytu 8.1.1. Czynniki determinujące popyt i ich wpływ Załóżmy, że hipoteza ekonomiczna dotycząca kształtowania się

Bardziej szczegółowo

czyli: Rynek nansowy znajduje si w równowadze popyt na pieni dz równy jest poda»y pieni dza (L = M).

czyli: Rynek nansowy znajduje si w równowadze popyt na pieni dz równy jest poda»y pieni dza (L = M). akroekonomia I, wiczenia 8-9 Jan Hagemejer odel IS-L Wst p Do tej pory analiza polityki gospodarczej abstraowaªa od sfery monetarnej. Analizowali±my wyª cznie polityk skaln. Co wi cej, uznawali±my,»e wszystkie

Bardziej szczegółowo

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo. Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59

, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59 Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

Matematyka z elementami statystyki

Matematyka z elementami statystyki Matematyka z elementami statystyki Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Korelacja Zale»no± funkcyjna wraz ze wzrostem jednej zmiennej nast puje ±ci±le okre±lona zmiana druiej zmiennej.

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1

E k o n o m e t r i a S t r o n a 1 E k o n o m e t r i a S t r o n a Liniowy model ekonometryczny Jednorównaniowy liniowy model ekonometryczny (model regresji wielorakiej) można zapisać w postaci: y = α + α x + α x +... + α x + ε, t =,,...,

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria

Bardziej szczegółowo

Makroekonomia Zaawansowana

Makroekonomia Zaawansowana Makroekonomia Zaawansowana wiczenia 1 Stan ustalony i log-linearyzacja MZ 1 / 27 Plan wicze«1 Praca z modelami DSGE 2 Stan ustalony 3 Log-linearyzacja 4 Zadania MZ 2 / 27 Plan prezentacji 1 Praca z modelami

Bardziej szczegółowo

Wybór formy funkcyjnej modelu (cz. II)

Wybór formy funkcyjnej modelu (cz. II) Wybór formy funkcyjnej modelu (cz. II) Wyk lad 6 Natalia Nehrebecka Stanis law Cichocki 19 listopada 2014 Plan zaj eć 1 w modelu liniowym w modelu logliniowym i semielastyczność - przyk lad 2 Zastosowania

Bardziej szczegółowo

Ekonometria - wykªad 1

Ekonometria - wykªad 1 Ekonometria - wykªad 1 0. Wprowadzenie Barbara Jasiulis-Goªdyn 28.02.2014 2013/2014 Ekonometria Literatura [1] B. Borkowski, H. Dudek, W. Szczesny, Ekonometria. Wybrane Zaganienia, PWN, Warszawa 2003.

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

gdzie. Dla funkcja ma własności:

gdzie. Dla funkcja ma własności: Ekonometria, 21 listopada 2011 r. Modele ściśle nieliniowe Funkcja logistyczna należy do modeli ściśle nieliniowych względem parametrów. Jest to funkcja jednej zmiennej, zwykle czasu (t). Dla t>0 wartośd

Bardziej szczegółowo

LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA CZ DO WIADCZALNA Za zadanie do±wiadczalne mo»na otrzyma maksymalnie 40 punktów. Zadanie D. Rozgrzane wolframowe wªókno»arówki o temperaturze bezwzgl dnej T emituje

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników

Bardziej szczegółowo

EKONOMETRIA II SYLABUS A. Informacje ogólne

EKONOMETRIA II SYLABUS A. Informacje ogólne EKONOMETRIA II SYLABUS A. Informacje ogólne Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów /semestr Wymagania wstępne (tzw. sekwencyjny system zajęć

Bardziej szczegółowo

PRÓG RENTOWNOŚCI i PRÓG

PRÓG RENTOWNOŚCI i PRÓG PRÓG RENTOWNOŚCI i PRÓG WYPŁACALNOŚCI (MB) Próg rentowności (BP) i margines bezpieczeństwa Przychody Przychody Koszty Koszty całkowite Koszty stałe Koszty zmienne BP Q MB Produkcja gdzie: BP próg rentowności

Bardziej szczegółowo

REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława ROZDZIAŁ I

REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława ROZDZIAŁ I Załącznik Nr 1 do zarządzenia Nr169/2011 Burmistrza Miasta Mława z dnia 2 listopada 2011 r. REGULAMIN przeprowadzania okresowych ocen pracowniczych w Urzędzie Miasta Mława Ilekroć w niniejszym regulaminie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO Zasady ogólne Ocenianie wewnątrzszkolne na przedmiocie język niemiecki ma na celu: 1) informowanie ucznia o poziomie jego osiągnięć edukacyjnych i jego

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Aleksandra Ki±lak-Malinowska akis@uwm.edu.pl http://wmii.uwm.edu.pl/ akis/ Czym zajmuje si statystyka? Statystyka zajmuje si opisywaniem i analiz zjawisk masowych otaczaj cej czªowieka

Bardziej szczegółowo

Ekonometria. Weryfikacja liniowego modelu jednorównaniowego. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Weryfikacja liniowego modelu jednorównaniowego. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Weryfikacja liniowego modelu jednorównaniowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 2 Weryfikacja liniowego modelu jednorównaniowego 1 / 28 Agenda 1 Estymator

Bardziej szczegółowo

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Regresja kwantylowa W standardowej Metodzie Najmniejszych Kwadratów modelujemy warunkową średnią zmiennej objaśnianej: E( yi Xi) = μ ( Xi) Pokazaliśmy,

Bardziej szczegółowo

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona

Bardziej szczegółowo

Rozdziaª 4. Jednowymiarowe modele szeregów czasowych

Rozdziaª 4. Jednowymiarowe modele szeregów czasowych Rozdziaª 4. Jednowymiarowe modele szeregów czasowych MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 4) Modele ARMA 1 / 24 Jednowymiarowe modele szeregów czasowych Jednowymiarowe modele szeregów czasowych:

Bardziej szczegółowo

Badanie opinii cz onków PKPP Lewiatan na temat kryzysu ekonomicznego w Polsce

Badanie opinii cz onków PKPP Lewiatan na temat kryzysu ekonomicznego w Polsce Badanie opinii cz onków PKPP Lewiatan na temat kryzysu ekonomicznego w Polsce Magda P nik, Tomasz Dulinicz 13 lutego 2009 Cel badania i metodologia Cel badania: Podstawowym celem badania jest zebranie

Bardziej szczegółowo

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Strona1 Monika Płaziak Scenariusz zajęć edukacyjnych nr 1.6 Temat zajęć: Moje kompetencje przedsiębiorcze 1. Cele lekcji: Uczeń: zna pozytywne i negatywne cechy własnej osobowości, zna cechy osoby przedsiębiorczej

Bardziej szczegółowo

Zadania ćwiczeniowe do przedmiotu Makroekonomia I

Zadania ćwiczeniowe do przedmiotu Makroekonomia I Dr. Michał Gradzewicz Zadania ćwiczeniowe do przedmiotu Makroekonomia I Ćwiczenia 3 i 4 Wzrost gospodarczy w długim okresie. Oszczędności, inwestycje i wybrane zagadnienia finansów. Wzrost gospodarczy

Bardziej szczegółowo

Egzamin z ekonometrii - wersja IiE, MSEMAT

Egzamin z ekonometrii - wersja IiE, MSEMAT Egzamin z ekonometrii - wersja IiE, MSEMAT 7-02-2013 Pytania teoretyczne 1. Porówna zastosowania znanych Ci kontrastów ze standardowym sposobem rozkodowania zmiennej dyskretnej. 2. Wyprowadzi estymator

Bardziej szczegółowo