J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006).

Wielkość: px
Rozpocząć pokaz od strony:

Download "J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006)."

Transkrypt

1 Większość zadań pochodzi z podręcznika: J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006).

2 Elementy nieodnawialne.

3 Wskaźniki, zakładajac rozkład wykładniczy dla niezawodności. λ(t) = λ 0, R(t) = e λ 0 t, Q(t) = 1 e λ 0 t, f (t) = λ 0 e λ 0 t, Λ(t) = λ 0 t, T S = 1 λ, t γ = 1 λ 0 ln 100 γ.

4 Zadanie 1 Intensywność uszkodzeń nienaprawialnego chloratora wynosi 10 6 [1/h]. Określ prawdopodobieństwo jego bezuszkodzeniowej pracy w czasie 10000[h].

5 Zadanie 2 W studni wierconej zainstalowano elektroniczny sterownik awaryjnego wyłaczania głębinowego agregatu pompowego, zabezpieczajacy go przed suchobiegiem. Producent określił średni czas bezawaryjnej pracy sterownika na 5 lat, udzielił na niego 2 letniej gwarancji. Traktujac sterownik jako element nieodnawialny oblicz prawdopodobieństwo zdatności elementu przez okres gwarancji.

6 Zadanie 3 Wiadomo, że prawdopodobieństwo zdatności do pracy pewnego elementu nieodnawialnego przez okres co najmniej 5000[h] wynosi 98, 75%. Zakładajac, że element charakteryzuje się brakiem pamięci (można założyć rozkład typu wykładniczego) oblicz prawdopodobieństwo zdatności przez okres 10000[h]. Oblicz również średni czas bezuszkodzeniowej pracy.

7 Zadanie 4 Zakładajac intensywność uszkodzeń λ = 10 5 [1/h] elementu nieodnawialnego oblicz o ile procent należy zwiększyć cenę w stosunku do kosztu produkcji aby zamortyzować koszty rocznej gwarancji.

8 Zadanie 5 Zakładajac brak pamięci, wyznacz 75% zasób pracy elementów, dla których średni czas pracy wynosi 5000[h].

9 Elementy odnawialne.

10 Miary niezawodności elementów nieodnawialnych (w nawiasach wartości przy rozkładzie wykładniczym.) średni czas sprawności T ps = E(T p ), (= 1 λ ) średni czas odnowy T ns = E(T n ), (= 1 µ ) określany gdy jest to czas znaczacy, stacjonarny wskaźnik gotowości K = też niezawodnościa), zawodność U = 1 K = Tns T ps+t ns, Tps T ps+t ns (nazywany wskaźnik gotowości operacyjnej K 0 ( t) = K P(T t). niestacjonarny wskaźnik gotowości (określany tylko w przypadku wykładniczym) K (t) = µ 0+λ 0 e (µ 0 +λ 0 )t µ 0 +λ 0.

11 Zadanie 1 Dane sa agregat pompowy (AP) i zasuwa odcinajaca (ZO). Znane sa dla nich średnie czasy sprawności i niesprawności T p (AP) = 4lata, T p (ZO) = 2lata, T n (AP) = 40[h], T n (ZO) = 16[h]. Który z tych elementów charakteryzuje się wyższa niezawodnościa.

12 Zadanie 2 Dla pewnego typu obiektów odnawialnych czas pracy pomiędzy uszkodzeniami można opisać rozkładem wykładniczym. Średni czas pracy wynosi 5000[h]. Jakie jest prawdopodobieństwo, że po zakończeniu odnowy i właczeniu do pracy układ nie uszkodzi się przez okres 1000[h], 10000[h].

13 Zadanie 3 Pewien zakład uzdatniania wody (ZUW) może oczyszczać wodę w sposób typowy lub alternatywny (stosowany przy wystapieniu w wodzie surowej zanieczyszczeń nadzwyczajnych pewnego typu). Znajac średnie czasy sprawności 8000[h] i niesprawności 12[h] alternatywnego ciagu technologicznego, wyznaczyć prawdopodobieństwo, że po wystapieniu zanieczyszceń nadzwyczajnych zakład będzie sprawny przez czas 2[h].

14 Zadanie 4 Ujęcie wody podziemnej składa się z 5 studni wierconych (nieoddziałujacych na siebie). Sprawność każdej ze studni określa się za pomoca stacjonarnego wskaźnika gotowości K = 0, 98. Jakie jest prawdopodobieństwo, że w dowolnej chwili sprawne będa co najmniej 4 studnie.

15 Zadanie 5 W wielorodzinnym budynku mieszkalnym jest 11 kondygnacji po 4 mieszkania na kondygnację. Wyznaczyć prawdopodobieństwo, że w ciagu roku w żadnym z mieszkań nie uszkodzi się zawór. Intensywność uszkodzeń zaworu wynosi 0, 08[1/rok].

16 Zadanie 6 Pewien element został właczony do eksploatacji. Dla tego typu elementów średnie czasy sprawności i niesprawności wynosza odpowiedni 5000[h] i 16[h]. Po jakim czasie od właczenia niestacjonarny wskaźnik gotowości K (t) osiagnie stały poziom K (przyjmijmy możliwość błędu ɛ = 0, 0005.

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić

Bardziej szczegółowo

W3 - Niezawodność elementu nienaprawialnego

W3 - Niezawodność elementu nienaprawialnego W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD 3 dr inż. Kamila Kustroń Warszawa, 10 marca 2015 24 lutego: Wykład wprowadzający w interdyscyplinarną tematykę eksploatacji statków

Bardziej szczegółowo

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski Cechy eksploatacyjne statku powietrznego Dr inż. Robert Jakubowski Własności i właściwości SP Cechy statku technicznego, które są sformułowane w wymaganiach taktyczno-technicznych, konkretyzują się w jego

Bardziej szczegółowo

ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW

ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH dr inż. Kamila Kustroń dr inż. Kamila Kustroń ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH 1. Wykład wprowadzający

Bardziej szczegółowo

PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV

PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV Elektroenergetyczne linie napowietrzne i kablowe wysokich i najwyższych napięć PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV Wisła, 18-19 października 2017

Bardziej szczegółowo

Struktury niezawodności systemów.

Struktury niezawodności systemów. Struktury niezawodności systemów. 9 marca 2015 - system i jego schemat - struktury niezawodności a schemat techniczny System to zorganizowany zbiór elementów, współpracujacych ze soba pełniac przypisane

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Modelowanie niezawodności prostych struktur sprzętowych

Modelowanie niezawodności prostych struktur sprzętowych Modelowanie niezawodności prostych struktur sprzętowych W ćwiczeniu tym przedstawione zostaną proste struktury sprzętowe oraz sposób obliczania ich niezawodności przy założeniu, że funkcja niezawodności

Bardziej szczegółowo

Rozkład wykładniczy. Proces Poissona.

Rozkład wykładniczy. Proces Poissona. Wykład 3 Rozkład wykładniczy. Proces Poissona. 3.1 Własności rozkładu wykładniczego 3.1.1 Rozkład geometryczny: Mówimy, że zmienna losowa X ma rozkład geometryczny z parametrem p (, 1) jeśli P(Xi)p(1 p)

Bardziej szczegółowo

Niezawodność w energetyce Reliability in the power industry

Niezawodność w energetyce Reliability in the power industry KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Analiza i ocena niezawodności sieci wodociągowej z punktu widzenia gotowości zaopatrzenia w wodę

Analiza i ocena niezawodności sieci wodociągowej z punktu widzenia gotowości zaopatrzenia w wodę Dawid Szpak Politechnika Rzeszowska 1 Analiza i ocena niezawodności sieci wodociągowej z punktu widzenia gotowości zaopatrzenia w wodę Wstęp Podstawowym zadaniem systemu zbiorowego zaopatrzenia w wodę

Bardziej szczegółowo

W6 Systemy naprawialne

W6 Systemy naprawialne W6 Systemy naprawialne Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Graf stanów elementu naprawialnego / systemu 2. Analiza niezawodnościowa systemu model Markowa

Bardziej szczegółowo

Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars

Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 1/15/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.1.1 ROMAN RUMIANOWSKI Statystyczna analiza awarii pojazdów

Bardziej szczegółowo

Niezawodność i Diagnostyka

Niezawodność i Diagnostyka Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe Gdańsk, 2012

Bardziej szczegółowo

Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego

Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego IV Sympozjum Bezpieczeństwa Maszyn, Urządzeń i Instalacji Przemysłowych organizowane przez Klub Paragraf 34 Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego Wpływ doboru

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 4 Modelowanie niezawodności prostych struktur sprzętowych Prowadzący: mgr inż. Marcel Luzar Cel

Bardziej szczegółowo

Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Kierunkowy (podstawowy / kierunkowy / inny HES)

Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Kierunkowy (podstawowy / kierunkowy / inny HES) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Niezawodność zasilania energią elektryczną

Bardziej szczegółowo

Niezawodność i Diagnostyka

Niezawodność i Diagnostyka Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe 1. Struktury

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu. Zagadnienia niezawodności w procesie projektowania

Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu. Zagadnienia niezawodności w procesie projektowania Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu Zagadnienia niezawodności w procesie projektowania Produkty tradycyjne i nowoczesne Środki pomocnicze w projektowaniu pomoc specjalistów

Bardziej szczegółowo

Mapy ryzyka systemu zaopatrzenia w wodę miasta Płocka

Mapy ryzyka systemu zaopatrzenia w wodę miasta Płocka Mapy ryzyka systemu zaopatrzenia w wodę miasta Płocka 27 Stanisław Biedugnis, Mariusz Smolarkiewicz, Paweł Podwójci, Andrzej Czapczuk Politechnika Warszawska. Wstęp W artykule zawartym w niniejszej zbiorczej

Bardziej szczegółowo

Modele długości trwania

Modele długości trwania Modele długości trwania Pierwotne zastosowania: przemysłowe (trwałość produktów) aktuarialne (długość trwania życia) Zastosowania ekonomiczne: długości bezrobocia długości czasu między zakupami dóbr trwałego

Bardziej szczegółowo

Granica funkcji. 8 listopada Wykład 4

Granica funkcji. 8 listopada Wykład 4 Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Granica funkcji. 16 grudnia Wykład 5

Granica funkcji. 16 grudnia Wykład 5 Granica funkcji 16 grudnia 2010 Tw. o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim h(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

2. Wprowadzenie. Obiekt

2. Wprowadzenie. Obiekt POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,

Bardziej szczegółowo

ELEMENTÓW PODANYCH W PN-EN i PN-EN

ELEMENTÓW PODANYCH W PN-EN i PN-EN PORÓWNANIE METOD OCENY NIEUSZKADZALNOŚCI ELEMENTÓW PODANYCH W PN-EN 6508- i PN-EN 680-2 prof. dr inż. Tadeusz MISSALA Przemysłowy Instytut Automatyki i Pomiarów, 02-486 Warszawa Al. Jerozolimskie 202 tel.

Bardziej szczegółowo

Niezawodność elementów i systemów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1

Niezawodność elementów i systemów. Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1 Niezawodność elementów i systemów Sem. 8 Komputerowe Systemy Elektroniczne, 2009/2010 1 Niezawodność wyrobu (obiektu) to spełnienie wymaganych funkcji w określonych warunkach w ustalonym czasie Niezawodność

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

Analiza niezawodności wybranych urządzeń stacji transformatorowo-rozdzielczych SN/nn

Analiza niezawodności wybranych urządzeń stacji transformatorowo-rozdzielczych SN/nn Andrzej Ł. Chojnacki ) Politechnika Świętokrzyska Analiza niezawodności wybranych urządzeń stacji transformatorowo-rozdzielczych SN/nn Analysis of reliability of selected devices in MV/LV substations Poprawna

Bardziej szczegółowo

Podstawy niezawodności Bases of reliability. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Podstawy niezawodności Bases of reliability. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13

Bardziej szczegółowo

A B. 2 5 8 18 2 x x x 5 x x 8 x 18

A B. 2 5 8 18 2 x x x 5 x x 8 x 18 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów.

Bardziej szczegółowo

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności.

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności. Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności. Wydział Matematyki Politechniki Wrocławskiej Wprowadzenie Czym jest niezawodność? (ang.

Bardziej szczegółowo

Granica funkcji. 27 grudnia Granica funkcji

Granica funkcji. 27 grudnia Granica funkcji 27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU

MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU Inż. Małgorzata MROZEK Dr inż. Grzegorz SAWICKI Wojskowa Akademia Techniczna DOI: 10.17814/mechanik.2015.7.274 MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU Streszczenie: W artykule

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Podstawy Informatyki Elementy teorii masowej obsługi

Podstawy Informatyki Elementy teorii masowej obsługi Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Źródło, kolejka, stanowisko obsługi Notacja Kendalla 2 Analiza systemu M/M/1 Wyznaczenie P n (t) Wybrane

Bardziej szczegółowo

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH Jan Kaźmierczak EKSPLOATACJA SYSTEMÓW TECHNICZNYCH dla studentów kierunków: ZARZĄDZANIE Gliwice, 1999 SPIS TREŚCI 1. WPROWADZENIE... 7 2. PRZEGLĄD PODSTAWOWYCH PROBLEMÓW EKSPLOATACJI SYSTEMÓW TECHNICZNYCH...

Bardziej szczegółowo

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Andrzej Purczyński PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Materiały szkolenia technicznego, Jakość energii elektrycznej i jej rozliczanie, Poznań Tarnowo Podgórne II/2008, ENERGO-EKO-TECH

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Badania operacyjne egzamin

Badania operacyjne egzamin Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica

Bardziej szczegółowo

1. Dane ogólne 2. Istniejący stan zagospodarowania 3. Projektowane zagospodarowanie

1. Dane ogólne 2. Istniejący stan zagospodarowania 3. Projektowane zagospodarowanie SPIS TREŚCI Część opisowa Część graficzna PZT Rozbudowa stacji uzdatniania wody w Młynarzach projekt zagospodarowania terenu. 1 : 500 CZĘŚĆ OPISOWA do projektu zagospodarowania terenu: Rozbudowa stacji

Bardziej szczegółowo

ZAKRES PRAC. Załącznik Nr. 6

ZAKRES PRAC. Załącznik Nr. 6 Załącznik Nr. 6 ZAKRES PRAC związanych z utrzymaniem, nadzorem i obsługą pompowni ul. Ks. Józefa, ul. Szparagowa, ul. Olszecka, Park Lilli Wenedy, Rondo Mogilskie, bieżącym utrzymaniem odprowadzenia wód

Bardziej szczegółowo

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście)

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście) Leszek Chybowski Wydział Mechaniczny Politechnika Szczecińska ZASTOSOWANIE DRZEWA USZKODZEŃ DO WYBRANEGO SYSTEMU SIŁOWNI OKRĘTOWEJ 1. Wprowadzenie Stanem systemu technicznego określa się zbiór wartości

Bardziej szczegółowo

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,

Bardziej szczegółowo

ANALIZA NIEZAWODNOŚCI STACJI UZDATNIANIA WODY

ANALIZA NIEZAWODNOŚCI STACJI UZDATNIANIA WODY CZASOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNAL OF CIVIL ENGINEERING, ENVIRONMENT AND ARCHITECTURE JCEEA, t. XXXIII, z. 63 (3/16), lipiec-wrzesień 2015, s. 507-516 Barbara TCHÓRZEWSKA-CIEŚLAK

Bardziej szczegółowo

Konspekt. Piotr Chołda 10 stycznia Modelowanie niezawodności systemów złożonych

Konspekt. Piotr Chołda 10 stycznia Modelowanie niezawodności systemów złożonych Konspekt Piotr Chołda 0 stycznia 207 Modelowanie niezawodności systemów złożonych. Obiekty naprawialne. Czas (do) wystąpienia uszkodzenia (time to failure, T TF ), prawdopodobieństwo przeżycia (probability

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy

Bardziej szczegółowo

4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO

4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO Znaczenie rozkładu wykładniczego 4 51 4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO 4.1. Rozkład wykładniczy Zmienna losowa X ma rozkład wykładniczy, jeżeli funkcja gęstości prawdopodobieństwa f ( x) = λe λx x 0,

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia. Język polski

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia. Język polski Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia Przedmiot: Niezawodność środków transportu Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: TR 1 S 0 6 42-0_1 Rok: III Semestr: 6 Forma studiów:

Bardziej szczegółowo

MODELE STOCHASTYCZNE Plan wykładu

MODELE STOCHASTYCZNE Plan wykładu UNIWERSYTET WROCŁAWSKI Wydział Matematyki i Informatyki Instytut Matematyczny M.Majsnerowska rok akademicki 2018/2019 MODELE STOCHASTYCZNE Plan wykładu 1. Łańcuchy Markowa 1.1. Podstawowe pojęcia i przykłady

Bardziej szczegółowo

XXXX Egzamin dla Aktuariuszy z 9 października 2006 r.

XXXX Egzamin dla Aktuariuszy z 9 października 2006 r. Komisja Egzaminacyjna dla Aktuariuszy XXXX Egzamin dla Aktuariuszy z 9 października 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

ISTOTA I PROCEDURY ZARZĄDZANIA BEZPIECZEŃSTWEM DOSTAW WODY. Prof. zw. dr hab.inż. Janusz Rak HYDROINTEGRACJE 2015

ISTOTA I PROCEDURY ZARZĄDZANIA BEZPIECZEŃSTWEM DOSTAW WODY. Prof. zw. dr hab.inż. Janusz Rak HYDROINTEGRACJE 2015 ISTOTA I PROCEDURY ZARZĄDZANIA BEZPIECZEŃSTWEM DOSTAW WODY Prof. zw. dr hab.inż. Janusz Rak HYDROINTEGRACJE 2015 Ryzyko Jak często? Co złego może się wydarzyć? Zdarzenie niepożądane Jakie mogą być skutki?

Bardziej szczegółowo

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O pewnym modelu pojawiania się szkód Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Modele pojawiania

Bardziej szczegółowo

Rada Gminy Krupski Młyn

Rada Gminy Krupski Młyn Rada Gminy w Krupskim Młynie Załącznik do uchwały Nr VIII/49/11 Rady Gminy Krupski Młyn z dnia 26 kwietnia 2011 roku Rada Gminy Krupski Młyn TARYFY DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ ODPROWADZANIA ŚCIEKÓW

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

NIEZAWODNOŚĆ URZĄDZEŃ ELEKTRONICZNYCH

NIEZAWODNOŚĆ URZĄDZEŃ ELEKTRONICZNYCH NIEZAWODNOŚĆ URZĄDZEŃ ELEKTRONICZNYCH Wersja skrócona. Podstawy projektowania III 1 PODSTAWOWE POJĘCIA ZWIĄZANE Z NIEZAWODNOŚCIĄ URZĄDZEŃ Niezawodność jest właściwością wyrobu poniewaŝ przez pojęcie jakości

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

Modelowanie systemu remontu techniki wojsk lądowych w operacjach

Modelowanie systemu remontu techniki wojsk lądowych w operacjach Bi u l e t y n WAT Vo l. LX, Nr2, 2011 Modelowanie systemu remontu techniki wojsk lądowych w operacjach Marian Brzeziński Wojskowa Akademia Techniczna, Wydział Mechaniczny, Katedra Logistyki, 00-908 Warszawa,

Bardziej szczegółowo

Estymatory i testy statystyczne - zadania na kolokwium

Estymatory i testy statystyczne - zadania na kolokwium Estymatory i testy statystyczne - zadania na kolokwium Zad. 1. Cecha X populacji ma rozkład N(µ, σ), gdzie µ jest znane, a σ nieznane. Niech X 1,...,X n będzie n-elementową próbą prostą pobraną z tej populacji.

Bardziej szczegółowo

OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ

OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ 1-2012 PROBLEMY EKSPLOATACJI 79 Joanna RYMARZ, Andrzej NIEWCZAS Politechnika Lubelska OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ Słowa kluczowe Niezawodność, autobus miejski. Streszczenie

Bardziej szczegółowo

Analiza niezawodności zasilaczy buforowych

Analiza niezawodności zasilaczy buforowych Bi u l e t y n WAT Vo l. LXI, Nr, 01 Analiza niezawodności zasilaczy buforowych Adam Rosiński Politechnika Warszawska, Wydział Transportu, 00-66 Warszawa, ul. Koszykowa 75, adro@it.pw.edu.pl Streszczenie.

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Rozważania w zakresie analizy uszkodzeń eksploatacyjnych pozwalają uczulić na te problemy we wdrażania nowych konstrukcji lotniczych

Rozważania w zakresie analizy uszkodzeń eksploatacyjnych pozwalają uczulić na te problemy we wdrażania nowych konstrukcji lotniczych Rozważania w zakresie analizy uszkodzeń eksploatacyjnych pozwalają uczulić na te problemy we wdrażania nowych konstrukcji lotniczych Wnioski kreują kierunek tworzenia nowych konstrukcji powinny one być

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014 Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku

Bardziej szczegółowo

Niezawodność eksploatacyjna środków transportu

Niezawodność eksploatacyjna środków transportu Niezawodność eksploatacyjna środków transportu Niezawodność obiektów eksploatacji Niezawodność i trwałość obiektów eksploatacji Niezawodność obiektu (środka transportu) jest to jego zdolność do zachowania

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48

WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48 TECHNIKA TRANSPORTU SZYNOWEGO Andrzej MACIEJCZYK, Zbigniew ZDZIENNICKI WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48 Streszczenie W artykule wyznaczono współczynniki gotowości systemu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

opracował: mgr inż. Piotr Marchel Instrukcja obsługi programu Struktura

opracował: mgr inż. Piotr Marchel Instrukcja obsługi programu Struktura POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Bezpieczeństwo elektroenergetyczne i niezawodność zasilania laboratorium opracował: mgr inż. Piotr

Bardziej szczegółowo

T a r y f a DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW MIESZKAŃCÓW GMINY ŻARNOWIEC

T a r y f a DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW MIESZKAŃCÓW GMINY ŻARNOWIEC Załącznik do uchwały Nr XIV/72/2015 Rady Gminy w Żarnowcu Z dnia 21 grudnia 2015 r. T a r y f a DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW MIESZKAŃCÓW GMINY ŻARNOWIEC NA OKRES

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW

TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW Obowiązująca na terenie miasta Ustki dla odbiorców usług w zakresie zbiorowego zaopatrzenia w wodę i zbiorowego odprowadzenia

Bardziej szczegółowo

UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY IM. JANA I JÊDRZEJA ŒNIADECKICH W BYDGOSZCZY ROZPRAWY NR 145. Leszek Knopik

UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY IM. JANA I JÊDRZEJA ŒNIADECKICH W BYDGOSZCZY ROZPRAWY NR 145. Leszek Knopik UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY IM. JANA I JÊDRZEJA ŒNIADECKICH W BYDGOSZCZY ROZPRAWY NR 145 Leszek Knopik METODA WYBORU EFEKTYWNEJ STRATEGII EKSPLOATACJI OBIEKTÓW TECHNICZNYCH BYDGOSZCZ 010 REDAKTOR

Bardziej szczegółowo

TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW

TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW Załącznik do uchwały nr XII/82/07 Rady Miejskiej Chełmży z dnia 28 grudnia 2007 r. TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW zatwierdzona uchwałą Rady Miejskiej Chełmży

Bardziej szczegółowo

UCHWAŁA Nr XII/110/16 RADY GMINY W WARCIE BOLESŁAWIECKIEJ. z dnia 2 lutego 2016r.

UCHWAŁA Nr XII/110/16 RADY GMINY W WARCIE BOLESŁAWIECKIEJ. z dnia 2 lutego 2016r. UCHWAŁA Nr XII/110/16 RADY GMINY W WARCIE BOLESŁAWIECKIEJ z dnia 2 lutego 2016r. w sprawie aktualizacji wieloletniego planu rozwoju i modernizacji urządzeń wodociągowych i urządzeń kanalizacyjnych na lata

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: NIEZAWODNOŚĆ I EKSPLATACJA URZĄDZEŃ MECHATRONICZNYCH Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na kierunku Mechatronika Rodzaj zajęć: wykład Reliability and Maintenance of

Bardziej szczegółowo

w budynkach mieszkalnych

w budynkach mieszkalnych Budownictwo i Architektura 13(3) (2014) 27-32 Prognoza stanu technicznego ścian murowanych w budynkach mieszkalnych Instytut Budownictwa, Wydział Inżynierii Lądowej i Środowiska, Uniwersytet Zielonogórski,

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

TARYFY DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ

TARYFY DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ Załącznik do Uchwały Nr XX/151/2012 Rady Miejskiej w Krzanowicach z dnia 28 grudnia 2012r. TARYFY DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ Obowiązuje na terenie Gminy Krzanowice na okres: od dnia 01 stycznia

Bardziej szczegółowo

Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym.

Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym. Hipotezy proste Zadanie 1. Niech X ma funkcję gęstości f a (x) = (1 + a)x a, dla 0 < x < 1, Testujemy H 0 : a = 1 przeciwko H 1 : a = 2. Dysponujemy pojedynczą obserwacją X. Wyznaczyć obszar krytyczny

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

SZACOWANIE NIEZAWODNOŚCI ZAWORÓW WTRYSKOWYCH OKRĘTOWYCH SILNIKÓW SPALINOWYCH TYPU S46MC-C

SZACOWANIE NIEZAWODNOŚCI ZAWORÓW WTRYSKOWYCH OKRĘTOWYCH SILNIKÓW SPALINOWYCH TYPU S46MC-C 3-2007 PROBLEMY EKSPLOATACJI 207 Roman STRACHOWSKI, Jan MONIETA Akademia Morska, Szczecin SZACOWANIE NIEZAWODNOŚCI ZAWORÓW WTRYSKOWYCH OKRĘTOWYCH SILNIKÓW SPALINOWYCH TYPU S46MC-C Słowa kluczowe Silniki

Bardziej szczegółowo

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu WODOCIĄGI 1 Nazwa modułu w języku angielskim Water Supply System 1 Obowiązuje

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy

Bardziej szczegółowo

Monitoring i sterowanie w systemie wodociągowym Nowego Sącza

Monitoring i sterowanie w systemie wodociągowym Nowego Sącza Monitoring i sterowanie w systemie wodociągowym Nowego Sącza MARIAN KULIG ANDRZEJ WÓJSIK HISTORIA Historia powstania wodociągu sądeckiego sięga XV wieku, natomiast współczesny wodociąg liczy 100 lat i

Bardziej szczegółowo

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za

Bardziej szczegółowo