UZUPEŁNIENIA DO WYKŁADU H (H-H.3) H.1. Wyprowadzenie związku pomiędzy parametrami dla równowagi ciecz-para w układzie wieloskładnikowym ( W_H.2.1).

Wielkość: px
Rozpocząć pokaz od strony:

Download "UZUPEŁNIENIA DO WYKŁADU H (H-H.3) H.1. Wyprowadzenie związku pomiędzy parametrami dla równowagi ciecz-para w układzie wieloskładnikowym ( W_H.2.1)."

Transkrypt

1 . Hfman Wykłady z Chem fzyznej I - Uzuełnena Wydzał Chemzny PW kerunek: ehnlga hemzna em.3 8/9 H. RÓWNOWAGI FAZOWE UZUPEŁNIENIA DO WYKŁADU H (H-H.3) H.. Wyrwadzene zwązku mędzy arametram dla równwag ez-ara w układze welkładnkwym ( W_H..). g x μ y μ Pwyżze równane mżna zamenć na d g y μ x μ () Zwązek mędzy tenjałam dneena znajdzemy z równwag ez-ara dla zyteg kładnka : d g μ μ () P djęu trnam () () y x lub też uzzają lgarytmy gruują jednej trne arametry dnząe ę d fazy gazwej x ex y R Różnę tenjałów hemznyh zyteg ekłeg kładnka mżna blzyć ałkują hdną mlwej ental wbdnej ubtanj śnenu / = gdze jet bjętśą mlwą zyteg kładnka w faze ekłej. Szukana różna tenjałów hemznyh będze równa ( ) ( ) Otatezny wzór ma tać y ( ) x ex d d R H.. Reguła dźwgn ( W_H..4) wynka z blanu may (lzby ml) kładnków w bu fazah - lzba ml kładnka w ałym układze kładze x * mu ę równać umaryznej lzbe ml w faze ekłej gazwej kładah x y. * * Nx N y N x Nx g * N N y N x N x y Nx y H.3. ermdynamzny warunek wytęwana azetru dla rztwru rteg ( W_H..7). ln R Pdtawają wzry na wółzynnk aktywnś wynkająe z mdelu rztwru rteg trzymujemy x Ax x x x Ax A x Fzyzny erwatek (x az ) mu ełnać warunek R ln A lub R ln. A az R x ln A jet równważne 6

2 . Hfman Wykłady z Chem fzyznej I - Uzuełnena Wydzał Chemzny PW kerunek: ehnlga hemzna em.3 8/9 Analgzne wyrażene dla rztwru regularneg mżna znaleźć w lku zatytułwanym rzwązana nektóryh zadań trenngwyh. H.4. Równwaga ez-ez dla dwukładnkweg rztwru rteg ( W_H.3.). Sełnny mu być warunek braku tablnś tj. <. Dla rztwru rteg = ln + $ ln $ +% $ Dwukrtne różnzkwane x rwadz d zależnś % % < $ > $ Najmnejza wartść rawej trny będze dla kładu równmlweg tj. $ $ na dwe fazy ekłej dla jakegklwek zakreu tężeń wytą dla / >. -. $ -.=. ak wę rzad H.5. Zadana rblemy H.5.. (!) Srężamy zyty gaz w warunkah = nt d bardz wykeg śnena rzez zmnejzane bjętś układu. Narywać rentayjną zależnść = ( = nt). Czy harakter tej funkj będze zależał d wartś temeratury? Przeanalzwać mżlwe rzyadk. H.5.. Wyrwadzć równane krzywej arwana rzy załżenu fzyzne uzaadnnej zależnś ental arwana d temeratury zahwują ztałe załżena urazzająe rwadząe d równana Clauua-Claeyrna ( W_H..3..). H.5.3. (!) Dla ewnej zytej ubtanj krzywa arwana ywana jet równanem Antne a a krzywa ublmaj równanem Clauua-Claeyrna. Parametry bu równań ą znane. Oblzyć/ wyznazyć: wółrzędne unktu trójneg entalę tnena w temeraturze unktu trójneg równane krzywej tnena jeśl znana jet nrmalna temeratura tnena. H.5.4. (!) Wyznazyć ztermę kndenaj (y =nt) dla dwukładnkweg rztwru ełnająeg raw Raulta ( W_H..4.). H.5.5. Wyznazyć zbarę arwana (x =nt) kndenaj (y =nt) dla dwukładnkweg rztwru ełnająeg raw Raulta w którym rężnść ary kładnka ywana jet równanem Antne a a kładnk jet neltny ( W_H..4.). H.5.6. (!) Narywać ełną ztermę (x =nt) (y =nt) zakładają dwlne wartś rężnś ar nad zytym kładnkam dla htetyznej dwukładnkwej mezanny której nedknałś ywane ą mdelem rztwru rteg. Wyknać blzena dla zeregu zmenająyh ę wartś wółzynnka A defnująeg nadmarwą entalę wbdną G E = Ax x ( G.5). A natęne: zaberwwać jawene ę azetru blzyć tałe Henry eg dla bu kładnków rawdzć dkładnść raw granznyh (Raulta Henry eg) dla rztwrów bardz tężnyh bardz rzeńznyh względem wybraneg kładnka ( W_H..6). H.5.7. (*) Udwdnć regułę Gbba-Knwałwa dla ztermy równwag ez-ara ( W_H..7). Wkazówka. Należy krzytać z równana Gbba-Duhema lub Gbba-Duhema-Margulea. H.5.8. Srawdzć ryują wykre że ełnene warunków tnena azetru dla rztwru rteg ( W_ H.3) wduje wtane ektremum na zterme arwana. 7

3 . Hfman Wykłady z Chem fzyznej I - Uzuełnena Wydzał Chemzny PW kerunek: ehnlga hemzna em.3 8/9 H.5.9. Udwdnć dla równwag ez-ara w układze dwukładnkwym że jeśl jeden kładnk ełna raw Raulta drug mu ełnać raw Henry eg. Wkazówka. Zatwać równane Gbba-Duhema dla rzyadku ztermzn-zbaryzneg. UZUPEŁNIENIA DO WYKŁADU H (H.4 H.5) H.6. Wyrwadzene równana rzuzzalnś (faza tała zyta rztwór ekły) ( W_H.4.). x Wyrażają rawą trnę rzez wółzynnk aktywnś x gruują wyrazy trzymuje ę równane na kład rztwru ekłeg (nayneg)- x x () Wytęująa rawej trne różna tenjałów hemznyh zytej ubtanj mże być blzna z równana Gbba-Helmhltza: H H Ht Parametr H t t entala tnena zytej ubtanj (). P ałkwanu w granah d t d trzymamy ( ) ( ) ( t ) ( t ) H d t t gdze drug ułamek lewej trne równa ę zeru (dlazeg?). Otatezne dtawenu d równana () uzykujemy równane rzuzzalnś x Htd ( x ) t H.7. Równana lkwduu lduu dla równwag ez-ał tałe z ełną mezalnśą w bu fazah ( W_H.4.6). Sełnna mu być równść tenjałów hemznyh bu kładnków w faze tałej ekłej. x x x x Krzytają z teg ameg hematu wyrwadzena H.6 trzymuje ę dwa równana rzuzzalnś t x H x ; t x H x t t t Przy załżenu dknałś bu rztwrów (ekłeg tałeg) równana te trzymują frmę równań rzuzzalnś dknałej. x x H t ; H t x t x t Rzwązują układ równań względem ułamków mlwyh w bu fazah uzykujemy równane lduu lkwduu. 8

4 . Hfman Wykłady z Chem fzyznej I - Uzuełnena Wydzał Chemzny PW kerunek: ehnlga hemzna em.3 8/9 H.8. Zadana rblemy H.8.. (!) Dla rzezywteg (alb fkyjneg) układu dwukładnkweg znanyh entalah temeraturah tnena bu kładnków narywać ełny wykre rzuzzalnś rzy załżenu ałkwteg braku mezalnś w fazah tałyh negranznej mezalnś w faze ekłej raz dknałś rztwru ekłeg nedknałś rztwru ekłeg ywaneg mdelem rztwru rteg rzy załżnej wartś wółzynnka A. Wyznazyć (numeryzne lub grafzne) wółrzędne unktu eutektyzneg ( W_H.4.3). Wkazówka: Najrtzym narzędzem jet arkuz kalkulayjny Exela. H.8.. Dla równwag ez ał tałe wyrwadzć równane lduu lkwduu w ta: = =34567 ==34567 rzy załżenu dknałej rzuzzalnś w bu fazah ( W_H.4.6). H.8.3. Dla rzezywteg (alb fkyjneg) układu dwukładnkweg znanyh entalah temeraturah tnena kładnków (n. dla dwóh metal) narywać ełny wykre rzuzzalnś rzy załżenu ałkwtej mezalnś w bu fazah raz h dknałś ( W_H.4.6). Wkazówk: Knezne jet rzwązane zadana H.8.. Najrtzym narzędzem jet arkuz kalkulayjny Exela. H.8.4. (*) Dla rzezywteg (alb fkyjneg) układu trójkładnkweg znanyh entalah temeraturah tnena kładnków znaleźć funkję rzuzzalnś = f(x x = nt) rzy załżenu ałkwteg braku mezalnś w fazah tałyh negranznej mezalnś w faze ekłej raz dknałś rztwru ekłeg ( W_H.5.3.). A natęne Narywać dagram rzuzzalnś (trójkąt Gbba) dla wybranej tałej temeratury newele nżzej d najwyżzej temeratury tnena zyteg kładnka. (numeryzne lub grafzne) wółrzędne unktu eutektyzneg. Narywać zależnść temeratury d kładu dla wzytkh trzeh tanów w któryh w równwadze wytęują dwe fazy tałe faza ekła. Wyznazyć (grafzne lub numeryzne) wółrzędne trójneg unktu eutektyzneg. Wkazówka: Najrtzym narzędzem jet arkuz kalkulayjny Exela. H.8.5. (!) Nazkwać mżlwy dagram rzuzzalnś ( = nt) dla układu złżneg z dwóh l (A B) wólnym jne wdy. W równwadze z rztwrem ekłym mgą wytąć natęująe fazy tałe: A H O A H O AB H O B. Oznazyć w lah wykreu wółtnejąe fazy. Zlutrwać re legająy na darwanu wdy d wybraneg kładu rztwru nenayneg raz nazwać zahdząe rey ( W_H.5.3.3). 9

5 . Hfman Wykłady z Chem fzyznej I - Uzuełnena Wydzał Chemzny PW kerunek: ehnlga hemzna em.3 8/9 UZUPEŁNIENIA DO WYKŁADU H (H.6 H.7) H.9. Izterma Henry eg ( W_H.6..). W tane równwag adrj ma meje równść tenjałów hemznyh kładnka w faze werzhnwej (lewa trna równana) w faze bjętśwej (n. w faze gazwej) rawa trna równana. ѳ +ln9 : = < +ln Ze względu na eyfkę fazy werzhnwej użyt tężena werzhnweg a tj. lś kładnka na jedntkę werzhn lub may adrbenta ne mylć z aktywnśą natmat tan dneena jet analgzny jak w rzyadku układu neymetryzneg (zdefnwać g w ób śły!). ѳ 9 : == >? / Wyrażene eknenjalne raktyzne ne zależy d śnena (dlazeg?). Oznazają tałe arametry rzez k trzymamy 9 : =C =C D Dla nkh śneń nkh tężeń werzhnwyh wółzynnk ltnś aktywnś mże być mnęty. H.. Izterma Langmura ( W_H.6..). Pre adrj rzedtawa ę jak reakję hemzną w ta: S(wlne meje na werzhn adrbenta) + A(nezwązana zątezka adrbatu) = AS(adrbent zaadrbwany). W tane równwag dwedne aktywnś zwązane ą zależnśą E FG E G E F I =J. Indek f w aktywnś 9 K / znaza fazę ekłą lub gazwą. Zatęują aktywnś w faze werzhnwej rzez ułamk werzhnwe - L /M +L M = N trzymujemy: FG I =J. Wynka tąd równane na ułamek L /M który n nazwę tna krya: BN FG E F L /M = 9 / = J 9 K / 9 K E +J 9 / Parametr a max jet makymalną jemnśą fazy werzhnwej (mnwartwy). Dalze urzzena legają na zatąenu aktywnś kładnka w faze bjętśwej rzez tężene alb śnene zątkwe. H.. Izterma adrj Gbba ( W_H.6.3). Ptać gólna tj. P? F Q / =QR wynka bezśredn z II twerdzena Eulera (Gbba-Duhema) zatwaneg d ental wbdnej fazy werzhnwej dla = nt. Zetawamy równana Gbba-Duhema ( = nt) dla fazy werzhnwej (erwze równane) bjętśwej (druge równane) F S P? Q / / =QR 5 Q = W tane równwag tenjały hemzne w bu fazah będą take ame mżna mnąć górny ndek A znazająy fazę werzhnwą. Dla układu dwukładnkweg układ równań rzekztał ę d P F S F Q + P Q / / $ = QR 5 Q +5 $ Q $ = P wyznazenu Q $ z drugeg równana dtawenu d erwzeg P F P P F / / P Q = QR

6 . Hfman Wykłady z Chem fzyznej I - Uzuełnena Wydzał Chemzny PW kerunek: ehnlga hemzna em.3 8/9 Lzby ml kładnków w faze bjętśwej (n n ) zależą d welkś układu który mże być dwlne rzyjęty (b ne zmen ę tunek tyh arametrów). Przyjmjmy taką welkść fazy bjętśwej że lzba zawartyh w nej ml rzuzzalnka (n ) jet taka ama jak lść rzuzzalnka w faze werzhnwej. Wtedy P F / P / Q = QR H.. Cśnene mtyzne W tane równwag względem dyfuzj: x Różna tenjałów hemznyh zytej ezy rzy zmane śnena d d + a ( ) ( ) d Stąd trzymamy wzór na śnene mtyzne: Dla rztwrów bardz rzeńznyh względem kładnka mżlwe ą klejne rzyblżena które rwadzą d wzru van t Hffa ( W_H.7.). x Rx xr nr n n nr m R x H.3. Zadana rblemy H.3.. Jake warunk muzą być ełnne aby zterma BE mgłaby być utżamna z ztermą Langmura ( W_H.6..)? H.3.. Udwdnć rawdzwść gólnej ta ztermy adrj Gbba tj. wyrażena Q =QR ( W_H.6.3). H.3.3. Emryzne równane Szyzkwkeg: R =R Uln+93 jet zęt twane d u zależnś naęa werzhnweg rztwru d tężena urfaktantu ( ). Oblzyć zależnść nadmaru werzhnweg dla układu ywaneg tym równanem ( W_H.6.3). H.3.4. Pre dwrónej mzy twany jet d dalana wdy mrkej. Jake śnene mu być użyte że uzykać zytą wdę z wdy mrkej hdząej z: () Bałtyku () Mrza Śródzemneg; (3) Mrza Martweg? ( W_H.7.3).

FUGATYWNOŚCI I AKTYWNOŚCI

FUGATYWNOŚCI I AKTYWNOŚCI TRMODYNAMIKA TCHNICZNA I CHMICZNA Część VI TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene G n de,t, n j G na odstawe tego, że otenjał

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene de G n na odstawe tego, że otenjał termodynamzny

Bardziej szczegółowo

1.Charakterystyka zjawiska adsorpcji z roztworów

1.Charakterystyka zjawiska adsorpcji z roztworów .Charakterytyka zjawka adrpcj z rztwrów Pdtawwa róŝnca pmędzy adrpcją czytych kładnków gazów, par, ceczy plega na tym, Ŝe w rztwrze znajdują ę przynajmnej dwa kładnk, które w wynku adrpcj twrzą na pwerzchn

Bardziej szczegółowo

Wykład 4. Skręcanie nieskrępowane prętów o przekroju cienkościennym otwartym i zamkniętym. Pręt o przekroju cienkościennym otwartym

Wykład 4. Skręcanie nieskrępowane prętów o przekroju cienkościennym otwartym i zamkniętym. Pręt o przekroju cienkościennym otwartym Wykład 4. Skręane nekrępowane prętów o przekroju enkośennym otwartym zamknętym. Pręt o przekroju enkośennym otwartym la przekroju pręta pokazanego na ryunku przyjmjmy funkje naprężeń Prandtla, która tylko

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej lub lodowej.

Bardziej szczegółowo

Równowagi fazowe układy wieloskładnikowe

Równowagi fazowe układy wieloskładnikowe Faza. Równwagi fazwe układy wielskładnikwe Pdstawwe definije (.d.) Gazy zawsze twrzą jedną fazę (iągłą) Cieze (dwuskładnikwe) mgą twrzyć rztwry lub nie (rzuszzalnść zęśiwa) Ciała stałe są zęst fazą rzrszną

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

13. Termodynamika - równania Gibbsa, Gibbsa-Duhema i wstęp do diagramów fazowych.

13. Termodynamika - równania Gibbsa, Gibbsa-Duhema i wstęp do diagramów fazowych. 13. Termodynamka - równana Gbbsa, Gbbsa-Duhema wstęp do dagramów fazowyh. 13.1. Potenjały termodynamzne: Energa wewnętrzna U reprezentuje ałkowtą energę układu, będąą sumą energ knetyznyh potenjalnyh zarówno

Bardziej szczegółowo

TERMODYNAMIKA II.A PROJEKT [WŁASNOŚCI PŁYNÓW ZŁOŻOWYCH - PODSTAWY] SPIS TREŚ CI. andrzej.magdziarz@agh.edu.pl. http://home.agh.edu.

TERMODYNAMIKA II.A PROJEKT [WŁASNOŚCI PŁYNÓW ZŁOŻOWYCH - PODSTAWY] SPIS TREŚ CI. andrzej.magdziarz@agh.edu.pl. http://home.agh.edu. TERMODYNAMIKA II.A PROJEKT [WŁASNOŚI PŁYNÓW ZŁOŻOWYH - PODSTAWY] andrzej.magdzarz@agh.edu.l htt://home.agh.edu.l/magdz erson 0.10 (005/09/0) SPIS TREŚ I 1. DWUFAZOWY UKŁAD GAZ-IEZ... 1.1. ILOŚĆ SUBSTANJI,

Bardziej szczegółowo

Wyznaczenie współczynnika podziału kwasu octowego pomiędzy fazą organiczną a wodną

Wyznaczenie współczynnika podziału kwasu octowego pomiędzy fazą organiczną a wodną Ćwzene 13 Wyznazene współzynnka podzału kwasu otowego pomędzy fazą anzną a wodną Cel ćwzena Celem ćwzena jest wyznazene współzynnka podzału kwasu otowego pomędzy fazą anzną (butanolem) a wodną w oparu

Bardziej szczegółowo

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania ermdyamka układów rzeczywstych 2.7.1. Pwwactw chemcze 2.7.2. Defcja raz ses tecjału chemczeg aktywść 2.7.3. ermdyamcze fukcje meszaa 2.7.4. Klasyfkacja rztwrów Waruk ztermcz-zchrycze ) ( V F F j V V d

Bardziej szczegółowo

KINEMATYKA MANIPULATORÓW

KINEMATYKA MANIPULATORÓW KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można

Bardziej szczegółowo

T. Hofman, Wykłady z Termodynamiki, Wydział Chemiczny PW, kierunek: Biotechnologia, sem. letni 2015/2016 I. TERMODYNAMIKA UKŁADÓW REAGUJĄCYCH

T. Hofman, Wykłady z Termodynamiki, Wydział Chemiczny PW, kierunek: Biotechnologia, sem. letni 2015/2016 I. TERMODYNAMIKA UKŁADÓW REAGUJĄCYCH T. Hfmn, Wykłdy z Termdynmk, Wydzł Chemzny PW, kerunek: Btehnl, em. letn 5/6 WYKŁAD 3-8. I. Termdynmk ukłdów reuąyh J. Równw ez-r w ukłdh dwukłdnkwyh I. TERMODYNAMIKA UKŁADÓW REAGUJĄCYCH 6. Ukłd z reką

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej

Bardziej szczegółowo

PERWAPORACJA I SEPARACJA PAR ROZDZIELANIE MIESZANIN CIEKŁYCH Z WYKORZYSTANIEM MEMBRAN. Wojciech KUJAWSKI 1. WPROWADZENIE

PERWAPORACJA I SEPARACJA PAR ROZDZIELANIE MIESZANIN CIEKŁYCH Z WYKORZYSTANIEM MEMBRAN. Wojciech KUJAWSKI 1. WPROWADZENIE EBRY TEORI I RKTYK ZESZYT III WYKŁDY OORFICZE I SECJLISTYCZE TORUŃ 2009 ERWORCJ I SERCJ R ROZDZIELIE IESZI CIEKŁYCH Z WYKORZYSTIE EBR Wjeh KUJWSKI Unwersytet kłaja Kernka Wydzał Chem Katedra Chem Fzyznej

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

Dla dzielnej X (dividend) i dzielnika D 0 (divisor) liczby Q oraz R takie, Ŝe

Dla dzielnej X (dividend) i dzielnika D 0 (divisor) liczby Q oraz R takie, Ŝe zelene ekwencyjne zelene la dzelnej X (dvdend) dzelnka (dvor) lczby Q oraz R take, Ŝe X=Q R, R < nazywa ę lorazem Q (uotent) reztą R (remander) z dzelena X rzez. Równane dzelena moŝe meć rozwązana ełnające

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do II kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do II kolokwium sem. zimowy, 2018/19 związanie niektóryh zadań treningwyh d II klkwium sem. zimwy, 8/9 Zad.. rudnść teg zadania, w stsunku d tywyh rzyadków (, = nst i, = nst), lega na warunkah (Q =, = nst) rwadzenia resu. Ddajmy tylk, że

Bardziej szczegółowo

WYKŁAD 8. Równowagi w układach jedno- i dwuskładnikowych

WYKŁAD 8. Równowagi w układach jedno- i dwuskładnikowych WYKŁD 8. Równowag w układah jedno- dwuskładnkowyh Równowaga faz równane Claususa-Claeyrona Rozatrzmy ykl Carnota na ozomyh odnkah zoterm CD, odowadająyh równowadze ez-ara ewnej substanj. T kr Na odnku

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =? PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy

Bardziej szczegółowo

Parametry stanu w przemianie izobarycznej zmieniają się według zależności

Parametry stanu w przemianie izobarycznej zmieniają się według zależności Przyad szzegóne rzemany otroowej /6 5.4. Przemana zobaryzna Przemana rzy stałym śnen, zy zobaryzna jest rzemaną otroową o wyładn m = 0, gdyż m = 0 == onst. Przemana ta zahodz, gdy ogrzewa sę gaz zamnęty

Bardziej szczegółowo

ność Reakcje nieodwracalne całkowite przereagowanie po zainicjowaniu reakcji wymaga katalizatora układ otwarty, gazowy produkt opuszcza układ HCl (aq

ność Reakcje nieodwracalne całkowite przereagowanie po zainicjowaniu reakcji wymaga katalizatora układ otwarty, gazowy produkt opuszcza układ HCl (aq 6. Równwaga R chemiczna Reakcje niedwracalne i dwracalne Reguła a rzekry Prcesy samrzutne i niesamrzutne Entria i tencjał termdynamiczny Warunki samrzutnści Praw działania ania mas Stałe e równwagi r i

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TERMODYNAMIKA TECHNICZNA I CHEMICZNA WYKŁAD IX RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja) ADSORPCJA KRYSTALIZACJA, ADSORPCJA 1 RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja)

Bardziej szczegółowo

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x

f 4,3 m l 20 m 4 f l x x 2 y x l 2 4 4,3 20 x x ,86 x 0,043 x 2 y x 4 f l 2 x l 2 4 4, x dy dx tg y x ,86 0,086 x f l Ry. 3. Rozpatrywany łuk parabolczny 4 f l x x 2 y x l 2 f m l 2 m y x 4 2 x x 2 2 2,86 x,43 x 2 tg y x dy 4 f l 2 x l 2 4 2 2 x 2 2,86,86 x Mechanka Budowl Projekty Zgodne ze poobem rozwązywana układów

Bardziej szczegółowo

Gazy wilgotne i suszenie

Gazy wilgotne i suszenie Gazy wilgotne i uzenie Teoria gazów wilgotnych dotyczy gazów, które w ąiedztwie cieczy wchłaniają ary cieczy i tają ię wilgotne. Zmiana warunków owoduje, że część ary ulega kroleniu. Najbardziej tyowym

Bardziej szczegółowo

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol.

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol. Salae / 1 Salae Salae jet zybko rzebegającym roceem utleaa ołączoym z ydzelaem ę ceła. Salau z reguły toarzyzy emja śatła. Podtaoym eratkam alym alach ą ęgel odór. W ale moża yróżć część alą ealy balat.

Bardziej szczegółowo

Załącznik nr 1 do Wzoru umowy znak sprawy:gcs.dzpi Strona 1 z 11

Załącznik nr 1 do Wzoru umowy znak sprawy:gcs.dzpi Strona 1 z 11 S z c z e g ó ł o w y o p i s i s z a c o w a n y z a k r e s i l o c i o w y m a t e r i a ł ó w e l e k t r y c z n y c h L p N A Z W A A R T Y K U Ł U O P I S I l o j e d n o s t k a m i a r y C e n

Bardziej szczegółowo

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const

Bardziej szczegółowo

Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych

Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych Seć kątowa etoda spostrzeżeń pośrednząyh Układ równań obserwayjnyh rzyrosty współrzędnyh X = X X X X = X X Y = Y Y X Y = Y Y Długość odnka X ' ' ' ' x y Współzynnk kerunkowe x y * B * x y x y gdze - odpowedn

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ. ( i) E( 0) str. 1 WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ. ( i) E( 0) str. 1 WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA WYZNACZANIE NADPOTENCJAŁU RÓWNANIE TAFELA Różnica pmiędzy wartścią ptencjału elektrdy mierzneg przy przepływie prądu E(i) a wartścią ptencjału spczynkweg E(0), nsi nazwę nadptencjału (nadnapięcia), η.

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykohemizne odtay inżynierii roeoej Wykład III Prote rzemiany termodynamizne Prote rzemiany termodynamizne Sośród bardzo ielu możliyh rzemian termodynamiznyh zzególną rolę odgryają rzemiany ełniająe

Bardziej szczegółowo

UZUPEŁNIENIA DO WYKŁADU I (I1, I2)

UZUPEŁNIENIA DO WYKŁADU I (I1, I2) T. Hfman, Wykłady z Chem fzycznej I - Uzupełnena, Wydzał Chemczny PW, kerunek: Technla chemczna, sem.3 2017/2018 UZUPEŁNIENIA DO WYKŁADU I (I1, I2) I. TERMODYNAMIKA UKŁADÓW REAGUJĄCYCH I.1. Dyskusja wpływu

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia Blok 7 Zaada zachowana energ echancznej. Zderzena I. Sły zachowawcze nezachowawcze Słą zachowawczą nazyway łę która wzdłuż dowolnego zaknętego toru wykonuje pracę równą zeru. Słą zachowawczą nazyway łę

Bardziej szczegółowo

ź -- ć ł ź ł -ł ł --

ź -- ć ł ź ł -ł ł -- ------ --------- --ł ----ć -------- --------------- ---ę- --- ----------- ------- ------ó- ------------ ----- --- -- ----- - ------------ --ó- --ś -- -- ------- --------- ------ ---- --------- -------ą

Bardziej szczegółowo

Drgania układu o wielu stopniu swobody

Drgania układu o wielu stopniu swobody Drgana układu welu stpnu swbd Drgana własne Zasada d laberta Zasada d leberta: w dnesenu d knstrukcj, znajdującej sę pd wpłwe sł zennch w czase, żna stswać zasad statk pd warunke, że uwzględn sę sł bezwładnśc.

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

OŚRODKI WIELOSKŁADNIKOWE

OŚRODKI WIELOSKŁADNIKOWE OŚOKI WIEOSKŁANIKOWE 9. KONENSACJA PAY WONEJ W WASTWIE zważmy warstwę materiału rwateg grubśi l, w której knensuje ara wna. ys. 9.1. Strefa knensaji Knensaja ta wuje: zmniejszenie ilśi ary wnej, zwiększenie

Bardziej szczegółowo

ą ą ż ąż Ę ć ć ż ż ż ć ą ą

ą ą ż ąż Ę ć ć ż ż ż ć ą ą ą ą ź ą ą ż ż ź ź ą ą ż ąż Ę ć ć ż ż ż ć ą ą ą ą ż ż ż ż ż ż ć ą ą ą ą ź ż ą ą ż ź Ź ć ż ż ż ź ą ż ż ż ą ż ą ą ż ż ż Ó ż ć ą ż ż ą ż ą ż ą ż ż ż ż ż ż ć ź ć Ł ć ż ć ż ż ż ć ż ż ą ć ą ż ć ź ż ż ć ć ć ź

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

WYKŁAD 2_2. 1.Entropia definicja termodynamiczna. przemiana nieodwracalna. Sumaryczny zapis obu tych relacji

WYKŁAD 2_2. 1.Entropia definicja termodynamiczna. przemiana nieodwracalna. Sumaryczny zapis obu tych relacji .Entroia definicja termodynamiczna. d d rzemiana odwracaa rzemiana nieodwracaa umaryczny zais obu tych relacji Q d el WYKŁAD _ rzykład a Obliczyć zmianę entroii, gdy 5 moli wodoru rozręŝa się odwracaie

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

IX POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2017/2018

IX POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI rok szkolny 2017/2018 rk szklny 017/018 1. Niech pierwsza sba dstanie 1, druga następni dpwiedni 3, 4 aż d n mnet. Więc 1++3+4+.+n 017, n( n 1) 017 n(n+1) 4034, gdzie n(n+1) t ilczyn klejnych liczb naturalnych. Warunek spełnia

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż Ż ę ż ś ę Ś ć ś ść ż ę ę Ś Ą ś ź ć ę ś ć ś ę ę ś ś Ą ść ść ę Ą ż ę ś ś ę ę ć ę ę ś ż Ś Ś ę Ś Ą ś ę ć ś ę ź ś ę ę ź ż ź ść Ż ę ż ż ść ż ż Ł Ź ż ę ś ż ż ę ę ę ę ś ś ŚĆ ę ę ż ś ś ę ś ę ę ęż Ć Ł ę ę ę ś ść

Bardziej szczegółowo

Termochemia Prawo Hessa Równania termochemiczne Obliczanie efektów cieplnych Prawo Kirchoffa

Termochemia Prawo Hessa Równania termochemiczne Obliczanie efektów cieplnych Prawo Kirchoffa ermchema.3.. Praw essa.3.. Równana termchemczne.3.3. Oblczane efektów ceplnych.3.4. Praw Krchffa ermchema praw essa ERMOCEMIA CIEPŁO REAKCJI - PRAWO ESSA W warunkach zchrycznych termchema zajmuje sę pmarem

Bardziej szczegółowo

Termochemia Prawo Hessa Równania termochemiczne Obliczanie efektów cieplnych Prawo Kirchoffa

Termochemia Prawo Hessa Równania termochemiczne Obliczanie efektów cieplnych Prawo Kirchoffa emchema.3.. Paw essa.3.. Równana temchemczne.3.3. Oblczane efektów celnych.3.4. Paw Kchffa emchema aw essa ERMOCEMIA CIEPŁO REAKCJI - PRAWO ESSA W waunkach zchycznych temchema zajmuje sę maem az lścwą

Bardziej szczegółowo

ż Ł Ęż Ą Ę Ę ż ż ż ż Ł ń ń Ę Ę ż ż ć ż Ś ń ż ć ń ń ć ż Ł ć Ł ż Ą ń ń ć ż ż ż ć Ą Ę Ł ń Ł ć ń ń ż ż ż ż ź ż ż ż ć Ę ć ż ż ż ż ż ć ż Ą ć ż ż ć Ń ż Ę ż ż ń ć ż ż ć Ń ż ż ć ń Ę ż ż ć Ą ż ź ż ć ż Ę Ę ż ć ń

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI Materiały omocnicze do ćiczeń rachunkoych z rzedmiotu Termodynamika tooana CZĘŚĆ 1: GAZY WILGOTNE mr inż. Piotr

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

PODSTAWY TERMODYNAMIKI CHEMICZNEJ. Maria Bełtowska-Brzezinska

PODSTAWY TERMODYNAMIKI CHEMICZNEJ. Maria Bełtowska-Brzezinska PODSAWY ERMODYNAMIKI CHEMICZNEJ skryt d wykładów Mara Bełtwska-Brzeznska Wydzał Chem UAM Pznań 009 Ss treśc:. Pjęca dstawwe 4. Układ, stan układu 4. Prcesy dwracalne nedwracalne 6.3. Reakcje chemczne 6.

Bardziej szczegółowo

Ż ą Ę

Ż ą Ę ----- -- ---- ------ ------- Ż---- -------- --- ---- -- -------- -------- ------------ --ą------ - ---------- --- ----------- -----Ę-- - ------- ------------ --- ------- -- ------ -------- ---------- --------

Bardziej szczegółowo

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu

Bardziej szczegółowo

Ę Ę ŁĘ Ł Ł Ó Ż

Ę Ę ŁĘ Ł Ł Ó Ż ĄŁ Ł Ę Ę ŁĘ Ł Ł Ó Ż Ą Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó ć Ę Ą Ę Ą Ę Ó Ó Ó Ż Ó Ę Ż Ż Ż Ó Ó Ó Ó Ó Ż Ż Ż Ó Ź Ó Ó ć Ż ć Ż ć Ą ć Ó Ó Ż Ź Ź ź ź ź ź Ą ź Ż Ź Ó Ź ź ć ź ć ź Ź Ż Ó ć ć Ó Ó Ż Ź Ó Ó Ż Ć Ź Ó Ż Ż Ż Ż Ż Ę Ł Ż Ą Ć Ó

Bardziej szczegółowo

Entropia i druga zasada termodynamiki

Entropia i druga zasada termodynamiki Entroia-drga zasada- Entroia i drga zasada termodynamiki.9.6 :5: Entroia-drga zasada- Przemiana realizowana w kładzie rzedstawionym na rys. 3.7 jest równowagową rzemianą beztariową. Jest ona wię odwraalna.

Bardziej szczegółowo

Ę ę ę Łó-ź ----

Ę ę ę Łó-ź ---- -Ę- - - - - - -ę- ę- - Łó-ź -ś - - ó -ą-ę- - -ł - -ą-ę - Ń - - -Ł - - - - - -óż - - - - - - - - - - -ż - - - - - -ś - - - - ł - - - -ą-ę- - - - - - - - - - -ę - - - - - - - - - - - - - ł - - Ł -ń ł - -

Bardziej szczegółowo

ż ć ż ż Ż ą Ż ą ą ą ą ń ą Ż ą ą ń ą ą ą Ż ą ć ą Ś Ż ą Ę ą ń ż ż ń ą ą ą ą Ż

ż ć ż ż Ż ą Ż ą ą ą ą ń ą Ż ą ą ń ą ą ą Ż ą ć ą Ś Ż ą Ę ą ń ż ż ń ą ą ą ą Ż ń Ś Ę Ś Ś ń Ż ą ż Ż ą ą żą ąż ż Ż Ż Ż ą ą Ż ż ą Żą ą ą ą ż Ś ą ą Ż ż ą ą ą ą Ż Ż ć ż ć ż ż Ż ą Ż ą ą ą ą ń ą Ż ą ą ń ą ą ą Ż ą ć ą Ś Ż ą Ę ą ń ż ż ń ą ą ą ą Ż ą ą ą Ż ń ą ą ń ż ń Ż Ś ą ą ż ą ą Ś Ś ż Ś

Bardziej szczegółowo

Temat wykładu: Całka nieoznaczona. Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy

Temat wykładu: Całka nieoznaczona. Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Temat wykładu: Całka nieoznazona Kody kolorów: żółty nowe pojęie pomarańzowy uwaga kursywa komentarz * materiał nadobowiązkowy A n n a R a j f u r a, M a t e m a t y k a Zagadnienia. Terminologia i oznazenia.

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH.

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH. POLITECHIKA ŚLĄSKA W GLIWICACH WYDZIAŁ IŻYIERII ŚRODOWISKA EERGETYKI ISTYTUT MASZY URZĄDZEŃ EERGETYCZYCH Turbna arowa II Laboratoru oarów azyn celnych (PM 8) Oracował: dr nż. Grzegorz Wcak Srawdzł: dr

Bardziej szczegółowo

ILOCZYN ROZPUSZCZALNOŚCI

ILOCZYN ROZPUSZCZALNOŚCI ILOCZYN ROZPUZCZALNOŚCI W nasycnym rztwrze trudn rzpuszczalneg elektrlitu występuje równwaga między fazą stałą i jnami elektrlitu w rztwrze znajdującym się nad sadem. Jest t stan równwagi dynamicznej,

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

Dzielenie. Dzielenie pozycyjne

Dzielenie. Dzielenie pozycyjne zelene ozycyjne zelene dzelene całkowte: dzelna (dvdend), dzelnk 0 (dvor) Iloraz (uotent) rezta R (remander) z dzelena to lczby take, e R, R rozw zana (,R ) oraz (,R ) take, e R, rzy tym R R, R, R oraz

Bardziej szczegółowo

ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł

Bardziej szczegółowo

ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć

Bardziej szczegółowo

ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś

Bardziej szczegółowo

5. Obiegi wielostopniowe (kaskadowe). Metoda obliczania obiegów kaskadowych.

5. Obiegi wielostopniowe (kaskadowe). Metoda obliczania obiegów kaskadowych. . Chrw, Pdtawy Krge, wyład 8.. Obeg weltwe (aadwe). etda blczaa begów aadwych. W ażdym, dwle mlwaym begu rgeczym mża wyróżć te, w tórych wytwarzaa jet mc chłdcza rzez realzację jedyczeg rceu termdyamczeg.

Bardziej szczegółowo

ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę Ó

ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę Ó ć ń ó ą ś ą ą ż ó ó ą ż ó ś ą ś ą ś ć ż ść ó ó ą ó ą ń ą ę ą ę ż ń ą ó ś ą ą ą ń ó ą ą ą ś ą ó ż ś ęż ęś ś ń ą ęś ś ą ą ś ż ś Ę ę ń Ż ą ż ń ą ą ą ę ą ę ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę

Bardziej szczegółowo

Zintegrowany interferometr mikrofalowy z kwadraturowymi sprzęgaczami o obwodzie 3/2λ

Zintegrowany interferometr mikrofalowy z kwadraturowymi sprzęgaczami o obwodzie 3/2λ VII Międzynardwa Knferencja Elektrniki i Telekmunikacji Studentów i Młdych Pracwników Nauki, SECON 006, WAT, Warzawa, 08 09.. 006r. ppr. mgr inż. Hubert STADNIK ablwent WAT, Opiekun naukwy: dr inż. Adam

Bardziej szczegółowo

Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć

Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć Ł Ę Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć ć Ź ć ć ć Ś ć Ć ć Ś Ć ć ć Ś ć Ś ć Ś ć Ś Ć Ź ć ć ź Ź ć Ś Ć Ć Ą Ć Ś Ś Ś Ś Ś Ś Ś Ź Ć Ź Ź ŚĆ Ś Ę ź Ś Ź Ź Ź ć ć Ś Ś Ś Ś Ź Ź Ś Ś Ć Ś ć Ć Ą

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Analiza progu rentowności

Analiza progu rentowności Analiza rogu rentownośi Analiza rogu rentownośi (ang. break-even oint BEP) obejmuje badania tzw. unktu równowagi (wyrównania, krytyznego), informująego na o tym, jakie rozmiary rzedaży rzy danyh enah i

Bardziej szczegółowo

Chemiczne własności powierzchni. Funkcje termodynamiczne objętości. Definicja funkcji termodynamicznych powierzchni

Chemiczne własności powierzchni. Funkcje termodynamiczne objętości. Definicja funkcji termodynamicznych powierzchni Sygnał Chemzne łanoś poerzhn Funkje termodynamzne objętoś Jeżel układ ne może ymenać zątk z otozenem to funkje termodynamzne należy lzyć ze zoró (praa neobjętośoa =0): Chemzne łanoś poerzhn Termodynamzny

Bardziej szczegółowo

Zajęcia wyrównawcze z fizyki -Zestaw 3 dr M.Gzik-Szumiata

Zajęcia wyrównawcze z fizyki -Zestaw 3 dr M.Gzik-Szumiata Prjekt Inżynier mehanik zawód z przyszłśią współfinanswany ze śrdków Unii Eurpejskiej w ramah Eurpejskieg Funduszu Spłezneg Zajęia wyrównawze z fizyki -Zestaw 3 dr M.Gzik-Szumiata Kinematyka,z.. Ruhy dwuwymiarwe:

Bardziej szczegółowo

Reprezentacje grup symetrii. g s

Reprezentacje grup symetrii. g s erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene

Bardziej szczegółowo

Ile wynosi suma miar kątów wewnętrznych w pięciokącie?

Ile wynosi suma miar kątów wewnętrznych w pięciokącie? 1 Ile wynos suma mar kątów wewnętrznych w pęcokące? 1 Narysuj pęcokąt foremny 2 Połącz środek okręgu opsanego na tym pęcokące ze wszystkm werzchołkam pęcokąta 3 Oblcz kąty każdego z otrzymanych trójkątów

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

Wykład 9. Silnik Stirlinga (R. Stirling, 1816)

Wykład 9. Silnik Stirlinga (R. Stirling, 1816) Wykład 9 Maszyny celne c.d. Entala Entala reakcj chemcznych Entala rzeman azowych Procesy odwracalne neodwracalne Entroa ykl arnot W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Slnk Strlnga (R. Strlng,

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Ł Ś ś

Ł Ś ś ż ź Ą ą ą ą ą Ł ś ż ś ś ą ż Ż ś ż ż ż ą ż Ł ą ą ą ń ą ś ś ą ą ą ż ś ą ą ż ą ą ą ą ż ń ą ść Ł Ś ś ś ś ą ś ś ą ń ż ą ś ź Ż ą ą ż ś ż ś ść Ź ż ż ś ą ń ą ś ż Ź Ź ż ż ż ą Ó Ż Ź ą Ś ż ść ż ą ź ż ą ą Ź ą Ś Ż

Bardziej szczegółowo

ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż

ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż Ś ó ż ż ó ó Ż ó ó ż ę Ż ż ę ó ę Ż Ż ć ó ó ę ó Ż ę Ź ó Ż ę ę ę ó ó ż ę ż ó ęż ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż

Bardziej szczegółowo

ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń Ó ć ę Ł ą ą ę ó ę ó ą ć Ę ą ę Ź ą ą ę ó ż ć Ę ę

ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń Ó ć ę Ł ą ą ę ó ę ó ą ć Ę ą ę Ź ą ą ę ó ż ć Ę ę ą Ś ą ą ą ż ź Ź ó ż ą ń Ś ź ć ą ą ć ź ć ó ó ą ó ż ą ń ą Ę ą ę ż ń ą ó ą ą ą ą ą ą ą ó ź ń ęż ć ą ę ą ą Ń ó ż Ęć ę ą ż ż ń ż Ó ą ż ń ń ą ą ó ą Ę ęż ęż ęź Ś ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo