Dyskretna optymalizacja pompy zębatej z podciętą stopą zęba za pomocą nakładkowych drzew logicznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dyskretna optymalizacja pompy zębatej z podciętą stopą zęba za pomocą nakładkowych drzew logicznych"

Transkrypt

1 Dyskreta otymalizacja omy zębatej z odciętą stoą zęba za omocą akładkowych drzew logiczych aria A. Partyka, aria Natorska. Wstę Układy hydraulicze są coraz częściej stosowae ze względu a możliwości rzeoszeia dużych mocy rzy stosukowo wysokiej srawości. Jedym z główych elemetów każdego układu są geeratory eergii strumieia cieczy. Najczęściej stosowae w rzemyśle są omy zębate o zazębieiu zewętrzym. Ich udział szacoway jest a około 50%. Tak owszeche zastosowaie wyika z rostej i zwartej ich kostrukcji, iezawodości działaia, małych gabarytów w orówaiu do iych jedostek omujących, dużego wsółczyika srawości, wysokiej odorości a zaieczyszczeia czyika roboczego oraz iskiego kosztu wytwarzaia. Dodatkowo jedostki zębate mogą działać ze zaczymi rędkościami obrotowymi i od tym względem rzewyższają ie rodzaje om wyorowych. Wymieioe zalety, a także wysokie ciśieia robocze, dochodzące do 30 Pa, oraz srawość całkowita dochodząca do 90% mają wływ a rozległe zastosowaia w układach sterowiczych, aędowych lub smarowiczych maszy i urządzeń. W złożoych sytuacjach rocesu rojektowaia waże jest odowiedie zaisaie algorytmicze i orogramowaie rzedstawioych metod rojektowaia grafów i drzew rozgrywających arametryczie, aby w szczególości uikąć złożoości obliczeiowej tyu wykładiczego. Prawidłowa raca układu będzie zależeć od zmia wartości arametrów kostrukcyjych i/lub eksloatacyjych, od cech i własości dyamiczych układu lub elemetu [, 2]. 2. Badaia hydraulicze omy zębatej z odciętą stoą zęba Otymalizacja omy zębatej wymaga obliczeia srawości: objętościowej (η ν ), hydrauliczo-mechaiczej (η hm ) oraz całkowitej (η c ). Ze względu a wystęujący koflikt modelowy często srawość całkowitą oblicza się bezośredio rzy jedoczesym założeiu sełieia douszczalego ozostałych srawości. Podejście takie skutkuje dużą możliwością oszczędości eergetyczych. Srawość całkowitą omy określa się stosukiem mocy wyjściowej (N wy ) do mocy włożoej (N we ) lub jako [3, 4, 7,8]: Streszczeie: Otymalizacja omy zębatej z odciętą stoą zęba wymaga obliczeia srawości objętościowej, hydrauliczo-mechaiczej oraz całkowitej. Ze względu a koflikt modelowy często oblicza się bezośredio srawość całkowitą rzy założeiu sełieia douszczalego ozostałych srawości. Nakładkowe drzewa logicze są dodatkową iezależą metodą. DISCRETE OPTIIZATION OF A GEAR PUP AFTER TOOTH ROOT UNDERCUTTING BY EANS OF ULTI-DIENSIONAL LOGIC TREES Abstract: Otimizatio of the gear um after tooth root udercuttig requires calculatios of volumetric, mechaical ad total efficiecies. Because of the model coflict, total efficiecy is ofte calculated o the assumtio that the other efficiecies are accetable. ultile-dimesioal logical trees are the additioal ideedet method. Srawość objętościowa omy zębatej (η ν ) defiiowaa jest jako stosuek wydajości rzeczywistej rz do wydajości teoretyczej t : W omie a całkowite straty objętościowe wływ mają astęujące arametry: odkształceia elemetów omy, ściśliwość cieczy, iecałkowite wyełieie komór roboczych w okresie ssaia oraz rzecieki wewętrze, roorcjoale do lekości i gęstości cieczy. Uwzględiając wszystkie wsółczyiki i zależości między imi, otrzymuje się wzór a srawość objętościową: (2) () (3) 54 Nr 7/8 Liiec Sierień 207 r.

2 gdzie: C μ wsółczyik, który jest fukcją rozmiarów i liczby szczeli, zależy od wydajości właściwej omy; ciśieie robocze; q wydajość właściwa; ρ gęstość cieczy; rędkość obrotowa; μ lekość dyamicza cieczy; c r wsółczyik zależy od rodzaju i rozmiaru szczeli oraz wydajości właściwej omy. Srawość hydrauliczo-mechaicza omy (η hm ) określa się stosukiem mometu teoretyczego t do sumy mometu strat hydrauliczo-mechaiczych Δ i mometu teoretyczego t : Ostateczie otrzymuje się wzór: gdzie: c wsółczyik zależy od rodzaju omy; c ρ wsółczyik zależy główie od wydajości właściwej omy; c ν wsółczyik zależy od rodzaju omy; t ciśieie tłoczoe; ozostałe arametry jak dla srawości objętościowej. Ostateczie, korzystając ze wzorów (), (3) i (5), otrzymuje się rówaie oisujące srawość całkowitą: W oracowaiu za fukcje uzao (η ν ), (η hm ) i (η c ), atomiast za zmiee decyzyje rzyjęto arametry:,, t, rz. Przedstawioe ostęowaie ma ses z uktu widzeia zastosowaia omy zębatej z odciętym zębem w różych układach, wykazaia orawości i dokładości obliczeń matematyczych, a także wyzaczeia rozbieżości obliczeiowych, wyikających z różych algorytmów stosowaych w rojektowaiu omy zębatej: zz wyzaczaie maksymalej srawości objętościowej rzy założeiu douszczalej srawości hydrauliczo-mechaiczej; zz wyzaczeie maksymalej srawości hydrauliczo- -mechaiczej rzy założeiu douszczalej srawości objętościowej; zz wyzaczeie maksymalej srawości całkowitej [3, 5, 7, 8]. (4) (5) (6) W szczególości moża odać bardziej szczegółowe oisy aalizowaych arametrów, uwzględiając umowy arametr wyrażoy wzorem [7, 8]: Podejście takie wymaga ciągłego uwzględiaia kofliktu kryterialego srawości objętościowej (η ν ) oraz srawości hydrauliczo-mechaiczej (η hm ). 3. Otymalizacja dyskreta omy zębatej z odciętą stoą zęba W otymalizacji omy zębatej obliczoo srawość objętościową, hydrauliczo-mechaiczą oraz całkowitą [4]. Otymalizacja srawości omy może więc rzebiegać jako wielokryteriala bądź mookryteriala. Zakładając, że fukcją celu jest srawość całkowita omy, a oszukiwaymi arametrami są wartości arametrów kostrukcyjych i/lub eksloatacyjych, otymalizację moża rzerowadzić oddzielie rzy zmieych arametrach kostrukcyjych i eksloatacyjych, oszukując maksymalej wartości srawości [3, 5]. aksymala srawość omy o daej kostrukcji uzyskiwaa jest orzez dobór arametrów kostrukcyjych i eksloatacyjych. 4. Logicze drzewa decyzyje Drzewa logicze w ujęciu decyzyjym zawierają a każdym iętrze logiczą zmieą decyzyją, rzyisaą do daego arametru kostrukcyjego i/lub eksloatacyjego. Zmiay wartości arytmetyczych arametrów kostrukcyjych i/lub eksloatacyjych są zakodowae gałązkowo wartościami logiczymi kolejo od lewej do rawej stroy dla oszczególych zmieych i rzyjmują astęujące wartości = 0,, 2, 3, t = 0,, 2, 3, 4, 5, 6, 7 oraz dla, rz = 0,, 2, 3, 4 w każdej wiązce decyzyjej. Projektowaie elemetu albo układu moża rzerowadzać według dowolej kolejości zmia dla arametrów, ale tylko drzewa logicze z miimalą liczbą gałązek rawdziwych (ozaczoych sosobem ogrubioym), bez gałązek izolowaych o redukcji douszczalych ełych wiązek z góry a dół, oisują rawdziwą ragę ważości arametrów kostrukcyjych i/lub eksloatacyjych od ajważiejszego a dole do ajmiej ważego a górze [6]. Obowiązuje zasada, że a każdym iętrze jest tylko jeda zmiea decyzyja [6, 9]. Do aalizy wybrao wartości arytmetycze badaych arametrów, które zakodowao otem logiczymi zmieymi decyzyjymi dla otrzeb logiczych drzew decyzyjych w otymalizacji dyskretej omy zębatej z odciętym zębem [4]: = 500 [rm] ~ 0; = 800 [rm] ~ ; = 000 [rm] ~ 2; = 500 [rm] ~ 3; = 2000 [rm] ~ 4; t = 0 [Pa] ~ 0; t = 5 [Pa] ~ ; t =0 [Pa] ~ 2; t =5 [Pa] ~ 3; t = 20 [Pa] ~ 4; t = 25 [Pa] ~ 5; t = 28 [Pa] ~ 6; t = 30 [Pa] ~ 7; 20,2; 2, 34,2; 34,9 (7) Nr 7/8 Liiec Sierień 207 r. 55

3 Tabela. Wartości arytmetycze i logicze ustaloych arametrów kostrukcyjych i/lub eksloatacyjych i fukcji celu [4] t rz η v η hm η c ,6 0,0 0,0 0 92, 98,0 90,3 2 9,3 9,8 83,8 3 90,9 9,5 83, ,9 90,7 82,4 Tabela 2. Zakodowae logiczie dae dla rzeczywistych srawości Dae dla srawości całkowitej η c t rz , 88,5 8, ,5 90,9 84, ,0 90,0 83, ,0 0,0 0,0 0 97,5 92,8 90,5 2 96,2 90,6 87,2 3 96,0 89,9 86, ,7 88,4 84, ,0 87,6 85, ,5 88,5 86, ,8 88,5 86, ,9 0,0 0,0 0 99, 92,8 92,0 2 98,7 86,2 85, 3 97,4 85,6 83, ,4 84,2 82, ,4 85, 82, ,4 84,7 82, ,2 85,3 82, ,9 0,0 0,0 0 00,0 84,0 84,0 2 99,6 84, 83,8 3 99, 84,9 84, , 82,3 80, ,4 84,2 82, ,2 84,3 82, , 83,3 8, ,3 0,0 0,0 0 00,0 75,0 75,0 2 99,3 75,2 74,6 3 98,8 76,9 76, ,4 77,8 76, ,8 82,7 8, ,7 82,2 8, ,6 82,0 80,9 Dae dla srawości hydrauliczo- -mechaiczej η hm Dae dla srawości objętościowej η v t rz t rz Nr 7/8 Liiec Sierień 207 r.

4 43,3; 44,5 87,6; 89,3 ~2 ; 65,5; 67,3 ~4 2,0; 47,0 77,0; 25,0 38,0; 82,0 ~2; 200,0; 259,0 ~3 a astęie uwzględioo zakodowaie logiczymi zmieymi decyzyjymi w komleksowych wielowartościowych logiczych drzewach decyzyjych. Przyjęto wartości liczbowe zakresu zmia oszczególych srawości: η ν 0,96; η hm 0,89; η c 0,86 (tabela ) [4]. Aby uzyskać dokłade wyiki, zostało rozrysowaych 4! = 24 drzew dla każdej badaej srawości rzedstawiających wszystkie możliwe kombiacje ustawieia zmieych a czterech iętrach. Nastęie wybray został układ otymaly, czyli drzewo z ajmiejszą liczbą rawdziwych gałęzi. Wszystkie zakodowae wartości zostały rzedstawioe w ogólej tabeli wartości arytmetyczych i logiczych dla,, t, rz (tabela ), a z ich wyselekcjoowao i odowiedio ogruowao wartości dla oszczególych srawości: η c, η hm i η ν (tabela 2) [6, 7, 8]. Efekt końcowy kodowaia ozwolił a aiesieie wartości zmieych a wielowartościowe drzewa logicze, a astęie a uzyskaie odowiedich wiosków odobie jak w [9]. Na odstawie tabeli 2 rozrysowao realizowae drzewa decyzyje odowiedio dla srawości η hm, η ν, η c. oża udowodić, że zarówo dla srawości hydrauliczo- -mechaiczej, srawości objętościowej, jak i srawości całkowitej ajkorzystiejszym układem w sesie miimum liczby gałązek rawdziwych jest układ ięter od korzeia rz t oraz rz t. 5. Nakładkowe drzewa decyzyje Zalezieie maksymalej srawości objętościowej η ν rzy sełieiu douszczalej srawości Rys.. Srawość objętościowa η ν Rys. 2. Srawość hydrauliczo-mechaicza η hm Nr 7/8 Liiec Sierień 207 r. 57

5 Rys. 3. Srawość całkowita η c Rys. 4. Srawość objętościowa η ν i hydrauliczo-mechaicza η hm hydrauliczo-mechaiczej η hm albo maksymalej srawości hydrauliczo-mechaiczej η hm rzy sełieiu douszczalej srawości objętościowej η ν dotyczy jedej i tej samej omy zębatej z odciętą stoą zęba. Dlatego zamiast iezależego liczeia dodatkowego srawości całkowitej η c moża wykoać akładkowe wielowartościowe logicze drzewa decyzyje dla η hm, η ν o kolejości ięter idetyczej do ajleszych oddzielie dla η hm, η ν (rysuek 4), odobie jak w [6]. Na rysuku 4 moża zaleźć idetycze ścieżki decyzyje dla η hm, η ν (rówocześie) i orówać z η c (rysuek 3), celem ostateczego ajleszego wyboru kostrukcyjego według tabeli i odowiediej kolejości ięter rz t oraz rz t. 6. Wioski Nakładkowe drzewa decyzyje są iezależą metodą rojektowaia wobec iych komleksowych metod rojektowaia. Wsóle ścieżki ozaczają sełieie komromisu w celu uzyskaia otymalego rozwiązaia według ustaloego zbioru kryterialego. Potecjale rozbieżości obliczeiowe rzeważie wyikają z iewłaściwych zaokrągleń arytmetyczych dla srawości η hm, η ν, η c. W rozatrywaym rzyadku dla omy zębatej z odciętą stoą zęba otymalymi rozwiązaiami są drzewa o kolejości ięter: rz t oraz rz t i akładkowe drzewa decyzyje (różią się kilkoma gałązkami a ajwyższych iętrach drzew). Na rysuku został rzedstawioy tylko układ rz t dla srawości η hm, η ν, η c, oieważ drzewa dla układu rz t wyglądają tak samo, gdyż wartości rz i rzyjmują takie same wartości (tabela i tabela 2). Podoba aaliza logiczych drzew akładkowych została dokoaa w [6]. Podobie wyzaczoo iezależie srawość całkowitą oraz wykoao drzewo akładkowe dla srawości hydrauliczo-mechaiczej η hm i srawości objętościowej η ν, a astęie dokoao orówaia z drzewem decyzyjym dla srawości całkowitej η c. W rzyadkach bardziej złożoych koiecze jest oracowaie secjalego algorytmu a temat wyzaczaia otymalych akładkowych drzew logiczych. 58 Nr 7/8 Liiec Sierień 207 r.

6 Literatura [] Detuła A.: Coefficiet of the structure comlexity for multi- -valued decisio logic trees. XLI Kof. Zast. at., Zakoae 202, Ist. at. PAN, Warszawa 202. [2] Detuła A., Partyka.A.: Aaliza orówawcza dokładości w rocesie wyzaczaia ragi ważości arametrów kostrukcyjo-eksloatacyjych omy zębatej z odciętą stoą zęba. Iovatios i aagemet ad Productio Egieerig, Oficya Wydawicza Polskiego Towarzystwa Zarządzaia Produkcją, Oole 205, s [3] Osiński P.: Imact of the tooth root udercuttig o hydraulic ad acoustic roerties of gear um. Raort PRE r 4/2005; Politechika Wrocławska. Wrocław [4] Osiński P., Detuła A., Partyka.A.: Discrete otimizatio of a gear um after tooth root udercuttig by meas of multi- -valued logic trees. Archives of Civil ad echaical Egieerig, Volume 3, Issue 4, December 203, [5] Detuła A., Partyka.A.: Discrete otimizatio of a gear um after tooth udercuttig by meas of comlex multi-valued logic trees. XVI Koferecja Iowacje w Zarządzaiu i Iżyierii Produkcji, Zakoae 203, Pol. Towarz. Zarz. Prod. PTZP 203. [6] Grabowski C., Partyka.A.: Nakładkowe drzewa logicze dla kryterium komromisu w otymalizacji dyskretej a rzykładzie om zębatych. Górictwo Odkrywkowe 4 5/2008. [7] Kollek W.: Pomy zębate. Zakład Narodowy im. Ossolińskich, Wrocław 996. [8] Kollek W.: Wływ arametrów eksloatacyjych a srawość om zębatych. Sterowaie i Naęd Hydrauliczy 3/983. [9] Partyka.A.: Otymalizacja dyskreta omy wirowo-śmigłowej w ruchu turbiowym zastosowaie wielowartościowych drzew logiczych. Naędy i Sterowaie /2004. rof. dr hab. aria A. PARTYKA jest rofesorem zwyczajym a Wydziale Iżyierii Produkcji i Logistyki Politechiki Oolskiej; mgr iż. aria NATORSKA jest asystetką a Wydziale Iżyierii Produkcji i Logistyki Politechiki Oolskiej; m.atorska@o.oole.l artykuł recezoway Nr 7/8 Liiec Sierień 207 r. 59

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Ćwiczeie 5 OKREŚLENIE CARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Wykaz ważiejszych ozaczeń c 1 rędkość bezwzględa cieczy a wlocie do wirika, m/s c rędkość bezwzględa cieczy a wylocie

Bardziej szczegółowo

130 Nr 11 Listopad 2014 r.

130 Nr 11 Listopad 2014 r. orówaie mocy strat eergetyczych w omie wyorowej o zmieej wydajości, określoych bez uwzględieia bądź z uwzględieiem mocy ściskaia oleju hydrauliczego Zygmut aszota 1. Wrowadzeie W racach [1 4] autor dokoał

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

Laboratorium Metrologii I Nr ćwicz. Opracowanie serii wyników pomiaru 4

Laboratorium Metrologii I Nr ćwicz. Opracowanie serii wyników pomiaru 4 Laboratorium Metrologii I olitechika Rzeszowska Zakład Metrologii i Systemów omiarowych Laboratorium Metrologii I Grua Nr ćwicz. Oracowaie serii wyików omiaru 4... kierowik...... 4... Data Ocea I. Cel

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

CZ.2. SYNTEZA STRUKTURY MECHANIZMU

CZ.2. SYNTEZA STRUKTURY MECHANIZMU CZ.. SYNTEZA STRUKTURY MECHANIZMU rzystęując do sytezy struktury mechaizmu łaskiego stawiamy astęujące ytaia: jaki ruch ma wykoywać czło lub człoy robocze: ostęowy (w szczególości ostęowy rostoliiowy),

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2

Chłodnictwo i Kriogenika - Ćwiczenia Lista 2 Chłodictwo i Kriogeika - Ćwiczeia Lista 2 dr hab. iż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechika Wrocławska Wydział Mechaiczo-Eergetyczy Katedra Termodyamiki, Teorii Maszy i Urządzeń

Bardziej szczegółowo

PODSTAWOWE ZAGADNIENIA METODOLOGICZNE

PODSTAWOWE ZAGADNIENIA METODOLOGICZNE PODSTAWOWE ZAGADNIENIA METODOLOGICZNE. Wprowadzeie W ekoomii i aukach o zarządzaiu obserwuje się tedecję do ilościowego opisu zależości miedzy zjawiskami ekoomiczymi. Umożliwia to - zobiektywizowaie i

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdaie z laboratorium proekologiczych źródeł eergii Temat: Wyzaczaie współczyika efektywości i sprawości pompy ciepła. Michał Stobiecki, Michał Ryms Grupa 5;

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

UŚCIŚLENIA TEORETYCZNE ZWIĄZANE Z WYZNACZENIEM STRAT I SPRAWNOŚCI DLA PRZEKŁADNI HYDROSTATYCZNYCH

UŚCIŚLENIA TEORETYCZNE ZWIĄZANE Z WYZNACZENIEM STRAT I SPRAWNOŚCI DLA PRZEKŁADNI HYDROSTATYCZNYCH 1 Rozdział 6 UŚCIŚLENIA TEORETYCZNE ZWIĄZANE Z WYZNACZENIE STRAT I SRAWNOŚCI DLA RZEKŁADNI HYDROSTATYCZNYCH 6.1. Wrowadzeie Symulacja omuterowa, owiązaa z wyiami badań laboratoryjych, owia umożliwiać ełą

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

L a b o r a t o r i u m (hala 20 ZOS)

L a b o r a t o r i u m (hala 20 ZOS) Politechika Pozańska Istytut Techologii Mechaiczej Zakład Obróbki Skrawaiem : Studium: iestacjoare I st. : Kieruek: MiBM Specjalość: IME Rok akad.: 05/6 Liczba godzi - Zaawasowae Procesy Wytwarzaia L a

Bardziej szczegółowo

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION JEMIELITA Grzegorz 1 KOZYRA Zofia drgaia, belka, odłoŝe sręŝyste DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM Praca dotyczy wyzaczaia drgań belki a dwuarametrowym odłoŝu sręŝystym obciąŝoej symetryczie

Bardziej szczegółowo

Stochastyczne metody optymalizacji

Stochastyczne metody optymalizacji Stochastycze metody otymalizacji I a b b a b = a d Metoda rostokątów N N i i= 0 i= 0 d = σ = h y Metoda traezów d h y y N 0 + ( ) = + yi i= Metoda Simsoa i ξ [ a, b] b h = 0 3 4 5 4 3 a ( b a) R = ( ξ

Bardziej szczegółowo

ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA

ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 255-26, Gliwice 26 ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA RYSZARD KORYCKI DARIUSZ WITCZAK Katedra Mechaiki

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

Wyznaczanie rozwiązań kompromisowych wieloosobowych gier kooperacyjnych w postaci analitycznej

Wyznaczanie rozwiązań kompromisowych wieloosobowych gier kooperacyjnych w postaci analitycznej Bi u l e t y WAT Vo l LX, r 4, 20 Wyzaczaie rozwiązań komromisowych wieloosobowych gier kooeracyjych w ostaci aalityczej Adrzej Ameljańczyk Wojskowa Akademia Techicza, Wydział Cyberetyki, 00-908 Warszawa,

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16 KATEDRA INŻYNIERII CHEMICZNEJ I ROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, ROCESOWEJ I BIOROCESOWEJ Ćwiczeie r 16 Mieszaie Osoba odpowiedziala: Iwoa Hołowacz Gdańsk,

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x.

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Liczba punktów Wyznaczenie pierwszej współrzędnej wierzchołka paraboli: x. LUBELSKA PRÓBA PRZED MATURĄ 05 poziom podstawowy ZESTAW A ZADANIA ZAMKNIĘTE 5 6 7 8 9 0 5 6 7 8 9 0 A B D D A D B D A B C D C B A C A C B C A B D C ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI zadaia 5 6 7 puktów

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Siłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych.

Siłownie ORC sposobem na wykorzystanie energii ze źródeł niskotemperaturowych. Siłowie ORC sposobem a wykorzystaie eergii ze źródeł iskotemperaturowych. Autor: prof. dr hab. Władysław Nowak, Aleksadra Borsukiewicz-Gozdur, Zachodiopomorski Uiwersytet Techologiczy w Szczeciie, Katedra

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, ) PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole

Bardziej szczegółowo

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego

Bardziej szczegółowo

Metoda sumy mocy strat jako sposób określania współczynników k i strat energetycznych występujących w silniku hydraulicznym

Metoda sumy mocy strat jako sposób określania współczynników k i strat energetycznych występujących w silniku hydraulicznym etoda sumy mocy strat jao sosób oreślaia wsółczyiów i strat eergetyczych wystęujących w siliu hydrauliczym Agiesza aczyszy AUTOATYKA W ENERGETYCE 1. Wrowadzeie Od iedawa w literaturze dostęy jest wyres

Bardziej szczegółowo

Wp lyw optymalizacji kopalń odkrywkowych na rozwiazanie bilateralnego monopolu: kopalnia & elektrownia w d lugim okresie

Wp lyw optymalizacji kopalń odkrywkowych na rozwiazanie bilateralnego monopolu: kopalnia & elektrownia w d lugim okresie MPRA Muich Persoal RePc Archive W lyw otymalizacji koalń odkrywkowych a rozwiazaie modelu bilateralego mooolu: koalia & elektrowia w d lugim okresie Leszek Jurdziak 23. October 2006 Olie at htt://mra.ub.ui-mueche.de/531/

Bardziej szczegółowo

4. MODELE ZALEŻNE OD ZDARZEŃ

4. MODELE ZALEŻNE OD ZDARZEŃ 4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Podstawy Automatyzacji Okrętu

Podstawy Automatyzacji Okrętu Politechika Gdańska Wydział Oceaotechiki i Okrętowictwa St. iż. I stoia, sem. IV, kieruek: Oceaotechika, sec.: ZiMwGM Podstawy Automatyzacji Okrętu 9 SEROWANIE NAPĘDU SAKU M. H. Ghaemi Marzec 7 Podstawy

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Wykład 10 Wnioskowanie o proporcjach

Wykład 10 Wnioskowanie o proporcjach Wykład 0 Wioskowaie o roorcjach. Wioskowaie o ojedyczej roorcji rzedziały ufości laowaie rozmiaru róby dla daego margiesu błędu test istotości dla ojedyczej roorcji Uwaga: Będziemy aalizować roorcje odobie

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka Wnioskowanie statystyczne. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka Wnioskowanie statystyczne. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Rachek rawdoodobieństwa i statystyka Wioskowaie statystycze. Estymacja i estymatory Dr Aa ADRIAN Paw B5, ok407 ada@agh.ed.l Estymacja arametrycza Podstawowym arzędziem szacowaia iezaego arametr jest estymator

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzaie sygałów biomeyczyc Człowiek- ajlesza iwestycja Projekt wsółfiasoway rzez Uię uroejską w ramac uroejskiego Fuuszu Sołeczego Wykła XII Rutkowski L. Filtry aatacyje i aatacyje rzetwarzaie sygałów,

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego. Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

RELIABILITY ANALYSIS OF HELICOPTER S SUPPORTINGSTRACTURE WITH SSI AND SST MODELS USED

RELIABILITY ANALYSIS OF HELICOPTER S SUPPORTINGSTRACTURE WITH SSI AND SST MODELS USED Joural o KOBi 1(513 ISS 1895-881 DOI 1.478/jok-13-64 RELIABILITY AALYSIS OF HELICOPTER S SUPPORTIGSTRACTURE ITH SSI AD SST MODELS USED AALIZA IEZAODOŚCIOA STRUKTURY OŚEJ ŚMIGŁOCA MODELAMI SSI ORAZ SST

Bardziej szczegółowo

Estymacja przedziałowa:

Estymacja przedziałowa: Estymacja przedziałowa: Zamiast szukad ajlepszego estymatora, tak jak w estymacji puktowej będziemy poszukiwad przedziału, do którego będzie ależał szukay parametr z odpowiedio dużym prawdopodobieostwem.

Bardziej szczegółowo

Rozdział 4 Model teoretyczny 40

Rozdział 4 Model teoretyczny 40 4. Model teoretyczy ozdział 4 Model teoretyczy 4 4. ówaia fizycze. Klasycze odele teoretycze oisujące zachowaie się betou zwye ostulują istieie lastyczości tego ateriału [7, 5]. W ostatich latach coraz

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Określenie zużycia paliwa przez silnik napędowy statku za pomocą analizy wymiarowej

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Określenie zużycia paliwa przez silnik napędowy statku za pomocą analizy wymiarowej ISSN 17-8670 ZESZYTY NAUKOWE NR 10(8) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA E X P L O - S H I P 0 0 6 Ja Rosłaowski Określeie zużycia paliwa przez silik apędowy

Bardziej szczegółowo

Model matematyczny strat objętościowych ściskania oleju hydraulicznego w pompie wyporowej o zmiennej wydajności

Model matematyczny strat objętościowych ściskania oleju hydraulicznego w pompie wyporowej o zmiennej wydajności Model mtemtyczy strt objętościowych ściski oleju hydruliczego w omie wyorowej o zmieej wydjości Zygmut szot 1. Wrowdzeie W rcch [1 4] utor dokoł róby ocey wływu ściśliwości cieczy roboczej obrz strt objętościowych

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( ) Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)

Bardziej szczegółowo

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ Ć w i c z e i e 6 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ 6.1 Opis teoretyczy W ośrodkach sprężystych wytrąceie pewego obszaru z położeia rówowagi powoduje drgaia wokół tego położeia.

Bardziej szczegółowo

Ćwiczenie nr 3. Bilans cieplny urządzenia energetycznego. Wyznaczenie sprawności cieplnej urządzenia kotłowego zasilanego gazem ziemnym

Ćwiczenie nr 3. Bilans cieplny urządzenia energetycznego. Wyznaczenie sprawności cieplnej urządzenia kotłowego zasilanego gazem ziemnym Termodyamika ćwiczeia laboratoryje Ćwiczeie r 3 Temat: Bilas cieply urządzeia eergetyczego. Wyzaczeie sprawości cieplej urządzeia kotłowego zasilaego gazem ziemym Miejsce ćwiczeń: Laboratorium Techologii

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Modele i arzędzia optymalizacji w systemach iformatyczych zarządzaia Prof. dr hab. iż. Joaa Józefowska Istytut Iformatyki Orgaizacja zajęć 8 godzi wykładów prof. dr hab. iż. J. Józefowska www.cs.put.poza.pl/jjozefowska

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji

Bardziej szczegółowo

Księga Jakości Laboratorium

Księga Jakości Laboratorium 16. Metodyka szacowaia ieewości rozszerzoej Oracował: mgr Jest to szacowaie ieewości o asymetryczych graicach rzedziału ufości względem wartości średiej, co wyika z faktu określaia wartości średiej jako

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Kurs Prawdopodobieństwo Wzory

Kurs Prawdopodobieństwo Wzory Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa

Bardziej szczegółowo

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Twierdzenia graniczne:

Twierdzenia graniczne: Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA METOD REGRESJI WIELOKROTNEJ I WIELOWARTOŚCIOWYCH DECYZYJNYCH DRZEW LOGICZNYCH DLA SPRAWNOŚCI POMPY ZĘBATEJ

ANALIZA PORÓWNAWCZA METOD REGRESJI WIELOKROTNEJ I WIELOWARTOŚCIOWYCH DECYZYJNYCH DRZEW LOGICZNYCH DLA SPRAWNOŚCI POMPY ZĘBATEJ ANALIZA PORÓWNAWCZA METOD REGRESJI WIELOKROTNEJ I WIELOWARTOŚCIOWYCH DECYZYJNYCH DRZEW LOGICZNYCH DLA SPRAWNOŚCI POMPY ZĘBATEJ Izabela D. GÓRSKA, Marian A. PARTYKA Streszczenie: Na podstawie wartości arytmetycznych

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Określenie zużycia paliwa przez silnik napędowy statku za pomocą analizy wymiarowej

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Określenie zużycia paliwa przez silnik napędowy statku za pomocą analizy wymiarowej ISSN 17-8670 ZESZYTY NAUKOWE NR 10(8) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA EXPLO-SHIP 006 Ja Rosłaowski Określeie zużycia paliwa przez silik apędowy statku za

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę

Bardziej szczegółowo

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767

1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767 Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

Analiza zmiennej zastępczej w układach automatyki i sterowania

Analiza zmiennej zastępczej w układach automatyki i sterowania Analiza zmiennej zastępczej w układach automatyki i sterowania z interakcyjnymi parametrami konstrukcyjno-eksploatacyjnymi Marian A. Partyka, Agnieszka Tiszbierek Automatyka i robotyka 1. Wprowadzenie

Bardziej szczegółowo

O2. POMIARY KĄTA BREWSTERA

O2. POMIARY KĄTA BREWSTERA O. POMIARY KĄTA BREWSTERA tekst opracowała: Bożea Jaowska-Dmoch Polaryzacja światła jest zjawiskiem, które potwierdza falową aturę światła. Światło jest falą elektromagetyczą, w której cyklicze zmiay pól

Bardziej szczegółowo

PODSTAWY MODELOWANIA SYSTEMÓW

PODSTAWY MODELOWANIA SYSTEMÓW PODSTAWY MODELOWANIA SYSTEMÓW (otatki do wykładu) eugeiusz.rosolowski@wr.edu.l Wrocław, wrzesień 05 Sis Treści WSTĘP... 5. MODELOWANIE SYSTEMÓW... 7.. Wrowadzeie... 7.. Rówoważość modeli...... Podstawowy

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Przenośnik taśmowy Dynamika

Przenośnik taśmowy Dynamika Przeośik taśmowy obliczeia dyamiki Katedra Maszy Góriczych, Przeróbczych i Trasportowych AGH Przeośik taśmowy Dyamika Dr iż. Piotr Kuliowski pk@imir.agh.edu.pl tel. (1617) 3 74 B- parter p.6 kosultacje:

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Analiza potencjału energetycznego depozytów mułów węglowych

Analiza potencjału energetycznego depozytów mułów węglowych zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej

Bardziej szczegółowo

KSZTAŁTOWANIE KRZYWEJ PRZEJŚCIOWEJ U PODSTAWY ZĘBA W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ ZGINAJĄCYCH

KSZTAŁTOWANIE KRZYWEJ PRZEJŚCIOWEJ U PODSTAWY ZĘBA W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ ZGINAJĄCYCH KSZTAŁTOWANIE KRZYWEJ PRZEJŚCIOWEJ U PODSTAWY ZĘBA W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ ZGINAJĄCYCH Marek MARTYNA 1, Ja ZWOLAK 2 Streszczeie W kolach zębatych tworzących złożoe układy apędowe występują zmiee

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo