Analiza matematyczna 2 Lista zadań

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza matematyczna 2 Lista zadań"

Transkrypt

1 Analiza maemayczna Lisa zadań Opracowanie: dr Marian Gewer, doc. Zbigniew Skoczylas Lisa. Korzysając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: d) + ; b) arccg; e) +) ; c) 4+3 ; f) π sin; e.. Korzysając z kryerium porównawczego zbadać zbieżność całek niewłaściwych pierwszego rodzaju: d) 4 +) ; b) +) 3 ; e) + 9 π ; +3 c) +sin) 3 ; f) +) 4 ++ ; +cos ). 3. Korzysając z kryerium ilorazowego zbadać zbieżność całek niewłaściwych pierwszego rodzaju: +) ; b) +) 5 ) e 5 3 ; c) ; d) sin ; e) 3 sin. 4.Obliczyćpoleobszaruograniczonegokrzywąy= +4 orazosiąo. b)obliczyćobjęośćbryłypowsałejzobrouwokółosioobszaru=,y) R :, y e }. c)zasadnić,żepolepowierzchnipowsałejzobrouwykresufunkcjiy= )wokółosioma skończoną warość. 5. Korzysając z definicji zbadać zbieżność całek niewłaściwych drugiego rodzaju: +) ; b) e ln ; c) +) ; d) π π sin ; e) Korzysając z kryerium porównawczego zbadać zbieżność całek niewłaściwych drugiego rodzaju: 4 arcg ; b) e 4 3 ; c) + ; d*) Korzysając z kryerium ilorazowego zbadać zbieżność całek niewłaściwych drugiego rodzaju: 3 + ) π +) ; b) sin 3 e ) π 4 ; c) ; d*) ; e*) 3 sin. 8. Wyznaczyć warości główne całek niewłaściwych: 3 cos ; b) +4 e e + ; c) e +5 ; d 9 4 π ; e) sin.

2 Lisa 9. Znaleźć sumy częściowe podanych szeregów i nasępnie zbadać ich zbieżność: ) n 5 ; b) 6 n +3n+ ; c) n ; d). n! n++ n n= n=. Korzysając z kryerium całkowego zbadać zbieżność szeregów: n +4 ; b) n= n+ n n ; c) n= lnn n ; d) n n+ ; e). Korzysając z kryerium porównawczego zbadać zbieżność szeregów: 3n+ n 3 + ; b) n + n + ; c) sin π n; d) n= n= n +e n e n +4 n; e) e n e n +. 3 n +n n3 n + n.. Korzysając z kryerium ilorazowego zbadać zbieżność szeregów: n+ n6 ; b) n + n 3 + ; c) e n 3 n ; d) 4 n sin5 n. 3. Korzysając z kryerium d Alembera zbadać zbieżność szeregów: 5 n ; b) n! e n + n 5 + ; c) n sin π n; d) n= n! n n; e) 4. Korzysając z kryerium Cauchy ego zbadać zbieżność szeregów: n+) n n +3 n n +) n ; b) 3 n +4 n; c) 3 n n n ; d) n+) n n n π n n!. arccos n n. 5. Wykazać zbieżność odpowiedniego szeregu i nasępnie na podsawie warunku koniecznego zbieżności szeregów uzasadnić podane równości: n 5 n n n n lim n 3 n =; b) lim n n!) =; c) lim n n! 3n)!4n)! =; d*) lim n 5n)!n)! =. 6. Korzysając z wierdzenia Leibniza uzasadnić zbieżność szeregów: ) n ) n + n ; b) ) n n 3 n +4 n; c) ) n g π n ; d) n= 7. Obliczyć sumy przybliżone szeregów ze wskazaną dokładnością: ) n+ n, ) n n 6 ; b) n+)!, 3. Lisa 3 n= n= n= n=4 8. Zbadać zbieżność oraz zbieżność bezwzględną szeregów: ) n 3 n + ; b) ) n n n+ ; c) ) n n ; d) 3n+5 n= 9. Wyznaczyć przedziały zbieżności szeregów poęgowych: n ne n; b) 5 ) n +3) n ; c) ; d) n! ) n ne ) ; e) n= +6) n 3 n n ; e). Znaleźć szeregi Maclaurina podanych funkcji i określić przedziały ich zbieżności: 5 + ; b)sin ; c) e 3 ; d) 6 ; e)sinh; f)cos.. Korzysając z rozwinięć Maclaurina funkcji elemenarnych obliczyć pochodne: f 5) ), f)= cos; b)f 5) ), f)=e ; c)f ) ), f)= 3 + ; d)f) ), f)=sin. ) n+3n n= n!. n+) n. n+ ) n 3 n +.

3 .Wyznaczyćszeregipoęgowef )oraz f)= + 3; b)f)=sin ) ; c*)f)=e. n= f) d, jeżeli funkcja f określona jes wzorem: 3. Sosując wierdzenia o różniczkowaniu i/lub całkowaniu szeregów poęgowych obliczyć sumy szeregów: n+)3 n; b) n nn+) n ; c) 5 n. n= 4. Obliczyć całki oznaczone ze wskazaną dokładnością: Lisa 4 e,.; sin,.. 5. Wyznaczyć i narysować dziedziny nauralne funkcji: f,y)= y y ; b)f,y)= y + ; c)f,y)= y 4 y ; d)f,y)=ln +y 9 6 y ; e)g,y,z)= + z; f)g,y,z)=arccos +y +z ). 6. Naszkicować wykresy funkcji: f,y)= +y ; b)f,y)= 3+ y ; c)f,y)= +y +y+3; d)f,y)=siny; e)f,y)= ; f)f,y)=. * 7. Obliczyć granice: sin 4 y 4) cos +y ) y lim,y),) +y ;b) lim,y),) +y ) ;c) lim,y),) +y;d) lim +y ) cos,y),) y. 8.Korzysajączdefinicjiobliczyćpochodnecząskowepierwszegorzęduf,f y funkcjifipochodnecząskowe g,g y,g z funkcjigwewskazanychpunkach: f,y)= y,,); b)f,y)= 6 +y 6,,); c)g,y,z)= +z,,,). y 9.Obliczyćpochodnecząskowef,f y funkcjifipochodnecząskoweg,g y,g z funkcjig: f,y)= +y ; b)f,y)=arcg y y +y ; d)f,y)=y +y ; g)g,y,z)= Lisa 5 e)f,y)=ln c)f,y)=ecos y ; + +y ) ; f)g,y,z)= + z +y +z; h)g,y,z)=cossinycosz)); i)g,y,z)= * 3. Sprawdzić, że funkcja f spełnia wskazane równanie: f,y)=ln +y+y ), f +yf y =; b)f,y)= sin y, f +yf y = f. y +yz3 ; + y + z +. 3.Obliczyćpochodnecząskowedrugiegorzęduf,f y,f y,f yy funkcjifipochodnecząskoweg,g y, g z,g y,g yy,g yz,g z,g zy,g zz funkcjigisprawdzić,żepochodnecząskowemieszanesąrówne: f,y)=cos +y ) ; b)f,y)=ye y ; d)f,y)=yln y ; c)f,y)= + y3 ; e)g,y,z)= y + +z ; f)g,y,z)=ln +y +z 3 + ). 3

4 3. Obliczyć pochodne cząskowe: h yy, h,y)=siny; b)h yyy, h,y)= +y y ; c)h yz, h,y,z)= y 3 z. 33. Sprawdzić, że funkcje: z=arcg y ; b)z=+ y ; c)z=+ln + y ) ; d)z=+ y spełniają równanie z +yz y +y z yy =,,y>). 34. Napisać równania płaszczyzn sycznych do wykresów podanych funkcji we wskazanych punkach wykresu: z= y+,,y,z )=,3,z ); b)z=e +y,,y,z )=,,z ); c)z= arcsin arccosy,,y,z )= ) 3,,z ; d)z= y,,y,z )=,4,z ). 35.Nawykresiefunkcjiz=arcg y wskazaćpunky,wkórychpłaszczyznasycznajesrównoległado płaszczyzny+y z=5. b)wyznaczyćrównaniepłaszczyznysycznejdowykresufunkcjiz= +y,kórajesprosopadładoprosej =,y=,z=, R. Lisa 6 36.Wysokośćipromieńpodsawywalcazmierzonozdokładnością±mm.Orzymanoh=35mmoraz r=45mm.zjakąwprzybliżeniudokładnościąmożnaobliczyćobjęośćvegowalca? b)krawędzieprosopadłościanumajądługościa=3m,b=4m,c=m.obliczyćwprzybliżeniu,jak zmieni się długość przekąnej prosopadłościanu d, jeżeli długości wszyskich krawędzi zwiększymy o cm. c)oszacowaćbłądwzględnyδ V objęościprosopadłościamuv,jeżelipomiarujegoboków,y,zdokonanoz dokładnościąodpowiednio, y, z. * 37. Sprawdzić, że podane funkcje spełniają wskazane równania: z=f +y ), yz z y =; b)z=fsin y)), z +z y = z ; y c)z= n f, z +yz y =nzn N); d*)z= ) y ) y g)+h, yz y +y z yy +z +yz y =. 38. Korzysając z definicji obliczyć pochodne kierunkowe podanych funkcji we wskazanych punkach i kierunkach: f,y)= ) 3 +y,,y )=,), v=, ; ) b)f,y)= 3 y,,y )=,), v=, ; ) 3 c)g,y,z)= +yz,,y,z )=,,), v= 3,4 3, Obliczyć pochodne kierunkowe podanych funkcji we wskazanych punkach i kierunkach: ) f,y)= +y,,y )= 3,4), v= 3,5 ; 3 b)f,y)= y ) 3 +y,,y )=,), v= 5, 4 ; 5 ) c)g,y,z)=e yz 3,,y,z )=,, ), v=, 3 4,. 4 4.Obliczyćpochodnąkierunkowąfunkcjif,y)=y +lny).wpunkcie ), wkierunku wersoravworzącegokąαzdodanimzwroemosio.lajakiegokąaαpochodnaamawarość,adla 4

5 jakiego przyjmuje warość największą? b)wyznaczyćwersoryv,wkierunkukórychfunkcjaf,y)= e +y ) wpunkcie,)mapochodną kierunkową równą. Lisa 7 4. Znaleźć eksrema lokalne funkcji: f,y)= 3 +3y 5 4y; b)f,y)=e y + +ey ; c)f,y)=y y),y>); d)f,y)=y y +6y; e)f,y)= 3 +y 3 3y; f)f,y)= 8 + y +y,y>); g)f,y)=y+lny+ ; h)f,y)=4y+ + y ; i)f,y)= y ) + y ). 4. Wyznaczyć eksrema podanych funkcji, kórych argumeny spełniają wskazane warunki: f,y)= +y,3+y=6; b)f,y)= +y 8+, y +=; c)f,y)= y ln,8+3y=; d)f,y)=+3y, +y =. 43. Znaleźć najmniejsze i największe warości podanych funkcji na wskazanych zbiorach: f,y)= y y, =,y) R : y 4 } ; b)f,y)= +y 6+4y, =,y) R :+y 4,+y 6,,y } ; c)f,y)= +y, =,y R : + y } ; d)f,y)=y +4y 4, =,y) R : 3 3, 3 y } ; e)f,y)= 4 +y 4, =,y) R : +y 9 }. 44.WrójkącieowierzchołkachA=,5),B=,4),C=, 3)znaleźćpunkM=,y ),dla kórego suma kwadraów jego odległości od wierzchołków jes najmniejsza. b) Jakie powinny być długość a, szerokość b i wysokość h prosopadłościennej owarej wanny o pojemności V, aby ilość blachy zużyej do jej zrobienia była najmniejsza? c) Znaleźć odległość między prosymi skośnymi: k: +y =, z+ =, l: y+3 =, z =. d)prosopadłościennymagazynmamiećobjęośćv=6m 3.obudowyścianmagazynuużywanesąpłyy wcenie3zł/m,dobudowypodłogiwcenie4zł/m,asufiuwceniezł/m.znaleźćdługośća,szerokość b i wysokość c magazynu, kórego kosz budowy będzie najmniejszy. f) Firma produkuje drzwi wewnęrzne i zewnęrzne w cenach zbyu odpowiednio 5 zł i zł za szukę. Kosz wyprodukowania szuk drzwi wewnęrznych i y zewnerznych wynosi K,y)= y+y [zł]. Ile szuk drzwi każdego rodzaju powinna wyprodukować firma, aby osiągnąć największy zysk? Lisa Obliczyć całki podwójne po wskazanych prosokąach: +y y ) dy,r=[,] [,]; b) R c) siny)dy,r=[,] [π,π]; R dy +y+) 3,R=[,] [,]; R d) e y dy,r=[,] [,]. 46. Całkę podwójną f, y) dy zamienić na całki ierowane, jeżeli obszar ograniczony jes krzywymi o równaniach: y=, y=+; R b) +y =4, y=, =,y ); c) 4+y +6y 5=; d) y =, +y =3<). 5

6 47. Obliczyć całki ierowane: y dy; b) 4 Narysować obszary całkowania. y dy; c) 4 3 +y 3) dy; d) 48. Narysować obszar całkowania, a nasępnie zmienić kolejność całkowania w całkach: d) f,y)dy; b) dy y y f,y); e) π π f,y)dy; c) sin cos f,y)dy; f) 4 e 4 ln 3 y dy f,y)dy; f,y)dy. y Obliczyć całki po obszarach normalnych ograniczonych wskazanymi krzywymi: y dy, :y=,y= ; b) ydy, :y=,y=,y= ; c) e y dy, :y=,=,y=; d) y+4 ) dy, :y=+3,y= +3+3; e) e y dy, :y=,y=,=; f) y+)dy, :=,y=,y=3 ); g) e dy, :y=,y=,= ln3; h) 3y+)dy, :y=,y=π,=,=siny. * 5. Obliczyć podane całki podwójne po wskazanych obszarach: min,y)dy,=[,] [,]; b) +y dy,=[,] [,]; c) y dy,=,y) R :, y 3 } ; d) sgn y + ) dy,=,y) R : +y 4 }. waga. Symbol mina, b) oznacza mniejszą spośród liczb a, b, z kolei u oznacza część całkowią liczby u. 5. Obliczyć warości średnie podanych funkcji na wskazanych obszarach: [ f,y)=sincosy,=[,π], π ] ; b)f,y)=+y,: y π, siny. * 5. Sosując odpowiednią zamianę zmiennych obliczyć podane całki podwójne po wskazanych obszarach: +y) y) 3dy,:+y=,+y=, y=, y=3; b) dy y,:y=,y=,y= +,y= +4; c) ydy,:y=,y=,y=,y=3 3 ; d*) Lisa 9 4 y 4) dy,: +y =3, +y =5, y =, y =,y ). 53. Wprowadzając współrzędne biegunowe obliczyć podane całki podwójne po wskazanych obszarach: 6

7 ydy,: +y, 3 y 3; b) y dy,:, +y ; c) y e +y dy,:,y, +y ; d) dy,: +y y; e) +y ) dy,: y,y +y ; f) yy,: +y y ). Obszar naszkicować we współrzędnych karezjańskich i biegunowych. 54. Obliczyć pola obszarów ograniczonych krzywymi: y =4, +y=3, y=y ); b) +y y=, +y 4y=; c)+y=4, +y=8, 3y=, 3y=5; d) +y =y, y= Obliczyć objęości brył ograniczonych powierzchniami: y=z,y=,y=,z=,z=y; b) +y +z =4,z=z ); c) +y y=,z= +y,z=; d)z=5 +y,=,y=,+y=,z=; e*) ) +y ) =,z=y,z=; f*)z= +y,y+z= Obliczyć pola płaów: z= +y, +y ;b) +y +z =R, +y R,z ;c)z= +y, z. 57. Obliczyć masy podanych obszarów o wskazanych gęsościach powierzchniowych: =,y) R : π, y sin },σ,y)=; b)=,y) R : +y 4,y },σ,y)=. 58. Znaleźć położenia środków masy obszarów jednorodnych: =,y) R : y 4 } ; b)=,y) R : π, y sin } ; c)=,y) R :, y e } ; d) rójkąrównoramiennyopodsawieaiwysokościh; e) rójkąrównobocznyobokua,dokóregodołączonopółkoleopromieniua; f) kwadraoboku,zkóregowycięopółkoleośrednicya. 59. Obliczyć momeny bezwładności podanych obszarów względem wskazanych osi: =,y) R : +y R,y },ośo,przyjąćσ,y)= +y ; b)=,y) R : y },ośsymeriiobszaru,przyjąćσ,y)= ; c)=,y) R : π, y sin },ośo,przyjąćσ,y)=; d) jednorodnykwadraomasiemibokua,przekąnakwadrau; e) jednorodnyrójkarównobocznyomasiemibokua,ośsymerii. Lisa 6. Obliczyć podane całki porójne po wskazanych prosopadłościanach: dydz,=[,] [,e] [,e]; yz b) +y+z)dydz,=[,] [,3] [3,4]; c) sinsin+y)sin+y+z)dydz,=[,π] [,π] [,π]; d) +y)e +z dydz,=[,] [,] [,]. 7

8 6.Całkęporójnązfunkcjig,y,z)poobszarzezamienićnacałkiierowane,jeżelijesograniczony powierzchniami o podanych równaniach: z= +y, z=6; b) +y +z =5,z=4,z 4); c)z= +y, z= y. * 6. Narysować obszar całkowania i nasępnie zmienić kolejność całkowania: y 4 y dy f,y,z)dz; b) dy f,y,z)dz; 4 4 y c) 3 dz z z z z f,y,z)dy; d) dy +y f,y,z)dz. 63. Obliczyć całki porójne z podanych funkcji po wskazanych obszarach: g,y,z)=e +y+z, :, y, z ; b)g,y,z)= 3+y+z+) 4, :,y, z y; c)g,y,z)= +y, : +y 4, z ; d)g,y,z)= y, : y z. * 64. Sosując odpowiednią zamianę zmiennych obliczyć całki porójne: +y) +y+z) 3 dydz,jesobszaremograniczonymprzezpłaszczyzny:=,=,+y=, +y=,+y+z=,+y+z=3; y ) dydz,jesobszaremograniczonymprzezpowierzchnie:y=,y=,y=,y=4, b) z=y+,z=y+3,>; c*) +y ) dydz,jesorusem,j.bryłąpowsałązobrouwokółosiozkoła R) +z r, y=,<r R. Lisa 65. Wprowadzając współrzędne walcowe obliczyć całki po wskazanych obszarach: +y +z ) dydz, : +y 4, z ; b) yzdydz, : +y z y ; c) +y ) dydz, : +y +z R, +y +z Rz; d) +y+z)dydz, : +y, z y. 66. Wprowadzając współrzędne sferyczne obliczyć całki po wskazanych obszarach: dydz +y +z, :4 +y +z 9; b) +y ) dydz, : +y z y ; c) z dydz, : +y +z R) R R>); 8

9 d) dydz, : +y +z Obliczyć objęości obszarów ograniczonych podanymi powierzchniami: +y =9, +y+z=, +y+z=5; b)=, =, z=4 y, z=+y ; c)z= + +y, z=, +y =; d) +y +z =, y=y ). 68. Obliczyć masy obszarów o zadanych gęsościach objęościowych: =[,a] [,b] [,c],γ,y,z)=+y+zoraza,b,c>; b): +y +z 9,γ,y,z)= +y +z. 69. Wyznaczyć położenia środków masy podanych obszarów jednorodnych: :, y, z ; b)sożekopromieniupodsawyriwysokościh; c): +y z y. 7. Obliczyć momeny bezwładności względem wskazanych osi podanych obszarów jednorodnych o masie M: walec o promieniu podsawy R i wysokości H, względem osi walca; b) sożek o promieniu podsawy R i wysokości H, względem osi sożka; c) walec o promieniu podsawy R i wysokości H, względem średnicy podsawy. Lisa 7. Korzysając z definicji obliczyć ransformay Laplace a funkcji: ; b)sin; c) ; d)e ; e)e cos; f)sinh; g) y h) y i) y y=f) y=g) y=h) 7. Wyznaczyć funkcje ciągłe, kórych ransformay Laplace a mają posać: s+ ; b) s s +4s+5 ; c) s 4s+3 ; s+ d) s+)s )s +4) ; e) s + s s ) ; f) s+9 s +6s+3 ; g) s+3 s 3 +4s +5s ; h) 3s e s s 3 ; i) ) s Meodą operaorową rozwiązać zagadnienia począkowe dla równań różniczkowych liniowych o sałych współczynnikach: y y=, y)=; c)y +y =, y)=,y )=; b)y y=sin, y)=; d)y +3y =e 3, y)=,y )= ; e)y y +y=sin, y)=,y )=; f)y y +y=+, y)=,y )=; g)y +4y +4y=, y)=,y )=; h)y +4y +3y=e, y)=,y )=. * 74. Korzysając z własności przekszałcenia Laplace a obliczyć ransformay funkcji: sin 4 ; b)cos4cos; c) cos; d)sinh3; e)e cos; f)e 3 sin ; g) )sin ); h) )e. 9

10 * 75. Obliczyć sploy par funkcji: f)=e, g)=e ; c)f)=), g)=sin; b)f)=cos3, g)=cos; d)f)=e, g)=. * 76. Korzysając ze wzoru Borela wyznaczyć funkcje, kórych ransformay dane są wzorami: s+)s+) ; b) s ) s+) ; c) s s +) ; d) s s +). Lisa Korzysając z definicji wyznaczyć ransformay Fouriera funkcji: sin dla π, cos dla π, dla, f)= b)f)= dla >π; dla > π c)f)= ; dla >; dla, d)f)= e)f)=e ; f*)f)=e a,a. dla >; π Wskazówka.f*) Wykorzysać równość e a d= a. 78.Niechc,h Rorazδ>.WyznaczyćransformaęFourierafunkcji h y c c δ c+ δ 79.Pokazać,żejeżeliFf)}=ˆfω),o: Ff)cosα}= [ˆfω α)+ˆfω+α) ] ; b)ff)sinα}= i [ˆfω α) ˆfω+α) ]. 8. Korzysając z własnści ransformay Fouriera oraz z wyników poprzednich zadań obliczyć ransformay funkcji: f)=e 3 ; b)f)=e ; c)f)=e 4 4 ; cos dla π, cos dla π, d)f)= e)f)= f)f)=[) 4)] ; dla >π; dla >π; g)f)=) e cos; h)f)=e cos ; i)f)=e sin. dla <, waga. ) = funkcja Heaviside a. dla * 8. Korzysając z zadania 8 oraz ransformay Fouriera pochodnej wyznaczyć ransformay funkcji: b) y y * 8. W obwodzie RLC, napięcie ) jes sygnałem wejściowym, a napięcie y) sygnałem wyjściowymrys.). + ) R L C y) + Wyznaczyć rnsformaę Fouriera sygnału wyjściowego y).

11 83.ObliczyćransformaęFourierafunkcji f )+f ),jeżeliˆfω)= +ω. 84. Wyznaczyć funkcje, kórych ransformay Fouriera mają posać: +iω ; b) 4+ω ; c) e iω +iω ; e)sinωcosω ; f) ω +ω )4+ω ) ; 85. Obliczyć sploy podanych par funkcji i ich ransformay Fouriera: f)=g)=) ), b)f)=) ),g)=+) ), c)f)=) e,g)=) e, d)f)=g)=e.

Analiza matematyczna 2 Lista zadań

Analiza matematyczna 2 Lista zadań Analiza matematyczna Lista zadań Opracowanie: dr Marian Gewert, doc Zbigniew Skoczylas Lista Korzystając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: + ; (b) + ; (c) sin; (d) arcctg;

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Analiza Matematyczna 1 (2014/2015)

Analiza Matematyczna 1 (2014/2015) Analiza Matematyczna 4/5) MAP43, 9, 4, 43, 345, 357 Opracowanie: dr Marian Gewert, doc Zbigniew Skoczylas Listazdań obejmujecałymateriałkursuijestpodzielonana4jednostekodpowiadającychkolejnym wykładom

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t, RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

x y = 2z, + 2y f(x, y) = ln(x3y ) y x

x y = 2z, + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Matematyka dla DSFRiU zbiór zadań

Matematyka dla DSFRiU zbiór zadań I Matematyka dla DSFRiU zbiór zadań do użytku wewnętrznego Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i. i= 5 ( ) i i=

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

MATEMATYKA Katalog wymagań programowych

MATEMATYKA Katalog wymagań programowych MATEMATYKA Katalog wymagań programowych KLASA 1H LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną przedstawiać liczby rzeczywiste w różnych

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

, h(x) = sin(2x) w przedziale [ 2π, 2π].

, h(x) = sin(2x) w przedziale [ 2π, 2π]. Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję

Bardziej szczegółowo

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: michal.musielak@utp.edu.pl.

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: michal.musielak@utp.edu.pl. Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą (2) uczeń potrafi: zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 32 16

Wykład Ćwiczenia Laboratorium Projekt Seminarium 32 16 Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA 4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q].

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. RACHUNEK RÓŻNICZKOY I CAŁKOY I KOLOKIUM Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. Symbol p oznacza zaprzeczenie zdaniap.

Bardziej szczegółowo

gdzie M to mówimy, że na tym obszarze jest określone pole skalarne u( M) u( r)

gdzie M to mówimy, że na tym obszarze jest określone pole skalarne u( M) u( r) Wykłady z Maemayki sosowanej w inżynierii środowiska, II sem. Wykład. CAŁKA KRZYWOINIOWA ZORIENTOWANA.. Definicje i własności całek krzywoliniowych zorienowanych... Nekóre zasosowania całek krzywoliniowych

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę):

Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę): Matematyka Lista 1 1 Matematyka Lista 1 1. Obliczyć lub uprościć zapis (zapisać jako potęgę): 3 3 3 ( ) 1 4 2 5 8 3 100 3 2 4 1 3 4 2 4 9 1 3 3 9 3. 5 2. Rozwiązać równania i nierówności: 4 2x+1 = 8 5x

Bardziej szczegółowo

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009 MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA I TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

MATEMATYKA. audytoryjne),

MATEMATYKA. audytoryjne), Nazwa przedmiotu: MATEMATYKA 1. Wydział: InŜynierii Środowiska i Geodezji 2. Kierunek studiów: InŜynieria Środowiska 3. Rodzaj i stopień studiów: studia I stopnia, inŝynierskie, stacjonarne 4. Nazwa przedmiotu:

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Wykład 4: Transformata Laplace a

Wykład 4: Transformata Laplace a Rachunek prawdopodobieńwa MAP164 Wydział Elekroniki, rok akad. 28/9, em. leni Wykładowca: dr hab. A. Jurlewicz Wykład 4: Tranformaa Laplace a Definicja. Niech f() będzie funkcją określoną na R, przy czym

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Równania różniczkowe zwyczajne Zadania z odpowiedziami

Równania różniczkowe zwyczajne Zadania z odpowiedziami Równania różniczkowe zwyczajne Zadania z odpowiedziami Maciej Burnecki Spis treści strona główna I Równania pierwszego rzędu 2 1 o rozdzielonych zmiennych 2 2 jednorodne 4 3 liniowe 4 4 Bernoulliego 5

Bardziej szczegółowo

System oceniania z matematyki -katalog wymagań programowych

System oceniania z matematyki -katalog wymagań programowych System oceniania z matematyki -katalog wymagań programowych klasa I LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub przedstawiać liczby rzeczywiste w

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata.

Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata. Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz 1. Wzajemne położenia prostych, płaszczyzn w przestrzeni. 2. Graniastosłupy- podział, pole powierzchni i objętość. 3. Ostrosłupy- podział,

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek: 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo