1. Równania i nierówności liniowe

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Równania i nierówności liniowe"

Transkrypt

1 Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x + = c) x 4 + x = 4 4 Rozwiązać nierówność: a) x+ x+ b) x + 6 > (x + 4) 5 Rozwiązać nierówność: 4 x < x 6 Sporządzić wykres funkcji: y = x + ( : x ) + x a x = b x = c x = a x =, x = b x =, x = c x (, 4] 4a x 4b x < 0 5 x ( 4, 4)

2 Układy równań liniowych, funkcja kwadratowa 7 Rozwiązać nierówność, podać interpretację geometryczną: a) x + 5 < x, b) x + + > x 8 Rozwiązać nierówność: a) x < 5, b) x + x > 0, c) x x x Rozwiązać układ nierówności: x x + x x + x x { ax + y = 0 0 Dla jakich wartości parametru a układ x + ay = 0 ma dokładnie jedno rozwiązanie? Zaznaczyć na płaszczyźnie zbiór punktów, których współrzędne x, y spełniają układ równań: { x + y > x y 6 Dla jakich wartości parametru (parametrów) układ równań o niewiadomych x, y ma: dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań, nie ma rozwiązań? { { x y = m x + y = a a) b) x + y = 5 mx + ky = 0 Rozwiązać układ równań: { 5x y = 9 a) 5x + 6y = 0 b) x + y = 5 x 5 y = 9 4 Znaleźć najmniejszą wartość trójmianu kwadratowego y = x + x + 5 Wyznaczyć najmniejszą i największą wartość funkcji f : [, ] f(x) = x + 4x 6 Wyznaczyć współrzędne wierzchołka paraboli y = x x 7 Sprowadzić do postaci kanonicznej trójmian kwadratowy: a) y = x + x +, b) y = x 8x Naszkicować wykresy funkcji: a) y = x + x +, b) y = x 5x c) y = x 8x + 7, d) y = x 5 e) y = x + x +, f) y = x + 9 Naszkicować wykresy funkcji: a) y = x, b) y = x + x +, c) y = x x 0 Rozwiązać równanie: 8y+7 y = 0 y y +y+ Rozwiązać nierówność:

3 a) x x + > 0 b) x + x + 0 c) 5 x x < x x d) x +x +x +x 7a x (, 4 ) (6, + ) 7b x R 8a x ( 4, 6) 8b x (, + ) 8c x [ 7, ] 9 x R \ {0,, } 0 a R \ { 6, 6} a Dokładnie jedno rozwiązanie dla m R b Dokładnie jedno rozwiązanie dla k m 0 Nieskończenie wiele rozwiązań dla k = m = 0, a R lub k = m, a = 0 Układ sprzeczny dla k = m 0, a 0 a Układ sprzeczny b x =, y = Wartość najmniejsza wynosi 6, wartość największa wynosi 0 6 W ( 4, 5 8 ) 7a y = (x + 4 ) 8 7b y = (x ) 0 y = 4, y = 9 a x (, ) (, + ) b x R c x (, ) (, 4 ) d x (, )

4 Wielomiany Rozwiązać nierówność x x (x ) 4 Dla jakich wartości parametru k nierówność x +x+k x +x+ k > 0 jest spełniona dla każdego x? 4 Naszkicować wykresy funkcji: a) y = x 7x + 0, b) y = x x + 5 Rozwiązać równania: a) x 4 x + x = 0, b) x 4 x + 4x 6x + = 0, c) x 8 6 = 0 6 Wykonać dzielenie wielomianów (wypisać otrzymany wyniki z dzielenia i reszty): a) (x 6 + x 4 + x + ) : (x + x + ) b) (x 0 + x 0 + x 0 + ) : (x 0 + x 5 + ) c) (4x 4 + x + x + x + ) : (x + x + 4) d) (x + x + 7) : (x ) e) (4x 5 + 7x 4 + 5x + x + 7x + ) : (x + 7) f) (x 7 + 5x + x + ) : (x + 5x + ) g) (x 5 + x 4 + x + 4x + 5x + 6) : (x ) 7 Dla jakiej wartości parametru k reszta z dzielenia wielomianu W (x) = x + x + k x 8 przez dwumian x + wynosi? 8 Dla jakich wartości parametrów a, b wielomian W (x) = x + ax + bx 4 jest podzielny przez dwumian x? 9 Dla jakich wartości parametrów a, b wielomian W (x) = x 4 + ax bx + x jest podzielny przez trójmian x x? x [, ] k (, 7) 5a x =, x = pierwiastek potrójny 5b x = pierwiastek podwójny 5c x =, x = 6a x 6 + x 4 + x + = (x + x + )(x ) + x + x + 6b [ x 0 + x 0 + x 0 + = (x 0 + ] x 5 + ) (6x0 4x x 0 78x 5 5) (7x5 + 0) 6c 4x 4 + x + x + x + = (x + x + 4)(4x 5x 4) + 9x + 9 6d x + x + 7 = (x )(x + x + ) + 0 6e [ 4x 5 + 7x 4 + 5x + x + 7x + = ](x + 7) 6 (x4 56x + 6x 80x + 89) 0 6 6f x 7 +5x +x+ = (x +5x+)(x 5 0x x 0x + 07x 505) + 540x g x 5 + x 4 + x + 4x + 5x + 6 = (x )(x 4 + 4x + x + 6x + 57) k = lub k = 8 a = 4, b = 9 a =, 5, b =, 5 4

5 4 Równania i nierówności wielomianowe i wymierne 0 Dla jakich wartości parametru a wielomian W (x) = x + 4 a x x jest podzielny przez dwumian x+? Podać wszystkie pierwiastki tego wielomianu dla wyznaczonej wartości parametru Dla jakich parametrów a, b wielomian W (x) = x 4 x + 6x + ax + b jest podzielny przez dwumian x? Sporządzić wykres funkcji: a) y = x, b) y = x x Dana jest funkcja f(x) = x + x Rozwiązać nierówność f[f(x)] [f(x)] > 6x 4 Dana jest funkcja f(x) = x + x Rozwiązać nierówność f(x) > f( x) 5 Dla jakich wartości parametru a równanie cos x = a 4a+ a ma rozwiązania? 6 Udowodnić, że dla każdego x prawdziwa jest nierówność x x 9 + x 4 x + > 0? 7 Rozwiązać nierówność a) (x ) (x )(5 x) ( x)(5 x) 0, b) ( x)(8x )( 5x) (x+5)( x) 0, c) (8x 5)(x ) (4 x) (x 5)(x+7) 0, d) x6 +x 4 +x + x 8 6 0, e) x 4 0+x 8 5, f) x +x 4 x <, g) < x 7x 9 x x 5 <, h) x + x + 7 x + 8x + 0 a =, x =, x = 4, x = a =, b = 7 x (0, ) 4 x (0, ) (, + ) 5 a [0, ] [, + ) ( ] ( ) 7a x,, 5 ( ) 7b x, 5 [ 4, 5] (, ] 7c x ( ) [, ), 5 {} [4, + ) 7d x (, ) 7e x R 7f x (, 5 ] [, ] 7g x (, ) (7, + ) 7h x [, 4] 5

6 5 Funkcja wykładnicza, równania i nierówności wykładnicze 8 Sporządzić wykres funkcji: y = x 9 Rozwiązać równanie: a) 4 x+ = 65 4 x b) 49 x 6 7 x + 5 = 0 c) d) 6 [ ( ) ] x+ x x = 4 (0, 5) 5 4 x = x e) x + x + x + = x + 4 f) x + x + x + = 40 Rozwiązać nierówność: a) 9 x 6 > x+ b) 4 x+ < x 64 ( ) x ( ) x c) d) ( ) x 6 x + ( x < ) e) 6x+ x > 7 x+ x 9a x =, x = 9b x = 0, x = log 5 log 7 9c x = 9 9d x = 9e x = 9f x = 40a x (log, + ) 40b x (, ) (4, + ) 40c x (, ] 40d x (, ) (0, ) (, + ) ( ) ( ) 40e x 6, 0 0, + 6 6

7 6 Funkcja logarytmiczna, równania i nierówności logarytmiczne 4 Obliczyć: a) log 7, b) log 5, ( ) c) 9 5 log 5 4 Wyznaczyć dziedzinę funkcji: f(x) = log 4 Sporządzić wykres funkcji: ) log,5 x a) y =, ( 5 b) y = log x 44 Rozwiązać równanie: a) log m log m + = 0, b) +log x + 5 log x =, c) log x = x x 45 Rozwiązać nierówność: x x a) log 5 x 8 5, b) log ( + x ) >, c) log (4 x+ 6 x ) 8x, d) log x ( x) <, e) log (x ) log(x ) > 0, f) log x + < + log 4 x 4a 4b 5 5 4c 5 [ ) [ ) 4 x 5, 0 + 5, + 44a m =, m =, m = + 44b x = 0, x = 0 44c x 45a x (8, 0] 45b x (, 0) 45c x [,, ) 45d x (0, ) (, ) 45e x (, ) (0, + ) ( ) 45f x 6 9, 7

8 7 Funkcja logarytmiczna, równania i nierówności logarytmiczne, cd 46 Uprościć wyrażenie: a) log (log 00), b) 5 log 5 log 5 47 Wyznaczyć dziedzinę funkcji: a) f(x) = +log x + log x + 5, b) f(x) = log (5 x ) + 4, c) f(x) = log(x x+) x, d) f(x) = log ( log (x 5x + 6) ) 48 Rozwiązać równanie: a) x 7 log(x ) = x 7 b) log (x ) log (x ) =, c) log x = x + x +, d) 4(log cos x) + log ( + cos x) = 49 Rozwiązać nierówność: a) log 5 ( x), 8 b) log x + log x <, c) log 8 x + log 8 x + log 8 +, d) log x log (6 x), e) log x ( x) <, f) log x 4 (x 9x + 4) >, g) log ( + x ) >, h) log (9 x ) x 46a 46b 5 47a x ( ) ( ) 0,, 8 (8, + ) 47b x ( 5, ] [, 5) 47c x (, 0) (0, ] [, + ) ( ) ( 47d x, 5 ) 5+, + 48a x = 0, x = 7 48b x = 5 48c x = 48d x = π + kπ, x = π + kπ ( ] 49a x, b x (0, 7) ( ] 49c x 8, 49d x [, 6) 49e x (0, ) (, ) 49f x (5, + ) 49g x (, 0) 49h x x [0, ] 8

9 8 Funkcja wykładnicza i logarytmiczna, cd 50 Sporządzić wykres funkcji: a) y = + log x, b) y = log ( x ) 5 Obliczyć: log 6 6, jeżeli log 7 = a 5 Rozwiązać równanie: ( ) x+ ) x, a) x = ( 9 b) x = 8 x, c) log x + log x + log x = 6 5 Rozwiązać nierówność: a) x > x +, b) log (x 7x+) 5 > log (x 7x+), ( ) c) log 9 4 x +4x + x +4x < 0, d) log 0,5 (x + ) < log ( x), e) log (x + ) + log x+ 5, f) log (x 4 5x + 4) < 5 4( a) +a 5a x = 4, x = 4 5b x = 5 5c x = 7 5a x > log 5b x (, ) (4, + ) 5c x ( 4, ) ( +, 0) 5d x (, ) 5e x (, 0) [, ] 5f x (, 5) ( 5, + ) 9

10 9 Funkcje trygonometryczne 54 Obliczyć: a) tg x wiedząc, że cos x = 5 i x (0, π ), b) sin x wiedząc, że ctg x = i x (π, π), c) cos x, wiedząc, że sin x = 5 i x ( π, π) d) cos x, wiedząc, że cos x = i x (π, π) e) tg x, wiedząc, że sin x = 4 i x ( π, π) 55 Zbadać, które z podanych funkcji są parzyste, a które nieparzyste: a) y = sin x, b) y = sin x 56 Narysować wykres funkcji: a) y = sin x, b) y = sin x, c) y = sin x 57 Udowodnić tożsamość:: a) sin x tg x = cos x tg x, b) 4 sin 4 x + sin x = 4 sin x, c) sin x sin x cos x cos x =, d) +tg x tg x = tg( π 4 + x) 54a 4 54b c 4 5, 54d 4 5, 54e a nieparzysta 55b parzysta 0

11 0 Równania i nierówności trygonometryczne 58 Rozwiązać równanie: a) cos 6x =, b) cos x ( cos x + ) =, c) cos x = , d) tg x + tg x + tg 5 x + = e) 4 cos x + ( ) sin x = 6, 59 Znaleźć wszystkie wartości x, dla których funkcja y = sin x cos x osiąga wartość najmniejszą 60 Znaleźć najmniejszą i największą wartość funkcji y = sin x sin x + 6 Dla jakich x prawdziwa jest równość: + tg x + tg x + = tg x? 6 Rozwiązać nierówność: a) cos x 5 cos x < 0, b) cos x <, c) sin x + 4 sin x + 8 sin x +, d) sin x > 6 W przedziale [0, π] rozwiązać nierówność: a) tg x < 0, b) cos x <, c) cos x + cos x + cos 4 x + < + cos x 58a x = kπ, x = kπ, k Z 58b x = π + kπ, x = π + kπ, x = π + kπ, k Z 58c x = 6 π + kπ, x = 6π + kπ, k Z 58d x = 6π + kπ, k Z 58e x = kπ, k Z 59 x = 6 π + kπ, x = 7 6π + kπ, k Z 7 60 Wartość najmniejsza wynosi 4, wartość największa 4 ) 6 x ( 4 π + kπ, 4 π + kπ, k Z 6a x 6b x ( π + kπ, π + kπ ), k Z ( 4 π + kπ, 4 π + kπ ), k Z 6c x = 6 π + kπ, k Z ( ) 6d x π + kπ, π + kπ 6a x 6b x 6c x ) ( ) [0, 6 π π, 7 6 π ( ) ( ) 4 π, 4 π 5 4 π, 7 4 π ( ) ( ) π, π 4 π, 5 π

12 Geometria analityczna 64 Znaleźć pole oraz kąty trójkąta o wierzchołkach: A = (0, ), B = (, ), C = (0, ) 65 Obliczyć odległość punktu A = (, ) od prostej przechodzącej przez punkty B = (4, ) oraz C = (, 6) 66 Znaleźć odległość punktu A = (, ) od prostej x 4y + 5 = 0 67 Dane są wierzchołki trójkąta: A = (, ), B = (, 0), C = (, 6) Napisać: a) równania boków tego trójkąta, b) równania symetralnych jego boków, c) równania środkowych, d) równania wysokości 68 Obliczyć długości wszystkich wysokości trójkąta o wierzchołkach: A = (, ), B = (0, ), C = (, ) 69 Dane są równania ramion trójkąta równoramiennego: x 7y + 4 = 0, x y = 0 Znaleźć wierzchołki trójkąta wiedząc, że punkt P = (, ) należy do jego podstawy 70 Znaleźć punkt symetryczny do punktu A = (, ) względem prostej x + y + = 0 64 S =, 0, 60, d = 5 66 d = 4 67a x + y = 0, x + y 9 = 0, x + y 4 = 0 67b x y = 0, x y + 7 = 0, x y + 8 = 0 67c 5x + y = 0, x = 0, 4x + y = 0 67d x y + 7 = 0, x y + 4 = 0, x y = 0 68 h A = 5 5, hb = 7 6 7, hc = ( 69 A = (, ), B = (, 0), C = 4 5 5), 8 lub A = (, ), B = (7, 5), C = 70 A = ( 5, 4) ( ) 5, 5

13 Ciągi 7 Drugi wyraz ciągu arytmetycznego jest równy 7, zaś szósty 7 Wyznaczyć trzydziesty wyraz tego ciągu 7 Obliczyć sumę wszystkich liczb naturalnych mniejszych od 00, które nie są podzielne przez 7 W ciągu arytmetycznym dane są: a =, S 9 = 69, (n = 9) W ciągu geometrycznym zawierającym 9 wyrazów wyraz pierwszy i ostatni są identyczne jak w ciągu arytmetycznym Znaleźć siódmy wyraz ciągu geometrycznego 74 Podać definicję ciągu geometrycznego Zamienić ułamek, (5) na zwykły 75 Wyznaczyć ciąg arytmetyczny, w którym suma trzech pierwszych wyrazów wynosi 7, a suma kwadratów tych wyrazów jest równa Znaleźć sumę wszystkich liczb dwucyfrowych, które przy dzieleniu przez 4 dają resztę równą 77 Rozwiązać równanie: a) (x + ) + (x + 4) + (x + 7) + + (x + 8) = 55 b) x + x + x 4 + = x+, c) log 8 x + (log 8 x) + (log 8 x) + =, d) tg x + tg x + tg x + = e) x =, ( ) x 7 7 a 0 = 47 7 S = 67 7 a 7 = , 9,, lub, 9, 5, a x = 77b x =, x = 77c x = 77d x = 6π + kπ, k Z 77e x =

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

MATEMATYKA Katalog wymagań programowych

MATEMATYKA Katalog wymagań programowych MATEMATYKA Katalog wymagań programowych KLASA 1H LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną przedstawiać liczby rzeczywiste w różnych

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie

Bardziej szczegółowo

Matematyka. Zadania powtórzeniowe do matury -poziom podstawowy i rozszerzony

Matematyka. Zadania powtórzeniowe do matury -poziom podstawowy i rozszerzony Matematyka Zadania powtórzeniowe do matury -poziom podstawowy i rozszerzony Spis treści 1 Ciągi liczbowe 4 1.1 Zadania o sposobach opisywania ciągów................... 4 1.2 Zadania o granicach ciągów

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

PRACA KONTROLNA nr 1

PRACA KONTROLNA nr 1 XXXV KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 005r. 1. Niech f(x) = x + bx + 5. Wyznaczyć wszystkie wartości parametru b, dla których: a) wykres funkcji f jest symetryczny względem

Bardziej szczegółowo

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2.

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Wielomiany Wielomian jednej zmiennej rzeczywistej Dodawanie, odejmowanie i mnożenie wielomianów Równość wielomianów Podzielność wielomianów Dzielenie wielomianów. Dzielenie wielomianów z resztą Dzielenie

Bardziej szczegółowo

Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011

Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011 Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011 Zadanie 1. (1pkt)

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Grudziądzki Konkurs Matematyczny 2009 Klasy drugie poziom rozszerzony

Grudziądzki Konkurs Matematyczny 2009 Klasy drugie poziom rozszerzony Grudziądzki Konkurs Matematyczny 009 Klasy drugie poziom rozszerzony _R Funkcja liniowa i funkcja kwadratowa str _R Ciągi str _R Wielomiany i funkcje wymierne str 5 _R4 Geometria analityczna str 6 _R5

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU BUDOWNICTWA WNT UWM W ROKU AKADEMICKIM 2012/2013 Nazwa przedmiotu: Zajęcia wyrównawcze z matematyki Rodzaj studiów:

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

Arkusz I Próbny Egzamin Maturalny z Matematyki

Arkusz I Próbny Egzamin Maturalny z Matematyki Arkusz I Próbny Egzamin Maturalny z Matematyki Poziom Podstawowy 2 kwietnia 2010 r. Czas trwania 170min. Arkusz przygotowany przez serwis www.akademiamatematyki.pl Zadanie 1. ( 1 pkt. ) Liczba jest o większa

Bardziej szczegółowo

Zadania powtórzeniowe przygotowujące do matury. Matematyka

Zadania powtórzeniowe przygotowujące do matury. Matematyka Zadania powtórzeniowe przygotowujące do matury Matematyka Spis treści 1 Ciągi liczbowe 3 1.1 Zadania o sposobach opisywania ciągów................... 3 1.2 Zadania o granicach ciągów liczbowych....................

Bardziej szczegółowo

3 D. Wymagania ogólne II. Wykorzystanie i interpretowanie reprezentacji. Zdający używa prostych, dobrze znanych obiektów matematycznych.

3 D. Wymagania ogólne II. Wykorzystanie i interpretowanie reprezentacji. Zdający używa prostych, dobrze znanych obiektów matematycznych. Przykładowe zadania z rozwiązaniami: poziom podstawowy. Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami Zadanie. (0 ) Liczba 8 9 jest równa A. B. 9 C. D. 5. Zdający oblicza

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Plan wynikowy z przedmiotu: MATEMATYKA

Plan wynikowy z przedmiotu: MATEMATYKA Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2011 w odniesieniu do INFORMATORA O EGZAMINIE MATURALNYM OD 2010 ROKU MATEMATYKA oraz WYBRANYCH WZORÓW MATEMATYCZNYCH 2 Próbny egzamin maturalny

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata.

Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata. Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz 1. Wzajemne położenia prostych, płaszczyzn w przestrzeni. 2. Graniastosłupy- podział, pole powierzchni i objętość. 3. Ostrosłupy- podział,

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Skrypt edukacyjny do zajęć wyrównawczych z matematyki Ewa Kwaśniok

Skrypt edukacyjny do zajęć wyrównawczych z matematyki Ewa Kwaśniok Projekt Kompleksowy Trening Kompetencji - Program Rozwojowy dla Technikum nr w Zespole Szkół Łączności w Gliwicach, współfinansowany przez Unię Europejską z Europejskiego Funduszu Społecznego w ramach

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij. lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2012 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2013 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

Mały trening przed maturą

Mały trening przed maturą Mały trening przed maturą Zestaw. Dla jakich wartości parametru k równanie: x 5x+k=0 madwapierwiastki przeciwnych znaków?. Co to jest symetralna odcinka? Narysuj trójkąt i opisz na nim okrąg.. Wyznacz

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

MATURA PRÓBNA - odpowiedzi

MATURA PRÓBNA - odpowiedzi MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1 Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Wielkopolskie Mecze Matematyczne

Wielkopolskie Mecze Matematyczne Wielkopolskie Mecze Matematyczne edycja druga 3 kwietnia 2015r. W okresie renesansu we Włoszech matematycy stworzyli ciekawą formę rywalizacji intelektualnej. Wymieniali się zadaniami, a po kilku tygodniach

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Tematy do powtórzenia na poprawkowy egzamin z matematyki

Tematy do powtórzenia na poprawkowy egzamin z matematyki Tematy do powtórzenia na poprawkowy egzamin z matematyki Semestr 1. 1. Działania w zbiorach liczbowych Zbiór liczb naturalnych i zbiór liczb całkowitych. Zbiór liczb wymiernych i zbiór liczb niewymiernych.

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Test sprawdzający wiadomości i umiejętności funkcja kwadratowa

Test sprawdzający wiadomości i umiejętności funkcja kwadratowa Test sprawdzający wiadomości i umiejętności funkcja kwadratowa W zadaniach zamkniętych 1 5 zaznacz prawidłową odpowiedź: Zadanie 1 () y f(x)=1/*x^-x+ + 1/ 6 5 4 3 1 x Wykres funkcji f ( rysunek obok )

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej

Matematyka z plusem dla szkoły ponadgimnazjalnej 1 ZAŁOśENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRACA KONTROLNA nr 1. x2 3 > 2 x.

PRACA KONTROLNA nr 1. x2 3 > 2 x. KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 001r 1. Dwaj rowerzyści wyruszyli jednocześnie w drogę, jeden z A do B, drugi z B do A i spotkali się po jednej godzinie. Pierwszy z

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 04 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 6 stron.. W zadaniach od. do

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 0 nr programu DKOS-5002-7/07 I. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne. 1 Wykonalność

Bardziej szczegółowo

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 03 WPISUJE ZJĄY KO PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY MJ

Bardziej szczegółowo

PLAN WYNIKOWY (zakres rozszerzony) klasa 2.

PLAN WYNIKOWY (zakres rozszerzony) klasa 2. PLAN WYNIKOWY (zakres rozszerzony) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... Rozwiązania zadań. Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym

Maria Romanowska UDOWODNIJ, ŻE... Rozwiązania zadań. Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Maria Romanowska UDOWODNIJ, ŻE Rozwiązania zadań Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Miejski Ośrodek Doskonalenia Nauczycieli w Opolu Publiczne Liceum

Bardziej szczegółowo

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną

Bardziej szczegółowo