Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44"

Transkrypt

1 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki Elementy logiki i teorii zbiorów Rachunek zdań Reguły wnioskowania Funkcja zdaniowa i kwantyfikatory Działania na zbiorach Zadania Funkcje i relacje Relacja Relacja równoważności Funkcja Ciąg Działania na funkcjach Obraz i przeciwobraz Zadania Zbiory liczbowe Liczby naturalne Ciała Liczby wymierne i rzeczywiste Liczby zespolone Postać trygonometryczna liczby zespolonej Zadania Rozdział II. Ciągi i szeregi Przestrzenie metryczne I Przykłady przestrzeni metrycznych Kule w przestrzeniach metrycznych Zbieżność Zadania Ciągi Własności ciągów liczbowych Ciągi liczb rzeczywistych Metody obliczania granic... 55

2 8 Spis treści Ciągi rozbieżne do nieskończoności Ciągi ograniczone Zadania Szeregi Szeregi liczbowe Kryteria zbieżności szeregów Szeregi potęgowe Szeregi funkcyjne Uzupełnienia Zadania Rozdział III. Ciągłość Przestrzenie metryczne II Zbiory otwarte i domknięte Zbiory zwarte Przestrzeń zupełna Zasada Banacha Zadania Granica i ciągłość funkcji Definicja ciągowa (Heinego) Definicja otoczeniowa (Cauchy ego) Działania na funkcjach ciągłych Przykłady Zadania Własności funkcji ciągłych Własność Darboux Funkcje ciągłe na zbiorach zwartych Przestrzeń funkcji ciągłych Zadania Rozdział IV. Różniczkowalność Pochodna funkcji jednej zmiennej Definicja pochodnej Podstawowe twierdzenia Pochodne funkcji elementarnych Przykłady Pochodne wyższych rzędów Zadania Twierdzenia o wartości średnieji ich zastosowania Twierdzenia o wartości średniej Wzór Taylora Badanie przebiegu zmienności funkcji Reguła de L Hospitala Przybliżone rozwiązywanie równań Zadania Pochodne funkcji wielu zmiennych Elementy algebry liniowej Pochodne cząstkowe

3 Spis treści Pochodna Frécheta Pochodna kierunkowa Zastosowania różniczki i pochodnej Pochodna funkcji złożonej Pochodne cząstkowe wyższych rzędów Pochodne w przestrzeniach unormowanych Operatory teorii pola Zadania Ekstrema funkcji Wzór Taylora Ekstrema lokalne Ekstrema globalne Zadania Twierdzenie o funkcji odwrotnej i jego zastosowania Twierdzenie o funkcji odwrotnej Twierdzenie o funkcji uwikłanej Powierzchnie Powierzchnie domknięte i kawałkami gładkie Ekstrema warunkowe Zadania Rozdział V. Ca lki Całka nieoznaczona Definicja całki nieoznaczonej Podstawowe całki Całkowanie przez części Całkowanie przez podstawienie Całkowanie funkcji wymiernych Całkowanie pewnych funkcji niewymiernych Zadania Całka oznaczona Definicja całki oznaczonej Całkowalność funkcji Własności całki oznaczonej Związek między całką oznaczoną i nieoznaczoną Zastosowania geometryczne całki Całki niewłaściwe i ich zastosowania Twierdzenie o przejściu do granicy pod znakiem całki Różniczkowanie całki zależnejod parametru Uogólnienia: całka Riemanna Stieltjesa i całka z funkcji o wartościach w R n Funkcje specjalne Zadania Całki wielokrotne Definicja całki wielokrotnej Całka iterowana i wzór Fubiniego Całka wielokrotna po dowolnym zbiorze Zastosowania całek wielokrotnych Twierdzenie o zamianie zmiennych Zadania

4 10 Spis treści 5.4. Całki krzywoliniowe Orientacja Całka krzywoliniowa zorientowana Całka krzywoliniowa niezorientowana Związek całek zorientowanych i niezorientowanych Zastosowania całek krzywoliniowych Wzór Greena i pole potencjalne Zadania Całki powierzchniowe Całka powierzchniowa niezorientowana Całka powierzchniowa zorientowana Twierdzenie Gaussa Ostrogradskiego Twierdzenie Stokesa Równanie Poissona Zadania Rozdział VI. Funkcje zespolone Pochodna i całka Pochodna zespolona Równania Cauchy ego Riemanna Całka zespolona Twierdzenie całkowe Cauchy ego Zadania Własności funkcji analitycznych Wzór całkowy Cauchy ego Rozwijalność funkcji analitycznej w szereg potęgowy Nierówności Cauchy ego i zasada maksimum Szereg Laurenta i punkty osobliwe Zadania Zastosowania funkcji analitycznych Rachunek residuów Funkcje harmoniczne Zadania Rozdział VII. Równania różniczkowe Metody rozwiązywania równań różniczkowych Uwagi ogólne Modele przyrodnicze prowadzące do równań różniczkowych zwyczajnych Równanie o zmiennych rozdzielonych Równanie zupełne Równanie liniowe i równanie Bernoulliego Równania rzędu drugiego sprowadzalne do równań pierwszego rzędu Uwagi o efektywnym rozwiązywaniu równań różniczkowych Zadania Podstawowe twierdzenia Twierdzenie o istnieniu i jednoznaczności Metody przybliżonego rozwiązywania równań różniczkowych Ciągła zależność od warunków początkowych i parametru

5 Spis treści Metoda małego parametru Zastosowanie szeregów potęgowych w teorii równań różniczkowych Zadania Równania i układy równań liniowych Twierdzenie o istnieniu i jednoznaczności Układ liniowy jednorodny Rozwiązanie ogólne układu niejednorodnego Układ jednorodny o stałych współczynnikach Układ niejednorodny ze stałą macierzą A Równanie liniowe Równanie liniowe o stałych współczynnikach Analiza równania drgań Zadania Elementy jakościowej teorii równań różniczkowych Równanie autonomiczne Układ zachowawczy Stabilność Twierdzenie Liouville a Zadania Elementarne wiadomości o równaniach cząstkowych Równania cząstkowe pierwszego rzędu Równania cząstkowe drugiego rzędu Zadania Rozdział VIII. Teoria ca lki Lebesgue a Przestrzeń z miarą Zbiory mierzalne Zbiory borelowskie Miara Miara Lebesgue a Miara zupełna Własności miary Zadania Funkcje mierzalne Definicja funkcji mierzalnej Własności funkcji mierzalnych Funkcje proste Zadania Całka Lebesgue a Definicja całki Lebesgue a Własności całki Lebesgue a Twierdzenia o przejściu do granicy pod znakiem całki Całkowanie funkcji zespolonych Całka Lebesgue a w R Zadania Szeregi Fouriera Przestrzeń L Przestrzeń unitarna i przestrzeń Hilberta Układ ortonormalny

6 12 Spis treści Szeregi Fouriera Równanie Laplace a w kole Zadania Rozdział IX. Dodatek Transformacja Fouriera Twierdzenie Fubiniego Splot Transformacja Fouriera Odwrotna transformacja Fouriera Równanie przewodnictwa cieplnego Zadania Transformacja Laplace a Definicja transformaty Laplace a Własności transformaty Laplace a Zastosowania transformacji Laplace a do rozwiązywania równań różniczkowych zwyczajnych Zadania Elementy rachunku wariacyjnego Ekstrema funkcjonałów Ekstremale funkcjonału działania Przykłady Związek rachunku wariacyjnego z mechaniką Newtona Zadania Literatura uzupełniająca Skorowidz

ANALIZA MATEMATYCZNA DLA FIZYKÓW

ANALIZA MATEMATYCZNA DLA FIZYKÓW Lech Górniewicz Roman Stanisław Ingarden ANALIZA MATEMATYCZNA DLA FIZYKÓW Wydanie piąte Toruń 2012 SPIS TREŚCI WSPOMNIENIE O PROFESORZE ROMANIE STANISŁAWIE INGARDENIE (Miłosz Michalski)... ix PRZEDMOWA

Bardziej szczegółowo

MATEMATYKA. audytoryjne),

MATEMATYKA. audytoryjne), Nazwa przedmiotu: MATEMATYKA 1. Wydział: InŜynierii Środowiska i Geodezji 2. Kierunek studiów: InŜynieria Środowiska 3. Rodzaj i stopień studiów: studia I stopnia, inŝynierskie, stacjonarne 4. Nazwa przedmiotu:

Bardziej szczegółowo

Kurs matematyki dla chemików

Kurs matematyki dla chemików Kurs matematyki dla chemików nr 136 Joanna Ger Kurs matematyki dla chemików Wydanie piąte poprawione Wydawnictwo Uniwersytetu Śląskiego Katowice 2012 Redaktor serii: Matematyka Tomawsz Dłotko Recenzenci

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Analiza matematyczna 1A (03-MO1S-12-AMa1A) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie):

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

ANALIZA SYLABUS. A. Informacje ogólne

ANALIZA SYLABUS. A. Informacje ogólne ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

SYLABUS. Cele zajęć z przedmiotu

SYLABUS. Cele zajęć z przedmiotu Załącznik nr 1 do Zarządzenia Rektora UR Nr 4/2012 z dnia 20.01.2012r. SYLABUS Nazwa przedmiotu Nazwa jednostki prowadzącej przedmiot Analiza matematyczna Wydział Matematyczno-Przyrodniczy, Instytut Fizyki

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT NAZWA

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa Matematyka 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod E/I/A.3 4.Studia Kierunek studiów/specjalność Poziom Forma studiów Ekonomia

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2015/2016 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2015/2016 Politechnika Wrocławska

Bardziej szczegółowo

Matematyka. w formie niestacjonarnej Matematyka dyskretna: wykład 20, ćwiczenia audytoryjne - 20 Analiza matematyczna i algebra liniowa:

Matematyka. w formie niestacjonarnej Matematyka dyskretna: wykład 20, ćwiczenia audytoryjne - 20 Analiza matematyczna i algebra liniowa: Matematyka Matematyka dyskretna (MAD) Analiza matematyczna i algebra liniowa z geometrią analityczną (AAL) Rachunek prawdopodobieństwa i statystyka (RRR) Kod modułu: MAT Rodzaj modułu: podstawowy, obowiązkowy

Bardziej szczegółowo

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej.

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej. KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna I (ANA011) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60 /

Bardziej szczegółowo

Dariusz Jakóbczak Podstawy analizy matematycznej

Dariusz Jakóbczak Podstawy analizy matematycznej Dariusz Jakóbczak Podstawy analizy matematycznej skrypt Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej Wydawnictwo Uczelniane Politechniki Koszalińskiej Koszalin 2007 1 Spis treści Literatura...3

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2014/2015 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2014/2015 Politechnika Wrocławska

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Równania różniczkowe zwyczajne i cząstkowe (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

Analiza matematyczna dla informatyków

Analiza matematyczna dla informatyków Analiza matematyczna dla informatyków Wykład dla pierwszego roku informatyki na Wydziale Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego skrypt wykładu w roku akademickim 2009/2010 Marcin

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2012/2013 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2012/2013 Politechnika Wrocławska Dział Nauczania Wybrzeże Wyspiańskiego

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

(1) Symbol (2) Efekty kształcenia dla kierunku studiów (3) Odniesienie do efektów kształcenia w obszarze kształcenia

(1) Symbol (2) Efekty kształcenia dla kierunku studiów (3) Odniesienie do efektów kształcenia w obszarze kształcenia Efekty kształcenia dla kierunku studiów i ich relacje z efektami kształcenia dla obszarów kształcenia Wydział prowadzący kierunek studiów: Kierunek studiów: Wydział Nauk Ekonomicznych i Zarządzania Wydział

Bardziej szczegółowo

Zbiór zadań z matematyki dla studentów chemii

Zbiór zadań z matematyki dla studentów chemii Zbiór zadań z matematyki dla studentów chemii NR 114 Justyna Sikorska Zbiór zadań z matematyki dla studentów chemii Wydanie czwarte Wydawnictwo Uniwersytetu Śląskiego Katowice 2010 Redaktor serii: Matematyka

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

INSTYTUT MATEMATYKI UNIWERSYTET HUMANISTYCZNO-PRZYRODNICZY Jana Kochanowskiego w Kielcach

INSTYTUT MATEMATYKI UNIWERSYTET HUMANISTYCZNO-PRZYRODNICZY Jana Kochanowskiego w Kielcach INSTYTUT MATEMATYKI UNIWERSYTET HUMANISTYCZNO-PRZYRODNICZY Jana Kochanowskiego w Kielcach Zagadnienia do egzaminu dyplomowego rok akademicki 2007/2008 Zagadnienia do egzaminu dyplomowego zostały ujęte

Bardziej szczegółowo

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q].

Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. RACHUNEK RÓŻNICZKOY I CAŁKOY I KOLOKIUM Zadanie 1.1 Sprawdzić, czy następujące wyrażenia są tautologiami: (1.5 pkt): a)p [( q q) (r p)], (1.5 pkt): b)[(p q)] [ p q]. Symbol p oznacza zaprzeczenie zdaniap.

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach Instytut Matematyki. Matematyka Pakiet informacyjny ECTS

Uniwersytet Śląski w Katowicach Instytut Matematyki. Matematyka Pakiet informacyjny ECTS Uniwersytet Śląski w Katowicach Instytut Matematyki Matematyka Pakiet informacyjny ECTS Katowice 2004/2005 Pakiet informacyjny został przygotowany przez pracowników Instytutu Matematyki Uniwersytetu Śląskiego.

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO f KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2016/2017 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2016/2017 Politechnika Wrocławska

Bardziej szczegółowo

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Kursy oferowane w języku angielskim

Kursy oferowane w języku angielskim Kursy oferowane w języku angielskim nazwa kursu tyg. wymiar godz. W C L P S ECTS sem. Basics of Thermodynamics 1 + 1 letni Fundamentals of Fluid Mechanics 1 + 1 letni Fundamental Mechanics and Strength

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 1 w języku angielskim Mathematical Analysis 1 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 1 w języku angielskim Mathematical Analysis 1 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kod przedmiotu Nazwa przedmiotu KARTA PRZEDMIOTU AM1_M w języku polskim Analiza Matematyczna 1 w języku angielskim Mathematical Analysis 1 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

WZORCOWE EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI

WZORCOWE EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Dziennik Ustaw Nr 253 14793 Poz. 1521 WZORCOWE EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Umiejscowienie kierunku wobszarze Załącznik nr3 Kierunek

Bardziej szczegółowo

Ogólna charakterystyka studiów Wydział Matematyki i Informatyki. Matematyka. studia drugiego stopnia. ogólnoakademicki. stacjonarne.

Ogólna charakterystyka studiów Wydział Matematyki i Informatyki. Matematyka. studia drugiego stopnia. ogólnoakademicki. stacjonarne. Program studiów Wydział prowadzący kierunek studiów: Kierunek studiów: Ogólna charakterystyka studiów Wydział Matematyki i Informatyki Matematyka Poziom kształcenia: studia drugiego stopnia (studia pierwszego,

Bardziej szczegółowo

Piśmiennictwo podstawowe: 1. Straightforward pre-intermediate, Macmillan, 2009

Piśmiennictwo podstawowe: 1. Straightforward pre-intermediate, Macmillan, 2009 Przedmiot: JĘZYK ANGIELSKI Wykładowca: mgr Urszula Przełomska - ćwiczenia: prace pisemne po każdym dziale, zaliczenie na ocenę na podstawie prac pisemnych, posiadanych podręczników oraz pracy i obecności

Bardziej szczegółowo

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = 111 godz.)

Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = 111 godz.) Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = godz.) Ramowy rozkład materiału I. Podstawowe własności figur geometrycznych na płaszczyźnie, cz. 2...

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()

Bardziej szczegółowo

Kod przedmiotu: PLPILA02-IEEKO-L-1p5-2012NS Pozycja planu: B5

Kod przedmiotu: PLPILA02-IEEKO-L-1p5-2012NS Pozycja planu: B5 Kod przedmiotu: PLPILA0-IKO-L-1p5-01N Pozycja planu: B5 INFORMACJ O PRZDMIOCI A. Podstawowe dane 1 Nazwa przedmiotu Matematyka I Rodzaj przedmiotu Podstawowy/Obowiązkowy 3 Kierunek studiów konomia 4 Poziom

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe

Bardziej szczegółowo

Notatki do wykładu z Analizy Matematycznej dla II roku 1 studiów zawodowych z matematyki

Notatki do wykładu z Analizy Matematycznej dla II roku 1 studiów zawodowych z matematyki Notatki do wykładu z nalizy Matematycznej dla II roku 1 studiów zawodowych z matematyki Jarosław Kotowicz Instytut Matematyki Uniwersytet w Białymstoku 23 stycznia 2008 1 c Jarosław Kotowicz 2007 Spis

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Piśmiennictwo uzupełniające: 1. David Bonamy, Technical English 1, Pearson Longman, 2008

Piśmiennictwo uzupełniające: 1. David Bonamy, Technical English 1, Pearson Longman, 2008 Przedmiot: JĘZYK ANGIELSKI Wykładowca: mgr Urszula Przełomska - ćwiczenia: prace pisemne po każdym dziale, zaliczenie na ocenę na podstawie prac pisemnych, posiadanych podręczników oraz pracy i obecności

Bardziej szczegółowo

ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH

ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH P I O T R DUDZIŃSKI ZADANIA Z MATEMATYKI DLA STUDENTÓW KIERUNKÓW EKONOMICZNYCH GDYNIA 2003 Piotr Dudziński, Zadania z matematyki dla studentów kierunków ekonomicznych, Gdynia 2003, s. 84, bibliografia

Bardziej szczegółowo

Excel w obliczeniach naukowych i inżynierskich. Wydanie II.

Excel w obliczeniach naukowych i inżynierskich. Wydanie II. Excel w obliczeniach naukowych i inżynierskich. Wydanie II. Autor: Maciej Gonet Sprawdź, jak Excel może pomóc Ci w skomplikowanych obliczeniach! Jak za pomocą arkusza rozwiązywać zaawansowane zadania matematyczne?

Bardziej szczegółowo

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że 4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy

Bardziej szczegółowo

KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2009/2010 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2009/2010 Politechnika Wrocławska Dział Nauczania WybrzeŜe Wyspiańskiego

Bardziej szczegółowo

x y = 2z, + 2y f(x, y) = ln(x3y ) y x

x y = 2z, + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f

Bardziej szczegółowo

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ Geoinżynierii, Górnictwa i Geologii KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do analizy i algebry Nazwa w języku angielskim Introduction to analysis and algebra Kierunek studiów

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1).

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1). Rozdział 8 Szeregi potęgowe Szeregiem potęgowym o środku w punkcie z 0 C i współczynnikach a n C nazywamy szereg a n z z 0 ) n, 8.1) gdzie z C. Z szeregami tego typu mieliśmy już do czynienia, omawiając

Bardziej szczegółowo

Sylabus modułu kształcenia/przedmiotu

Sylabus modułu kształcenia/przedmiotu Rok I Sylabus modułu /przedmiotu Nr pola Nazwa pola Opis 1 Jednostka Instytut Politechniczny 2 Kierunek studiów Elektrotechnika (studia stacjonarne) 3 Nazwa modułu / przedmiotu Bezpieczeństwo użytkowania

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO... Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt

Bardziej szczegółowo

Sylabusy kursów kierunek matematyka cykl kształcenia 2010-2013

Sylabusy kursów kierunek matematyka cykl kształcenia 2010-2013 Jednostka Instytut Matematyczno-Przyrodniczy, Zakład Matematyki Kierunek studiów matematyka Nazwa modułu Algebra liniowa kształcenia/ Kod modułu kształcenia/ Kod Erasmusa Punkty ECTS 9 Rodzaj modułu obowiązkowy

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Spis treści : ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ... 2 ANALIZA MATEMATYCZNA 1... 7 ANALIZA MATEMATYCZNA 2... 12 Bezpieczeństwo pracy i ergonomia...

Spis treści : ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ... 2 ANALIZA MATEMATYCZNA 1... 7 ANALIZA MATEMATYCZNA 2... 12 Bezpieczeństwo pracy i ergonomia... Spis treści : ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ... ANALIZA MATEMATYCZNA 1... 7 ANALIZA MATEMATYCZNA... 1 Bezpieczeństwo pracy i ergonomia... 17 Bezpieczeństwo techniczne... Chemia ogólna... 7 Chemia techniczna

Bardziej szczegółowo

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 0 nr programu DKOS-5002-7/07 I. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne. 1 Wykonalność

Bardziej szczegółowo

Kod przedmiotu: 05.1-WP-PED-PNM Typ przedmiotu: specjalnościowy

Kod przedmiotu: 05.1-WP-PED-PNM Typ przedmiotu: specjalnościowy P O D S TT A W Y N A U C ZZ A N I A M A TT E M A TT Y K I Kod przedmiotu: 05.1-WP-PED-PNM Typ przedmiotu: specjalnościowy Język nauczania: polski Odpowiedzialny za przedmiot: nauczyciel akademicki prowadzący

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo