Analiza Matematyczna 1 (2014/2015)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza Matematyczna 1 (2014/2015)"

Transkrypt

1 Analiza Matematyczna 4/5) MAP43, 9, 4, 43, 345, 357 Opracowanie: dr Marian Gewert, doc Zbigniew Skoczylas Listazdań obejmujecałymateriałkursuijestpodzielonana4jednostekodpowiadającychkolejnym wykładom Na ćwiczeniach należy rozwiązać jeden lub dwa podpunkty z każdego zadania Wyjątkiem są zadania oznaczone literąp) oraz symbolem*) Zadania oznaczone literąp) są proste i należy je rozwiązać samodzielnie Z kolei zadania oznaczone gwiazdką*) są trudniejsze Te nieobowiązkowe zadania kierujemy do ambitnych studentów Dodatkowo na końcu listy zadań umieszczono po 4 przykłady zestawów zadań z I i II kolokwium oraz z egzaminów podstawowego i poprawkowego Zachęcamy studentów do weryfikowania rozwiązań zadań za pomocą programów komputerowych Programy te można wykorzystać min do rysowania wykresów funkcji, obliczania granic ciągów i funkcji, znajdowania pochodnych, wyznaczania całek nieoznaczonych i oznaczonych, rozwiązywania układów równań algebraicznych i różniczkowych, badań statystycznych itp Polecamy stronę internetową Wolfram Alpha Wiele kalkulatorów naukowych jest zaprogramowanych do wykonywania obliczeń numerycznych i symbolicznych oraz do prezentowania wykresów funkcji Uzdolnionych studentów zachęcamy do przygotowania się w czasie semestru i następnie udziału w egzaminach na ocenę celującą z algebry i analizy Zadania z tych egzaminów z ubiegłych lat można znaleźć na stronie internetowej Przed kolokwiami i egzaminami warto zapoznać się z zestawieniem typowych błędów popełnianych przez studentów na sprawdzianach z matematyki skoczylas/typowe bledy studentowpdf Lista Czy podane wypowiedzi są zdaniami w logice? Jeśli są, to podać ich wartość logiczną: a) Amsterdam jest stolicą Holandii ; b) liczba 3888 jest podzielna przez 8 ; c) a +b =c ; e) 5 3 ; Napisać zaprzeczenia zdań: a) jem śniadanie i słucham radia ; b) kwadrat nie jest pięciokątem ; c) stolicą Polski jest Gniezno lub Wrocław ; d) trójkątobokach3,4,5jestostrokątny ; f) =b 4ac d) jeślifunkcjafjestrosnąca,tofunkcja fjestmalejąca ; e) liczbajestpodzielnaprzez6wtedyitylkowtedy,gdyjestpodzielnaprzezorazprzez3 Zadaniazaczerpniętozksiążekautorów:AnalizamatematycznaDefinicje,twierdzenia,wzory; Przykłady i zadania; Kolokwia i egzaminy) oraz Wstęp do analizy i algebry

2 3 Ocenić prawdziwość zdań złożonych: a) nieprawda,żefunkcjaf)= jestrosnącana R ; b) ) 44 = lub8jestliczbąparzystą ; c) funkcjag)=sinjestokresowa,afunkcjaf)=3 nieparzysta ; d) jeżeli Piotr jest synem Tadeusza, to Tadeusz jest starszy od Piotra ; e) liczba3579jestpodzielnaprzez9wtedyitylkowtedy,gdysuma jestpodzielna przez9 4Używająctylkokwantyfikatorów,spójnikówlogicznychorazrelacji=,,<, )zapisaćstwierdzenia: a)punkta,b)leżypodwykresemfunkcjiy=4 ; b) punktp, q) nie należy do wnętrza pierwszej ćwiartki; { c) układ równań +y =4, nie ma rozwiązań; +y= d)równanie =matylkojednorozwiązanierzeczywiste; e) liczba 7 jest pierwsza; f)funkcjafniejestrosnącanaprzedziale[,]; ) g)skorodlapewnego Rzachodzirówność + 3)=,arównanie +=niema rozwiązańrzeczywistych,to 3= 5 Zbadać, czy podane formy zdaniowe z kwantyfikatorami są prawdziwe: a) =7; b) +4+3>; c) +y =; R d) y R R R y=; e) R R y ) y>); f) y R R y R 6DlaparzbiorówA,B RwyznaczyćA B,A B,A\B,B\A,A c,b c : y R +) 4 +y ) 4 = a)a=,5), B=[,7]; b)a=,3), B=[, ); c)a={,}, B={,,3,4} WskazaćteparyA,B,dlaktórychA B 7P) Funkcje kwadratowe sprowadzić do postaci iloczynowejjeżeli istnieje) i naszkicować ich wykresy: a)f)= +; b)f)= +; c)f)= ++ 4 ; d)f)= + 3; e)f)= + 3 ; f)f)= Lista 8 Określić i narysować dziedziny naturalne funkcji: a)f)= 3 ; b)f)= 4 + ; c)f)= 6 ; d)f)= Korzystając z definicji uzasadnić, że podane funkcje są monotoniczne na wskazanych zbiorach: a)f)= 4+5, R; b)f)= 3,,3] Podaćwzoryfunkcjizłożonychf f,f g,g f,g gorazokreślićichdziedzinynaturalne: a)f)=, g)=+; b)f)=, g)= ; c)f)=, g)= 4 ; d)f)=, g)= +

3 Uzasadnić, że podane funkcje są różnowartościowe na wskazanych zbiorach: a)f)= 3, R; b)f)=,, ) P) Korzystając z własności logarytmów obliczyć: a)log 6 3+log 6 ; b)log 3 8 log 3 ; c)9log ; d)3log 3 log 3 4; e)3log 4 3 log 43+3log 4 log 4 6; f) log 54 log 6 log 7 log 9 3 Naszkicować wykresy funkcji: a)y=+) 4 ; b)y= ; c)y= ) d)y= + ; e)y= ; f)y=4 ; 3 g)y=5+log ; h)y= log ; i)y=log 3 +3) ; 4 Znaleźć funkcje odwrotne do funkcji: a)f)= + ; b)f)=3 3 +; c)f)= ; d)f)=4 e)f)=log+); f)f)= ; g)f)= 4 3 3) Lista 3 9 ; 5Narysunkuprzedstawionowykresfunkcjiy=f) Narysować wykresy funkcji: a)y=f)+3; b)y=f+); c)y= f); e)y= f); g)y= f) ; d)y=f ); f)y=f3); h)y=f ) y y=f) 6P) Korzystając z wykresu funkcji y = sin naszkicować wykresy funkcji: a)y=sin; b)y=sin 3 ; c)y=sin + π ) ; 4 d)y=+sin; e)y= sin ; f)y=sin π ) 6 7 Naszkicować wykresy funkcji: a)y= cos ; b)y=sin sin ; c)y= tg ctg 8 Uzasadnić tożsamości trygonometryczne: a) +tgα +ctgα =tgα; b)sin4 α+cos 4 α= sin α; c)tgα+ctgα= sinα ; d)tg α = cosα sinα ; e)sin4 α cos 4 α=sin α cos α; f) Dlajakichkątówαsąoneprawdziwe? cosα cosα=sinαtgα 9P) Podaj wartości wyrażeń: a)arcsin +arccos ) 3/ ; b)arcctg arctg; c)arcsin ; d)arctg 3 arcctg 3 arcsin 3

4 Określić dziedziny funkcji: a)f)=arcsin+); b)f)=arccos + ) ; c)f)=arctg + ; d)f)=arcctg * Funkcje odwrotne do podanych zapisać przy pomocy funkcji cyklometrycznych: [ ] π a)f)=sin,,3π ; b)f)=cos, [π,π]; c)f)=tg, 3π ), π ; d)f)=ctg, π,π) Naszkicować wykresy otrzymanych funkcji odwrotnych Lista 4 Zbadać, czy podane ciągi są ograniczone z dołu, z góry, są ograniczone: a)a n = +cosn 3 sinn ; b)a n= n n ; c)a n = n; d)a n = n+8 n+3; e*)a n = n +n 3 Zbadać, czy podane ciągi są monotoniczne od pewnego miejsca: a)a n = n+ n+ ; b)a n= n n + ; c)a n= n! n; d)a n = n 6n+ ; e)a n= 4n n +3 n; f)a n= n + n 4 Korzystając z definicji granicy właściwej lub niewłaściwej ciągu uzasadnić równości: 3 n a) lim = ; b) lim n+4 n =; c) lim n = 5 Korzystając z twierdzeń o arytmetyce granic ciągów obliczyć granice: a) lim d) lim g) lim 3n n+ ; b) lim n+4 n + ; n + ) n ) n 3 +) ; e) lim +4++n n + ) n!+ ; h) lim n+)n+)! n 3 +n + c) lim n 3n 3 ; 5 n+ 4 n ; f) lim 5 n 4 n+; n +4n+ n +n) ; i) lim 6 Korzystając z twierdzenia o trzech ciągach obliczyć granice: a) lim d) lim n+ ) n nπ ; b) lim ; c) lim 3n+ n n n + 3 n + n3 n3; e) lim n + n 5 n +4n; f) lim n n 4n 3 + n 3+sinn; n + + n + ++ ) n +n 7 Korzystając z definicji liczby e oraz z twierdzenia o granicy podciągu obliczyć granice: a) lim + 3n ) 5n+ 5n ) 3n n ) n+4 5 n ; b) lim ; c) lim ; d) lim n) 5n+ 3n+ n+3 8 Korzystając z twierdzenia o granicach niewłaściwych ciągów obliczyć granice: n + ) a) lim n ; b) lim n 4 3n 3 n ) n+ n n+)! d) lim ; e) lim ; f) lim n n!+ 4 ; c) lim +n 3 n ); arctgn arcctgn

5 9Będziemymówili,żeciągia n ),b n )ododatnichwyrazach,zbieżnedogranicywłaściwejlubniewłaściwej, są asymptotycznie równe, gdy lim a n/b n =Zbadać,czypodaneciągisąasymptotycznie równe: a)a n =n +,b n = n 4 +; b)a n =n 4 n 3,b n =n 4 ; c)a n = n + n +3 n,b n =3; d)a n = 3 n +5 n,b n= n +6 n; e)a n=n+)!,b n =n n!; f*)a n =n!,b n =a n,a>) Jeżeli zaś granica lim a n/b n jestliczbądodatnią,tomówimy,żeciągia n ),b n )sątegosamegorzędu Które z podanych par ciągów są tego samego rzędu? Lista 5 3 Korzystając z definicji Heinego granicy właściwej lub niewłaściwej funkcji uzasadnić równości: a) lim ) 5 =; b) lim 3 =; c) lim + = 3 Korzystając z twierdzeń o arytmetyce granic funkcji obliczyć granice: a) lim + ; b)lim 4 ; c)lim + ; 5+4 e) lim ; f)lim ; g) lim ++) 5) 6 6 tg + i) lim π tg +5 ; j)lim sin ; k) lim ++ cos + 3 Zbadać, obliczając granice jednostronne, czy istnieją granice: a) lim sgn; b)lim 3 ; c)lim 4 ; d)lim arctg 33 Korzystając z twierdzenia o trzech funkcjach uzasadnić równości: a) lim cos + =; b)lim 3 arctg +sin =; c) lim = d)lim 3 4 ; ; h) lim 34 Korzystając z granic podstawowych wyrażeń nieoznaczonych obliczyć granice: sin 3 sin 5+4 ) arcsin a) lim ; b)lim 4 ; c)lim 6 arctg ; d) lim arctg ; ln+ 3 ) g) lim e) lim π ; h) lim cos5 cos3 ; ln 3 ) + j) lim+) ; k)lim[+tg)] ctg ; 35 Znaleźć asymptoty pionowe i ukośne funkcji: a)f)= ; 3 b)f)= +) ; + d)f)= g)f)= cos e + Lista 6 f)lim e 3 sin ; ; i)lim π ; l)lim 3 c)f)= 9 ; ; e)f)= 3 3 ; f)f)=sin 3 ; ; ; ; h)f)= arctg; i)f)=+) 36Dobraćparametrya,b Rtak,abypodanefunkcjebyłyciągłena R: 5

6 dla<, a + dla<, a)f)= a+bsindla π/, b)f)= b dla ; dla>π/; Naszkicować wykres funkcji z przykładua) a +dla<, c)f)= dla, 3 +bdla> 37 Wyznaczyć punkty nieciągłości podanych funkcji i określić ich rodzaj: + a)f)= ++ dla, arctg dla=, b)f)= dla, dla=; dla=; c)f)= ln ) ln +) dla, cos d)f)= dla, dla=; dla= 38 Uzasadnić, że podane równania mają jednoznaczne rozwiązania we wskazanych przedziałach: [ a) 3 +6 =,[,]; b)sin=7, π, 5π ] ; c)= sin [ +,, π d) + =, [, ] ; e)3 +=3,[,]; f) =,[,] Wyznaczyć rozwiązania równaniaa) 5 39 Korzystając z definicji obliczyć pochodne funkcji: a)f)= 4 R); b)f)= ); c)f)= >); d)f)=tg π ) +kπdlak Z Lista 7 4 Badając pochodne jednostronne rozstrzygnąć, czy istnieją pochodne podanych funkcji we wskazanych punktach: { } a)f)=, =; b)f)=sin sgn), =; c)f)=min,, = Naszkicować wykresy tych funkcji 4Zbadaćzdefinicji,czypodanefunkcjemająpochodneniewłaściwewpunkcie =: a)f)=3 5 ; b)f)= sin 4 Zakładając, że funkcje f i g mają pochodne właściwe na pewnym przedziale, obliczyć pochodne funkcji: a)y=f ); b)y= f ) ; c)y=e fe ); d)y=f)cosg); e)y= f ) g ); f)y=arctg[f)g)]; ) g)y=ln f) g) ; h)y=tgf) g) ; i)y=f)g 43 Korzystając z reguł różniczkowania obliczyć pochodne funkcji: a)y= + ; b)y=3cos+tg; c)y=e+ sin ; d)y= 3 + ) e ; e)y= + 4 ) tg ; f)y=e arctg; g)y=ln sin + ); h)y= 3 arcsin ); i)y=e e ; 6 ] ;

7 j)y= sin 3 cos ; k)y= e +) 3; l)y=sin) <<π) 44* Korzystając z twierdzenia o pochodnej funkcji odwrotnej obliczyć a)f)=+ln, y =e+; b)f)=cos 3, y =; c)f)= , y =3; d)f)= 3 +3, y =4 f ) y ),jeżeli: 45P) Napisać równania stycznych do wykresów podanych funkcji we wskazanych punktach: a)f)=arcsin ) π,,f)); b)f)=ln +e,,f)); c)f)=e tg, 4,f d)f)= +,3,f3)); e)f)= +,,f )) 46a)Napisaćrównaniestycznejdowykresufunkcjif)= 4 +5,którajestrównoległado prostejy=+3 b)wyznaczyćstycznądowykresufunkcjif)=,któratworzykąt π 4 zosiąo c)znaleźćrównaniestycznejdowykresufunkcjif)=ln,którajestprostopadładoprostej +6y = d)znaleźćrównaniestycznejdowykresufunkcjif)=arctg,wpunkciejegoprzecięciazprostą π=4y 47 Korzystając z reguły de L Hospitala obliczyć granice: π ln +) lnsin a) lim ; b)lim ln +9 d) lim ; e)lim lncos lncos3 ; g) lim +ln; j) limcos) ; h) lim π π )tg ; k) lim ; c)lim arctg ; f) lim arcctg; i) lim ctg ) ; π arctg ) ; l) lim ++)ln 48 Czy warto stosować regułę de L Hospitala, aby obliczyć granice: 3 + ) a) lim ) ; b)lim sin ) sin 5) sin 3 )sin 4 )? Lista 8 49 Znaleźć przedziały monotoniczności funkcji: a)f)= ; d)f)= 3 3 ; g)f)=ln ; 5 Znaleźć ekstrema lokalne funkcji: π 4 b)f)= ; c)f)=4+ ; e)f)= ; f)f)=e 3 ; h)f)= ln ; i)f)= ln a)f)= 3 4 ; b)f)=+ ; c)f)= ; d)f)=+)e ; e)f)= + + ; f)f)= 5 6 ; g)f)=ln; h)f)= 3 3 ; i)f)=arctg ln + ) 7 )) ;

8 5 Znaleźć wartości najmniejsze i największe podanych funkcji na wskazanych przedziałach: a)f)= ,[,5]; b)f)= + +,[ 4,]; c)f)= 3) e,[,4]; d)f)= 9 [,[ 5,]; f)f)=sin+sin,, 3 ] π 5P)Obliczyćf,f funkcji: a)f)= ; b)f)= 3 ; c)f)=e ; d)f)=arctg; e)f)=sin 3 +cos 3 ; f)f)= 3 ln 53 Określić przedziały wypukłości oraz punkty przegięcia wykresu funkcji: a)f)= ) 3); b)f)=e ; c)f)= 3 + ; d)f)=ln + ) ; e)f)= ; f)f)= 3 3 4ln ; g)f)=sin+ 8 sin; h)f)=earctg ; i)f)= ln Lista 9 54 Zbadać przebieg zmienności podanych funkcji i następnie sporządzić ich wykresy: a)f)= ) +); b)f)= 3 ; c)f)= ; d)f)=3 4 4 ; e)f)= ; f)f)= ln ; g)f)=e ; h*)f)=sin+sin3; i)f)= ln 55 Platforma wiertnicza jest zakotwiczona na morzu km od brzegu Ropa z tej platformy będzie dostarczana rurociągiem do rafinerii położonej nad brzegiem morza, 6 km od punktu brzegu najbliższegoplatformiekosztułożeniakmrurociągunadniemorzawynosieuro,analądzie euro Do którego miejsca na brzegu należy doprowadzić rurociąg, aby koszt jego budowy był najmniejszy? Platforma wiertnicza km 6km Rafineria 56Prostopadłościennykontenermamiećpojemność5m 3 ikwadratowąpodłogękosztm blachypotrzebnejdowykonaniajegopodłogiipokrywywynosizł,aścianbocznych 3złJakie powinny być wymiary kontenera, aby koszt jego budowy był najmniejszy? 57 Jaka powinna być miara kąta α przy wierzchołku trójkata równoramiennego o danym polu, aby promień koła r wpisanego w ten trójkąt był największy? α r 8

9 58 Jakie powinny być wymiary a, b prostokątnego pola o powierzchni S, którego jednym naturalnym bokiem jest brzeg rzeki, aby na jego ogrodzenie zużyć jak najmniej siatki? rzeka Lista S a 59NapisaćwzoryTaylorazresztąLagrange adlapodanychfunkcjif,punktów orazn: a)f)= 3, =,n=4; b)f)=, =,n=; c)f)=sin, =π,n=3; d)f)=e, =,n=5 6 Napisać wzory Maclaurina z n-tą resztą Lagrange a dla funkcji: a)f)=sin 3 ; b)f)=cosh; c)f)=cos; d)f)= e 6 Oszacować dokładności podanych wzorów przybliżonych na wskazanych przedziałach: a)tg, π ; b b)cos, ; c) + +, 5; d)ln ) 8 3 3, < 6 Stosując wzór Maclaurina obliczyć: a) e zdokładnością 3 ; b) 3 997zdokładnością 3 ; c)lnzdokładnością 4 ; d)sinzdokładnością 5 Lista 63 Przyjmując w definicji całki oznaczonej podział równomierny obliczyć: a) )d; b) 3 Wskazówka Zastosować odpowiednio wzory d a) +++n= nn+) 64 Korzystając z twierdzenia Newtona-Leibniza obliczyć całki: ) + a) d; b) d) + 3) d; e), b) + ++n = nn+)n+) 6 d; c) + ) d; f) 9 π π d + ; sin+cos )d 65 Korzystając z definicji całki oznaczonej oraz faktu, że funkcje ciągłe są całkowalne uzasadnić równości: n 3 a) lim n 4 = [ ; b) lim cos π )] 4 n n +cosπ n ++cosnπ = n π ; [ c) lim n +n+ +n++ n+n n )] = ) 3 9

10 66 Obliczyć podane całki nieoznaczone: a) ) 3 d; b) cosd 3 d) cos sin ; e) + 3 d; 67 Obliczyć pola obszarów ograniczonych krzywymi: )d + ; c) 4 d + ; f) 5 d a)y=,+y=; b)y=,y=,y=3; c)y=,y=,y=4; d)y=,y= 4 + ; e)y=,y=,=; f)y=+sin,y=, π); g)y=π,=πy ; Lista h)y 4 =,y=,y=6; i)y =,y= 6,y=,y=4 68 Korzystając z twierdzenia o całkowaniu przez części obliczyć całki nieoznaczone: arctg a) e 3 d; b) d d; c) d; d) cos ; arccosd e) sind; f) ; g) ln+)d; h) arccosd; + i) e sind; j) sinsin3d; k) sin3cosd; 69 Metodą całkowania przez części obliczyć całki oznaczone: a) d) π 4 e d; b) sind; e) π e d; c) +cos)d; f) e e ln d; arcsind 7 Stosując odpowiednie podstawienia obliczyć całki nieoznaczone: a) e) cos +4 d; b) d; c) d ch ; f) 5 3) d; g) d; h) l) coscos5d cosd ) ; d) +) sin ++ d; +sin d + ; ln i) d; j) e d 5sind e + ; k) 3 cos ; l) 3 e d 7 Obliczyć całki oznaczone dokonując wskazanych podstawień: a) c) e) π 4 sine cos d,cos=t; b) +d, +=t; d) d ),=t ; f) 3 e 3 d +,+=t; lnd,ln=t; 9 d,=3sint; g) ln3 e d +e,e =t

11 7P) Obliczyć całki z ułamków prostych pierwszego rodzaju: d a) 3) 7; b) d +5 ; c) 5d 7) 3; d) 8d 9+ Lista 3 73 Obliczyć całki z ułamków prostych drugiego rodzaju: d 6+3)d a) +4+9 ; b) ++4 ; c) 4+)d +9 ; d) 74 Obliczyć całki z funkcji wymiernych: +)d a) ) ; b) d + ; c) d 4+)d d) +) +4) ; e) ++ ; f) 5 4)d g) 4+ ; h) d ++5 ; i) d ) ; d +6+8 ; d +4) 75 Obliczyć całki z funkcji trygonometrycznych: a) sin 3 d; b) sin 4 cos 3 d; c) cos 4 d; d) sin 3 cos 6 d; e) cos cosd; f*) sin sin d 76 Obliczyć całki z funkcji trygonometrycznych: d +tg a) sin+tg ; b) cos d; sin d d) +cos ; e) d tg ; d g) cos ; h) Lista 4 c) d sin+cos ; i) d +cos ; f) sin 5 d cos 3 ; d 3sin+4cos+5 77 Obliczyć pola obszarów ograniczonych krzywymi: a) + y=,=,y=; b)4y=,y= 8 +4 ; c)y=ln,=e,y= ; d)y=tg,y=ctg, << π ) )d Obliczyć długości krzywych: a)y=ln e + e, 3; b)y=, ; c)y= 3, ; e)y=e, ln ln3; g)y= , ; h)y= lncos, π 4 79 Obliczyć objętości brył powstałych z obrotu figur T wokół wskazanych osi: a)t:, y,o; b)t: 5, y +4,Oy; c)t: π 4, y tg,o; d)t:, y,oy;

12 e)t:, y 3,Oy; f)t: 3, y,oy; 4 g)t: 4, y 5,O; h)t: π, y sin+cos,o; i)t: π, y sin,y=; j)t:, y,= 8 Obliczyć pola powierzchni powstałych z obrotu wykresów funkcji wokół wskazanych osi: a)f)=cos, π,o; b)f)= 4+, 4,O; c)f)=ln, 3,Oy; d)f)= +,,Oy; e)f)= 4,,O; f)f)= ), 3,O; 3 g)f)=,,oy; h)f)= 9, 3,Oy 8a) Siła rozciągania sprężyny jest wprost proporcjonalna do jej wydłużeniawspółczynnik proporcjonalności wynosi k) Obliczyć pracę jaką należy wykonać, aby sprężynę o długości l rozciągnąć do długości L b)zbiornikmakształtwalcaoosipoziomejśrednicawalcad=m,adługośćl=6mobliczyć pracę, jaką potrzeba wykonać, aby opróżnić zapełniony całkowicie wodą zbiornik Otwór do opróżnieniazbiornikaznajdujesięwjegogórnejczęścimasawłaściwawodyγ=kg/m 3 8a)Punktmaterialnyzacząłporuszaćsięprostoliniowozprędkościąpoczątkowąv =m/s iprzyspieszeniema =m/s Poczasiet =spunkttenzacząłporuszaćsięzopóźnieniem a = m/s Znaleźćpołożeniepunktupoczasiet =sodchwilirozpoczęciaruchu b) Dwie cząstki elementarne położone w odległości d = 36 zaczynają zbliżać się do siebie z prędkościamiodpowiedniov t)=t+t 3,v t)=6t,gdziet Pojakimczasienastąpizderzenietych cząstek?

13 Przykładowe zestawy zadań z kolokwiów i egzaminów W rozwiązaniach zadań należy opisać rozumowanie prowadzące do wyniku, uzasadnić wyciągnięte wnioski, sformułować wykorzystane definicje, zacytować potrzebne twierdzeniapodać założenia i tezę), napisać zastosowane wzory ogólnez wyjaśnieniem oznaczeń) Ponadto, jeśli jest to konieczne, należy sporządzić czytelny rysunek z pełnym opisem Skreślone fragmenty pracy nie będą sprawdzane Ikolokwium Zestaw A Wyznaczyćwszystkieasymptotywykresufunkcjif)= Sformułować twierdzenie o trzech ciągach i następnie obliczyć granicę lim 3Napisaćrównaniestycznejdowykresufunkcjif)= arctg wpunkcie = 3 sin 4 ) 4 Obliczyć granicę lim 3+ Zestaw B Obliczyć granicę lim n 4 +n 3 + n ) Wyznaczyć dziedzinę funkcji Następnie obliczyć jej pochodną f) = e n 3 n+ + n+ 3SformułowaćtwierdzenieBolzanoiuzasadnić,żerównanie +=5matylkojednorozwiązanie 4 Obliczyć granicę lim [ln+) ln)] Zestaw C +a dla, e Dobraćparametrya,b Rtak,abyfunkcjaf)= dla<, b dla< byłaciągłana R ) 3n+ n 5 Obliczyć granicę lim 3n+ 3Znaleźćrównaniestycznejdowykresufunkcjif)=e,którajestrównoległadoprostej y=e ln 8 ) 4 Obliczyć granicę lim 3 3 Zestaw D Znaleźćdziedzinęfunkcjif)=arcsin 3 ) iobliczyćf ) n Sformułować twierdzenie o trzech ciągach i zastosować je do obliczenia granicy lim n 3 +n +3 3Znaleźćwszystkieasymptotyfunkcjif)= Napisaćrównaniestycznejdowykresufunkcjif)=e 3 wpunkcie,e 7) 3

14 II kolokwium Zestaw A Korzystając z reguły de L Hospitala obliczyć granicę lim arctg Wyznaczyć najmniejszą i największą wartość funkcji f) = 3 Całkując przez części obliczyć całkę oznaczoną π cos d + naprzedziale[,] 4ObliczyćobjętośćbryłypowstałejzobrotuwokółosiOfiguryograniczonejkrzywąy=sini Zestaw B prostąy= π π/) Wyznaczyćprzedziałymonotonicznościfunkcjif)= +ln Podać wymiary prostokątnej działki wytyczonej z obszaru w kształcie półkola o promieniu R tak, aby miała ona największe pole + 3Przezpodstawienie=t t )obliczyćcałkę dnastępniewyznaczyćfunkcję + pierwotnąffunkcjipodcałkowejspełniającąwarunekf)= 3 4Obliczyćcałkęnieoznaczonąfunkcjif)=sin 4 Zestaw C Wyznaczyćekstremalokalnefunkcjig)=arctg 3 3 Oszacować dokładność wzoru przybliżonego dla 3ObliczyćpoleobszaruDograniczonegokrzywymiy=,y= iprostą=sporządzić rysunek 4 Obliczyć całkę nieoznaczoną funkcji f) = Zestaw D 3 +4 Sprawdzićotrzymanywynik Wyznaczyćprzedziaływypukłościorazpunktyprzegięciawykresufunkcjif)= ln Korzystając z reguły de L Hospitala obliczyć granicę lim e 3 +e 3 3ObliczyćpoleobszaruDograniczonegokrzywymi:y =,+y=sporządzićrysunek 4 Całkując przez części obliczyć całkę nieoznaczoną arcctgd 4

15 Egzamin podstawowy Zestaw A ObliczyćpoleobszaruDograniczonegoprzezkrzywe:y=ln, =e, y= Sporządzić rysunek Metodą podstawiania obliczyć całkę n 3 Obliczyć granicę lim +9 n n +4 n d + 4Wprzedziale[ 3,4]wyznaczyćwartośćnajmniejsząinajwiększąfunkcjif)= 5 5 Obliczyć granicę lim )sinπ 6Dobraćparametryp,qtak,abyfunkcja Zestaw B f)= { e + dla, +p+qdla< miałapochodnąwpunkcie =Narysowaćwykresotrzymanejfunkcji Znaleźćasymptotywykresufunkcjif)= ) 3 Obliczyć całkę 4+6)d Wyznaczyć granicę lim sin )sin3 3 ) sin 5 5 ) 4 Obliczyć objętość bryły ograniczonej powierzchnią powstałą z obrotu wykresu funkcji f) = sin π)wokółosio 5Znaleźćprzedziałymonotonicznościfunkcjif)= 3 ln 6 Wyznaczyć granicę lim 3n+)n+)! n n!+4) Zestaw C Obliczyć całkę sind Znaleźćekstremafunkcjif)= 3)e 3Obliczyćpoleobszaruograniczonegoprzezkrzywe:y=3 6,y=6+3 3 Sporządzić rysunek 4Wyznaczyćrównaniestycznejdowykresufunkcjif)= 3 +,którajestprostopadłado prostej+y 3= 5Obliczyćgranicęciągu n = n +5n+ n +3n+ 6 Korzystając z reguły de L Hospitala obliczyć granicę lim + ln) 5

16 Zestaw D Obliczyćpoleobszaruograniczonegoprzezwykresfunkcjiy=sin π)orazprostą y = / Sporządzić rysunek Wyznaczyćprzedziaływypukłościipunktyprzegięciawykresufunkcjif)= )e 3 Obliczyć całkę d 6+5 4Pokazać,żerównanie+ln =matylkojednorozwiązanie n +) 3 n+ + ) 5 Obliczyć granicę lim 6 n +5 6 Wyznaczyć wszystkie asymptoty wykresu funkcji f) = 3 Egzamin poprawkowy Zestaw A Obliczyćgranicęciągua n =n n ) n Wyznaczyćdziedzinę,asymptotyinaszkicowaćwykresfunkcjif)= ) 3 Wyznaczyć przedział, na którym funkcja f) = wypukła ) + e jestjednocześnierosnącai 4Obliczyćpoleobszaruograniczonegoosiamiukładuwspółrzędnych,wykresemparaboliy= +3 istycznądoniejwpunkcieoodciętej =3Sporządzićrysunek 5 Ile materiału stracimy wycinając z blachy w kształcie półkola o promieniu R prostokąt o największym polu? lnarctg)d 6 Podstawiając arc tg = t, a następnie całkując przez części, obliczyć całkę + Sprawdzić poprawność otrzymanego wyniku Zestaw B Obliczyćcałkęzfunkcjiwymiernej Sprawdzićotrzymanywynik Wyznaczyćasymptotypionoweiukośnewykresufunkcjif)= ++ naszkicować oraz starannie go 3Wyznaczyćprzedziałjeżeliistnieje),naktórymfunkcjaf)= lnjestjednocześnierosnąca iwypukła 4Obliczyćgranicęciągu n = 5 Obliczyć granicę lim +tgln n n + n ) 6Obliczyćpoleobszaruograniczonegowykresamifunkcji:y=,y=ln,y=ln ) 6

17 Zestaw C Wyznaczyćdziedzinę,asymptotyinaszkicowaćwykresfunkcjif)= +) + Obliczyćgranicęciągua n = nn+) n 3 Wyznaczyć przedział, na którym funkcja f) = wklęsła ) 6+ e jestjednocześniemalejącai 4NarysowaćiobliczyćpoleobszaruograniczonegoosiąO,wykresemfunkcjiy= 3 istycznądo niegowpunkcieoodciętej =3 5 Z kawałków blachy w kształcie koła o promieniu R wycinamy prostokątne podkładki Wyznaczyć ich wymiary tak, aby odpady były najmniejsze 6 Podstawiając sin = t, a następnie całkując przez części, obliczyć całkę sincosarctgsind Sprawdzić poprawność otrzymanego wyniku Zestaw D Obliczyć granicę lim +lntg) Wyznaczyćasymptotypionoweiukośnewykresufunkcjig)= naszkicować ) 3Obliczyćgranicęciąguy n =3n 4n n oraz starannie go 4Wyznaczyćprzedziałjeżeliistnieje),naktórymfunkcjag)= 3 3 +arcctg jestjednocześnie rosnąca i wklęsła 5Obliczyćpoleobszaruograniczonegokrzywymi:y=ln,y=ln 6 Obliczyć całkę z funkcji wymiernej Sprawdzićotrzymanywynik 7

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644)

LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644) LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA MAT 67, 644) Zadania przeznaczone są do rozwiązywania na ćwiczeniach oraz samodzielnie. Dwie dodatkowe listy: POWTÓRKA i POWTÓRKA to przygotowanie do kolokwiów.

Bardziej szczegółowo

Analiza Matematyczna 1 MAP1043, 1142, 1143, 3045, 3057

Analiza Matematyczna 1 MAP1043, 1142, 1143, 3045, 3057 Analiza Matematyczna MAP43, 4, 43, 345, 357 Lista zdań obejmuje cały materiał kursu i jest podzielona na 5 jednostek odpowiadających kolejnym wykładom. Na ćwiczeniach należy rozwiązać przynajmniej jeden

Bardziej szczegółowo

Wstęp do analizy i algebry (2017/2018) Listazadań

Wstęp do analizy i algebry (2017/2018) Listazadań Wstęp do analizy i algebry 07/08 Opracowanie: dr Marian Gewert, doc. Zbigniew Skoczylas Listazadań. Czy podane sformułowania są zdaniami w logice? Jeśli są, to podać ich wartość logiczną: a GnieznobyłostolicąPolski

Bardziej szczegółowo

LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych

LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych LISTA 0 materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych W zadaniach 0. 0.5 n N, natomiast a, b,, y są liczbami rzeczywistymi, dla których występujące w zadaniach wyrażenia

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie szesnaste uzupełnione GiS Oficyna Wydawnicza GiS Wrocław 204 Marian Gewert Instytut Matematyki i Informatyki

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

ANALIZA MATEMATYCZNA I

ANALIZA MATEMATYCZNA I ANALIZA MATEMATYCZNA I Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Lista nie zawiera

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

t) x 2 a)x 2 4x + 3 < 0 b) 3x 2 21x 30 > 0 c) x > 1 x d)2 x 2x + 3 < 1 e) > 1 < 1 m)3 n)2

t) x 2 a)x 2 4x + 3 < 0 b) 3x 2 21x 30 > 0 c) x > 1 x d)2 x 2x + 3 < 1 e) > 1 < 1 m)3 n)2 Zestaw I - Równania i nierówności kwadratowe logarytmiczne i wyk ladnicze.. Rozwi azać równania: a) 2 + 6 = 0 b) 2 + 3 4 = 0 c) 2 2 + 6 = 0 d) 2 4 = 0 e)2 3 + 2 3 + 6 = 0 f) 4 4 3 + 2 4 = 0 g)2 2 2 = 0

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

Egzamin z matematyki dla I roku Biochemii i Biotechnologii

Egzamin z matematyki dla I roku Biochemii i Biotechnologii Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Egzamin podstawowy (wersja przykładowa), 2014

Egzamin podstawowy (wersja przykładowa), 2014 Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz

Bardziej szczegółowo

MAP1142 ANALIZA MATEMATYCZNA 1.1A. Listy zadań

MAP1142 ANALIZA MATEMATYCZNA 1.1A. Listy zadań MAP4 ANALIZA MATEMATYCZNA.A Zdni z listy oznczone gwizdką ) są nieco trudniejsze lbo mją chrkter teoretyczny. Jednk nie wychodzą one poz rmy progrmu kursu. Odpowiedzi do zdń z listy możn zweryfikowć z

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Lista 0 wstęp do matematyki

Lista 0 wstęp do matematyki dr Karol Selwat Matematyka dla studentów kierunku Ochrona Środowiska, 2-2 Lista wstęp do matematyki.. Sprawdź, czy następujące zdania logiczne są tautologiami: p q) p q) p q) p q) p q) q p) d)[p q) p]

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW 5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

ANALIZA MATEMATYCZNA I

ANALIZA MATEMATYCZNA I ANALIZA MATEMATYCZNA I Lista zadań dla kursów mających ćwiczenia co tydzień Choć zadania po symbolu potrójne karo nie są typowe, warto też poświęcić im nieco uwagi Lista nie zawiera odpowiedzi, ale poprawność

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykładnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym układzie współrzędnych wykresy

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

na egzaminach z matematyki

na egzaminach z matematyki Błędy studentów na egzaminach z matematyki W opracowaniu omówiłem typowe błędy popełniane przez studentów na kolokwiach i egzaminach z algebry oraz analizy. Ponadto podaję błędy rzadziej spotykane, które

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Materiały pomocnicze dla studentów do wykładów Opracował (-li): 1 Prof dr hab Edward Smaga dr Anna Gryglaszewska 3 mgr Marta Kornafel 4 mgr Fryderyk Falniowski 5 mgr Paweł Prysak Materiały przygotowane

Bardziej szczegółowo

Matematyka Lista 1 1. Matematyka. Lista 1

Matematyka Lista 1 1. Matematyka. Lista 1 Matematyka Lista 1 1 Matematyka Lista 1 1. Sprowadzić funkcje kwadratowe do postaci iloczynowej (jeżeli istnieje) i postaci kanonicznej oraz naszkicować ich wykresy: a) 2 + b) 2 2 + 1 c) 2 + 2 d) 2 + +

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Opracowanie Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie dziewiąte powiększone GiS Oficyna Wydawnicza GiS Wrocław Projekt okładki: IMPRESJA Studio

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

MAP 1148 ANALIZA MATEMATYCZNA 1.2

MAP 1148 ANALIZA MATEMATYCZNA 1.2 MAP 48 ANALIZA MATEMATYCZNA. Lista List zadań na semestr zimow 9/.. Korzstając z definicji granic właściwej ciągu uzasadnić podane równości: n+ n+ lim n n =; b) lim =; n n+ lim n n =; e*) lim +5 n 3 n

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Analiza matematyczna 2 Lista zadań

Analiza matematyczna 2 Lista zadań Analiza maemayczna Lisa zadań Opracowanie: dr Marian Gewer, doc. Zbigniew Skoczylas Lisa. Korzysając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: d) + ; b) arccg; e) +) ; c) 4+3

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

Tydzień 2 - Kilka bardzo prostych funkcje. Logarytm i funkcja wykładnicza. ; e)

Tydzień 2 - Kilka bardzo prostych funkcje. Logarytm i funkcja wykładnicza. ; e) Tydzień - Logika. Każde z poniższych zdań wyraź w postaci p = q. Wskaż założenie i tezę twierdzenia. A. W trójkącie prostokątnym suma kwadratów przyprostokątnych jest równa kwadratowi przeciwprostokątnej.

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy

Bardziej szczegółowo

Analiza Matematyczna. Lista zadań 10

Analiza Matematyczna. Lista zadań 10 Analiza Matematyczna Lista zadań 10 Zadanie 1 pole figury ograniczonej krzywymi y 2 = 2x, x + y = 1. Zadanie 2 objȩtość bryły V powstałej z obrotu wokół osi Ox powierzchni ograniczonej krzyw a o równaniu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

PDM 3 zakres podstawowy i rozszerzony PSO

PDM 3 zakres podstawowy i rozszerzony PSO PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania

Bardziej szczegółowo

Dział I FUNKCJE TRYGONOMETRYCZNE

Dział I FUNKCJE TRYGONOMETRYCZNE MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia: Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

2 cos α 4. 2 h) g) tgx. i) ctgx

2 cos α 4. 2 h) g) tgx. i) ctgx ZESTAW I - FUNKCJE TRYGONOMETRYCZNE - powtórzenie. Znajdź wartości pozostałych funkcji trygonometrycznych, jeśli: sin α b). Oblicz wartość wyrażenia: tg ctg 77 = b) sin 0 (cos ) = c) sin = d) [( sin 0

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

Pochodna funkcji. Zastosowania

Pochodna funkcji. Zastosowania Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny. Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny Zestaw I 1) Przedstaw i omów postać kanoniczną i iloczynową funkcjikwadratowej Daną funkcję przedstaw w postaci kanonicznej: y = ( )(

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =

Bardziej szczegółowo

FUNKCJE WIELU ZMIENNYCH

FUNKCJE WIELU ZMIENNYCH FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin

Bardziej szczegółowo

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1.1 Podstawowe definicje Def. Funkcję F nazywamy funkcją pierwotną funkcji f, określonej w przedziale otwartym P (skończonym

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo