Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci
|
|
- Mirosław Kowalski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f 2 e 127 zapisuje się na 32-bitach następująco: s e f znak 1 bit wykładnik 8 bitów mantysa 23 bity
2 IEEE754 c.d. (-1) s 1.f 2 e 127 Mantysa zapisywana jest bez wiodącej cyfry 1, co pozwala oszczędzić miejsce Wykładnik zapisany jest w formie przesuniętej, tj. zwiększony o 127, co pozwala na uniknięcie liczb ujemnych jego zapisie b = b = 1.01 b 2 2 = b = b = e 10
3 Dec IEEE b b
4 Ograniczenia zapisu zmiennopozycyjnego Ograniczenie zakresu: skończona długość pola wykładnika -R max -R min 0 R min R max IEEE754 single precision (32 bity) R min 1.2e 38 R max 3.4e+38
5 Ograniczenia zapisu zmiennopozycyjnego Ograniczenie dokładności: skończona długość pola mantysy 0 R max 1.f*2 k 1.f*2 k+1 1.f*2 k+1 1.f*2 k+2 1.f*2 k+3 Zapisać można tylko niektóre liczby wymierne. Zagęszczenie liczb jest zmienne i zależy od wartości wykładnika. W każdym przedziale pomiędzy 2 i i 2 i+1 znajduje się tyle równomiernie rozłożonych liczb, na ile kombinacji pozwala długość pola mantysy. Dla liczb bliskich R min dokładność jest największa, ale zakres najmniejszy, dla liczb bliskich R max najmniejsza, a zakres największy.
6 Liczby całkowite vs zmiennopozycyjne Za pomocą n-bitów można zapisać dokładnie 2 n różnych liczb całkowitych (NKB, U2) 2 n liczb NKB I max =2 n -1 Za pomocą n-bitów można zapisać mniej niż 2 n różnych liczb wymiernych (IEEE754) -R max -R min 0 R min R max Z n-bitów można utworzyć 2 n różnych kombinacji binarnych. Znaczenie tych kombinacji zależy od interpretacji. W przypadku zapisu zmiennopozycyjnego, dostępne wartości są jedynie inaczej rozłożone na osi liczbowej, ale jest ich niemal tyle samo co liczb całkowitych.
7 Single vs Double Precision IEEE754 Single Precision: 32 bity 8b wykładnik + 23b mantysa R min R max dokładność około 7 cyfr znaczących Double Precision: 64 bity 11b wykładnik + 52b mantysa R min R max dokładność około 16 cyfr znaczących
8 Arytmetyka liczb zmiennopozycyjnych Dla zapisu zmiennopozycyjnego IEEE754: 1. Niemożliwe jest zapisanie wszystkich liczb z dostępnego zakresu. 2. Działania arytmetyczne (+,-,*,/) dają wyniki obarczone błędem przybliżenia. 3. Błąd zakresu (niedomiar lub przepełnienie) jest sygnalizowany kodem specjalnym IEEE Błąd przybliżenia nie jest sygnalizowany. 5. Operacje arytmetyczne wymagają skomplikowanych algorytmów.
9 Kody specjalne IEEE754 znak wykładnik mantysa liczba dodatnia mantysa liczba ujemna mantysa liczba zero+ (0+) liczba zero- (0-) liczba zdenormalizowana 0/1 0 mantysa +nieskończoność nieskończoność NaN (Not a Number) 0/ (kod błędu)
10 Dodawanie liczb zmiennopozycyjnych (fp) x = x S 2 x E y = y S 2 y E z = x + y z = 2 START sprowadź liczby do wspólnego wykładnika (denormalizacja liczby mniejszej) dodaj mantysy obu liczb ( =x S +y S ) znormalizuj wynik zaokrąglij wynik Przepełnienie wykładnika lub mantysy? Niedomiar wykładnika lub mantysy? START
11 Sprowadzanie do wspólnego wykładnika - denormalizacja Denormalizacja: przesunięcie mantysy w prawo + zwiększanie wykładnika! W przypadku dodawania liczb znacznie różniących się wartością wykładnika liczba mniejsza jest tracona (nie ma wpływu na wynik dodawania)
12 START Algorytm dodawania T x=0 N z y x E x S +y S (signed) y=0 =0 normalizacja z x x E y E z 0 przepełnienie niedomiar x E x E +1 x S x S >>1 y E >x E y E y E +1 y S y S >>1 y S 0 >>1 +1 przepełnienie <<1-1 niedomiar x S 0 z y z x exception 0 exception zaokrąglij STOP
13 Zaokrąglanie mantysy zaokrąglanie w górę = = zaokrąglanie w dół = = zaokrąglanie do najbliższej parzystej = = = = Rejestry do wykonywania działań na mantysach muszą być dłuższe od docelowego rozmiaru mantysy Przyjęte reguły zaokrąglania umożliwiają otrzymywanie deterministycznych (powtarzalnych) wyników.
14 Dodawanie - Hardware
15 Algorytm mnożenia START x = x S 2 x E x E + y E T x=0 N - bias y = y S 2 y E y=0 przepełnienie z = x S y S 2 x E +y E z 0 exception niedomiar 0 exception x S y S normalizuj z zaokrąglij STOP
16 Algorytm dzielenia START x = x S 2 x E x E - y E T x=0 N + bias y = y S 2 y E y=0 przepełnienie z = x S /y S 2 x E y E z 0 z exception niedomiar 0 exception x S / y S normalizuj z zaokrąglij STOP
Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:
Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
Bardziej szczegółowoMet Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 2 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Arytmetyka zmiennopozycyjna
Bardziej szczegółowoDr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30
Bardziej szczegółowoReprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej
Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne
Bardziej szczegółowoPracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
Bardziej szczegółowoTechnologie Informacyjne Wykład 4
Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoArytmetyka stało i zmiennoprzecinkowa
Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja
Bardziej szczegółowoPozycyjny system liczbowy
Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w
Bardziej szczegółowoWprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoTeoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Bardziej szczegółowoPracownia Komputerowa wyk ad VI
Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite
Bardziej szczegółowoArchitektura komputerów Reprezentacja liczb. Kodowanie rozkazów.
Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
Bardziej szczegółowoPrzedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
Bardziej szczegółowoARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoDokładność obliczeń numerycznych
Dokładność obliczeń numerycznych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 MOTYWACJA Komputer czasami produkuje nieoczekiwane wyniki >> 10*(1-0.9)-1 # powinno być 0 ans = -2.2204e-016 >>
Bardziej szczegółowoObliczenia Naukowe. O arytmetyce komputerów, Czyli jak nie dać się zaskoczyć. Bartek Wilczyński 29.
Obliczenia Naukowe O arytmetyce komputerów, Czyli jak nie dać się zaskoczyć Bartek Wilczyński bartek@mimuw.edu.pl 29. lutego 2016 Plan semestru Arytmetyka komputerów, wektory, macierze i operacje na nich
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoInformatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc
Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,
Bardziej szczegółowoArytmetyka binarna - wykład 6
SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2
Bardziej szczegółowoPracownia komputerowa. Dariusz Wardecki, wyk. VI
Pracownia komputerowa Dariusz Wardecki, wyk. VI Powtórzenie Ile wynoszą poniższe liczby w systemie dwójkowym/ dziesiętnym? 1001101 =? 77! 63 =? 111111! Arytmetyka w reprezentacji bezznakowej Mnożenie liczb
Bardziej szczegółowoMikroinformatyka. Koprocesory arytmetyczne 8087, 80187, 80287, i387
Mikroinformatyka Koprocesory arytmetyczne 8087, 80187, 80287, i387 Koprocesor arytmetyczny 100 razy szybsze obliczenia numeryczne na liczbach zmiennoprzecinkowych. Obliczenia prowadzone równolegle z procesorem
Bardziej szczegółowoSystemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Bardziej szczegółowoPodstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoZestaw 3. - Zapis liczb binarnych ze znakiem 1
Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b
Bardziej szczegółowoKodowanie liczb całkowitych w systemach komputerowych
Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja
Bardziej szczegółowoReprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1
Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1 Bity i kody binarne Bit (binary digit) najmniejsza ilość informacji {0, 1}, wysokie/niskie napięcie
Bardziej szczegółowoZwykle liczby rzeczywiste przedstawia się w notacji naukowej :
Arytmetyka zmiennoprzecinkowa a procesory cyfrowe Prawa algebry stosują się wyłącznie do arytmetyki o nieograniczonej precyzji x=x+1 dla x będącego liczbą całkowitą jest zgodne z algebrą, dopóki nie przekroczymy
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowoLiczby zmiennoprzecinkowe i błędy
i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan
Bardziej szczegółowoWstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoDodatek do Wykładu 01: Kodowanie liczb w komputerze
Dodatek do Wykładu 01: Kodowanie liczb w komputerze [materiał ze strony: http://sigma.wsb-nlu.edu.pl/~szyszkin/] Wszelkie dane zapamiętywane przetwarzane przez komputery muszą być odpowiednio zakodowane.
Bardziej szczegółowoPodstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze
Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoInformatyka 1. Wykład nr 4 ( ) Plan wykładu nr 4. Politechnika Białostocka. - Wydział Elektryczny
Rok akademicki 8/9, Wykład nr 4 /8 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 8/9 Wykład nr
Bardziej szczegółowoPodstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze
Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoNaturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Bardziej szczegółowoMetody numeryczne II. Reprezentacja liczb
Metody numeryczne II. Reprezentacja liczb Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Reprezentacja liczb Reprezentacja stałopozycyjna
Bardziej szczegółowoPrefiksy binarne. kibibit (Kibit) mebibit (Mibit) gibibit (Gibit) tebibit (Tibit) pebibit (Pibit) exbibit (Eibit) zebibit (Zibit) yobibit (Yibit)
Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoBŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoMetody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p.
Metody numeryczne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/2002 23:02 p.1/63 Plan wykładu 1. Dokładność w obliczeniach numerycznych 2. Złożoność
Bardziej szczegółowoEMN. dr Wojtek Palubicki
EMN dr Wojtek Palubicki Zadanie 1 Wyznacz wszystkie dodatnie liczby zmiennopozycyjne (w systemie binarnym) dla znormalizowanej mantysy 3-bitowej z przedziału [0.5, 1.0] oraz cechy z zakresu 1 c 3. Rounding
Bardziej szczegółowoWprowadzenie do metod numerycznych. Krzysztof Patan
Wprowadzenie do metod numerycznych Krzysztof Patan Metody numeryczne Dział matematyki stosowanej Każde bardziej złożone zadanie wymaga opracowania indywidualnej metody jego rozwiązywania na maszynie cyfrowej
Bardziej szczegółowoMETODY NUMERYCZNE. Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)?
METODY NUMERYCZNE Wykład 2. Analiza błędów w metodach numerycznych Met.Numer. wykład 2 1 Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)? Przykład 1. W jaki sposób można zapisać
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoKod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Bardziej szczegółowoInformatyka 1. Wykład nr 4 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc
Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 008/009 Wykład nr 4 (8.04.009) Informatyka, studia stacjonarne I stopnia
Bardziej szczegółowoMetody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61
Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Zmiennoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa
Bardziej szczegółowoW jaki sposób użyć tych n bitów do reprezentacji liczb całkowitych
Arytmetyka komputerowa Wszelkie liczby zapisuje się przy użyciu bitów czyli cyfr binarnych: 0 i 1 Ile różnych liczb można zapisać używajac n bitów? n liczby n-bitowe ile ich jest? 1 0 1 00 01 10 11 3 000001010011100101110111
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe
ARCHITEKTURA KOMPUTERÓW 17.11.2010 Liczby zmiennoprzecinkowe Sprawa bardzo podobna jak w systemie dziesiętnym po przecinku mamy kolejno 10-tki do ujemnych potęg, a w systemie binarnym mamy 2-ki w ujemnych
Bardziej szczegółowoZapis zmiennopozycyjny, arytmetyka, błędy numeryczne
Zapis zmiennopozycyjny, arytmetyka, błędy numeryczne Plan wykładu: 1. zapis zmiennopozycyjny 2. arytmetyka zmiennopozycyjna 3. reprezentacja liczb w standardzie IEEE754 4. błędy w obliczeniach numerycznych
Bardziej szczegółowo3.3.1. Metoda znak-moduł (ZM)
3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym
Bardziej szczegółowoarchitektura komputerów w. 2
architektura komputerów w. 2 Wiadomości i kody Wiadomości (Informacje) dyskretne ciągłe Kod - zbiór ciągów kodowych oraz reguła przyporządkowania ich wiadomościom. Ciąg kodowy - sygnał mający postać ciągu
Bardziej szczegółowoMetody numeryczne. Postać zmiennoprzecinkowa liczby. dr Artur Woike. Arytmetyka zmiennoprzecinkowa. Uwarunkowanie zadania.
Ćwiczenia nr 1 Postać zmiennoprzecinkowa liczby Niech będzie dana liczba x R Mówimy, że x jest liczbą zmiennoprzecinkową jeżeli x = S M B E, gdzie: B N, B 2 (ustalona podstawa systemu liczbowego); S {
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoJednostki informacji - bit. Kodowanie znaków: ASCII, ISO 8859, Unicode liczb: NKB (BCN), U2, BCD. Liczby zmiennoprzecinkowe standard IEEE 754
Rok akademicki 06/07, Pracownia nr /33 Pracownia nr Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki 06/07 Jednostki informacji
Bardziej szczegółowodr inż. Jarosław Forenc
Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki 2014/2015 Pracownia nr 2 (08.10.2014) dr inż. Jarosław Forenc Rok akademicki
Bardziej szczegółowoKodowanie liczb. Reprezentacja liczb całkowitych. Standard IEEE 754. dr inż. Jarosław Forenc
Rok akademicki 18/19, Wykład nr 4 /63 Plan wykładu nr 4 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 18/19 Wykład
Bardziej szczegółowoArytmetyka komputerów
Arytmetyka komputerów Wersja: 5 z drobnymi modyfikacjami! Wojciech Myszka 2012-11-09 09:23:41 +0100 Część I Liczby binarne i arytmetyka komputerów Arytmetyka komputerów Zapis liczb dwójkowy. Każda z liczb
Bardziej szczegółowoKod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoWstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy
Wstęp doinformatyki Systemy liczbowe i arytmetyka komputerów Dr inż. Ignacy Pardyka kademia Świętokrzyska Kielce, System dziesiętny Liczba: 5= *+5*+* - każdą z cyfr mnożymy przez tzw. wagę pozycji, która
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej
Bardziej szczegółowoWstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery
Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowoWymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin
. Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,
Bardziej szczegółowoARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Bardziej szczegółowoArchitektura systemów komputerowych
Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 12 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 12 kwietnia
Bardziej szczegółowo4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoPracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
Bardziej szczegółowoSystem liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.
2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoPracownia Komputerowa wyk ad IV
Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowoProgramowanie w C++ Wykład 2. Katarzyna Grzelak. 5 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41
Programowanie w C++ Wykład 2 Katarzyna Grzelak 5 marca 2018 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41 Reprezentacje liczb w komputerze K.Grzelak (Wykład 1) Programowanie w C++ 2 / 41 Reprezentacje
Bardziej szczegółowoArytmetyka stało- i zmiennoprzecinkowa. 1. Informacje wstępne
Arytmetyka stało- i zmiennoprzecinkowa 1. Informacje wstępne Każdą informację można przedstawid w komputerze za pomocą łaocucha elemantarnych jednostek, zwanych bitami. W przypadku, gdy chcielibyśmy wyrazid
Bardziej szczegółowoInstrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory
Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Poniżej pozwoliłem sobie za cytować za wikipedią definicję zmiennej w informatyce.
Bardziej szczegółowoMETODY NUMERYCZNE. Wykład 2. Analiza błędów w metodach numerycznych. Met.Numer. wykład 2 1
METODY NUMERYCZNE Wykład. Analiza błędów w metodach numerycznych Met.Numer. wykład 1 Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)? Przykład 1. W jaki sposób można zapisać liczbę
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoSYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M
SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...
Bardziej szczegółowoArytmetyka zmiennoprzecinkowa wer. 5
Arytmetyka zmiennoprzecinkowa wer. 5 Wojciech Myszka, Maciej Panek listopad 2014r. Ułamki Powinniśmy wiedzieć już wszystko na temat arytmetyki liczb całkowitych. Teraz zajmiemy się liczbami zmiennoprzecinkowymi.
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Kod znak-moduł (ZM) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Bardziej szczegółowo