Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze"

Transkrypt

1 Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze

2 Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych stanów przyjął układ. Jednostka informacji (b). Bajt (ang. byte) (Shannon, 948) Najmniejsza adresowalna jednostka informacji pamięci komputerowej, składająca się z bitów. Zazwyczaj przyjmuje się, że B = 8b (oktet), ale nie jest to reguła! Najbardziej znaczący bit (bajt) - bit (bajt) o największej wadze (w zapisie z lewej strony). Najmniej znaczący bit (bajt) - bit (bajt) o najmniejszej wadze (w zapisie z prawej strony).

3 Prefiksy SI Prefiksy binarne Nazwa Standard SI Nazwa (symbol) dziesiętny dwójkowy Różnica, % (symbol) kilobit (kb) kibibit (Kibit) megabit (Mb) mebibit (Mibit) gigabit (Gb) gibibit (Gibit) terabit (Tb) tebibit (Tibit) petabit (Pb) pebibit (Pibit) exabit (Eb) exbibit (Eibit) zettabit (Zb) zebibit (Zibit) yottabit (Yb) yobibit (Yibit)

4 Sposoby zapisu danych w pamięci Pamięć w komputerach adresowana jest (najczęściej) liniowo. Jak zapisać wielobajtowe dane pod danym adresem? W jakiej kolejności przesyłać kolejne bajty?

5 4A3B2CD(h) Big-endian Najbardziej znaczący bajt jest umieszczany jako pierwszy A 3B 2C D... np. procesory: SPARC, Motorola 68, PowerPC. Little-endian Najmniej znaczący bajt jest umieszczany jako pierwszy D 2C 3B 4A... np. procesory: Intel x86, AMD64.

6 dwójkowy, ósemkowy, Systemy pozycyjne dziesiętny (Indie Arabowie Europa), dwunastkowy (Babilonia, Rzym,średnowieczna Europa, W.Brytania, USA szyling=2 pensów, stopa=2cali, cal=2 linii, linia =2 punktów), szesnastkowy, phi-base system (wsp. złotego podziału jako podstawa).

7 Systemy pozycyjne W pozycyjnych systemach liczbowych ten sam symbol (cyfra) ma różną wartość w zależności od pozycji, którą zajmuje w zapisie danej liczby. x = = 4 i= p podstawa systemu pozycyjnego. c c c c c c i p Do zapisu liczby służą cyfry c i (których jest p) ustawiane na kolejnych pozycjach.pozycje numerujemy od zaczynając od strony prawej zapisu. Każda pozycja posiada swoją wagę równą p i. Wartość liczby obliczamy sumująć iloczyny cyfr przez wagi ich pozycji. i

8 Systemy pozycyjne zapis liczby ułamkowej x = c.... c c c c n m = c c n i= m c i p i Część ułamkowa liczby m pozycji. Część całkowita liczby n pozycji. Wartość liczby obliczamy sumując iloczyny cyfr przez wagi ich pozycji.

9 System dziesiętny Cyfry:,, 2, 3, 4, 5, 6, 7, 8, 9. Przykład: = 5* +5* +8* - +* -2 +2* -3 +5* -4 System ten jest wygodny dla człowieka, ale nie dla maszyny. Reprezentacja cyfry dziesiętnej cyfra zajmuje cztery bity pamięci komputera. W ten sposób marnujemy pamięć niektóre kombinacje (np. ) są niewykorzystane.

10 System dwójkowy (binarny) Gottfried Leibnitz, XVIIw. Cyfry:,. Przykład:. 2 = *2 5 + *2 4 + *2 3 + *2 2 + *2 + *2. + *2 - + *2-2 + *2-3 + *2-4 System ten jest wygodny maszyny. Reprezentacja cyfry binarnej zajmuje dokładnie jeden bit. n-cyfrowa liczba binarna bez znaku zajmuje n bitów w pamięci komputera.

11 Konwersja kodu dziesiętnego na dwójkowy Część całkowitą liczby dzielimy sukcesywnie przez 2 i bierzemy reszty Część ułamkową liczby mnożymy sukcesywnie przez 2 i bierzemy część całkowitą () = (2).825 () =. (2) () =. (2)

12 Konwersja kodu dziesiętnego na dwójkowy Nie każdy ułamek skończony w systemie dziesiętnym jest ułamkiem skończonym w systemie dwójkowym!. () =?. () =... (2) =.()

13 System szesnastkowy Cyfry:,, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. System łaczy zalety systemu binarnego (dobre wykorzystanie pamięci) oraz dziesiątkowego (zwięzłość). Reprezentacja cyfry szesnastkowej zajmuje 4 bity: Cyfra () (2) Cyfra () Przykład: 37.D = 3*6 + 7*6 + D*6-8 9 A B C D E F (2)

14 Reprezentacja liczb całkowitych Założenie: liczba całkowita ze znakiem jest zapisywana w słowach n-bitowych. (Dla przykładu weźmy n = 8). znak (najbardziej znaczący bit) moduł liczby (7 bitów). Liczba nieujemna jest kodowana jako: znak i kod binarny modułu tej liczby. np. liczba 55 w przykładzie powyżej.

15 Liczba ujemna jest kodowana jako: znak i kod binarny modułu tej liczby. Liczba -55 bo (2) =55 () = Sposób wygodny dla człowieka. Przy operacjach arytmetycznych trzeba porównać znaki. Reprezentacja liczby : oraz (redundancja). Zakres liczb: [-2 n- +, 2 n- - ] (2 n - liczb).

16 Kod uzupełnień do (U) Liczba ujemna x (analogicznie przeciwna) jest kodowana na jeden z dwóch (równoważnych) sposobów: negujemy (bitowo) kod binarny modułu x albo bierzemy kod binarny liczby 2 n - +x. Sposób : liczba -55 ) Kod binarny modułu (=55): 2) Negacja bitowa: Sposób 2: liczba -55 ) Kod binarny liczby = =2: Sposób mało wygodny dla człowieka. + Łatwe operacje arytmetyczne. Reprezentacja liczby : oraz. Zakres liczb: [-2 n- +, 2 n- - ] (2 n - liczb).

17 Zasady dodawania Liczby zapisane w kodzie U dodajemy zgodnie z zasadami dodawania dwójkowego, ale 2 jeżeli wystąpi przeniesienie poza bit znaku, to do wyniku należy dodać. Bez przeniesienia (77) + (43) (2) (-77) + (43) (-34)

18 Zasady dodawania Liczby zapisane w kodzie U dodajemy zgodnie z zasadami dodawania dwójkowego, ale 2 jeżeli wystąpi przeniesienie poza bit znaku, to do wyniku należy dodać. Z przeniesieniem (77) + (-43) + (34) (-77) + (-43) + (-2)

19 Kod uzupełnień do 2 (U2) Liczba ujemna x (analogicznie przeciwna) jest kodowana na jeden z dwóch (równoważnych) sposobów: negujemy (bitowo) kod binarny modułu x i dodajemy ; bierzemy kod binarny liczby 2 n +x. Sposób : liczba -55 ) Kod binarny modułu (=55): 2) Negacja bitowa: 3) Dodanie : Sposób mało wygodny dla człowieka. + Łatwe operacje arytmetyczne. Jedna reprezentacja liczby : Zakres liczb: [-2 n-, 2 n- -] (2 n liczb). Sposób 2: liczba -55 ) Kod binarny liczby = =2:

20 Dodawanie w kodzie U2 Dodawanie w kodzie U2 odbywa się zgodnie z zasadami dodawania dwójkowego (-77) + (43) (-34) (77) + (-43) (34) (-77) + (-43) (-2)

21 Nadmiar (integer overflow) Nadmiar występuje wtedy, gdy wynik działania nie mieści się w dopuszczalnym zakresie liczb, które mogą być zapisane w danej reprezentacji. Nadmiar występuje tylko przypadku dodawania liczb tego samego znaku. Założenie: reprezentacja 4-bitowa bez znaku. Liczba 9 + = 2 (9) () (4) bit nadmiaru ustawiony na, przeniesienie.

22 Liczby ułamkowe stałoprzecinkowe Liczba stałopozycyjna (n +m)-bitowa posiada n bitów przeznaczonych na część całkowitą oraz m bitów przeznaczonych na kodowanie części ułamkowej. c n... c3c2cc. c c 2... c m = Założenie: liczba bez znaku. Wartość największa: 2 n m = 2 n 2 -m Wartość najmniejsza: + 2 -m = 2 -m n i= m c i p i

23 Liczby ułamkowe stałoprzecinkowe Rozkład reprezentowanych wartości: równomierny. Błąd zaokrągleń/obcięcia (rounding error, cancellation error) = moduł róznicy pomiędzy wartością dokładną liczby a wartością jej reprezentacji. błąd bezwzględny δ e < 2 -m Reprezentacja liczby. za pomocą pięciu bitów ułamkowych.. 2 =3/32 =.9375 δ e = =.625 =/6 (błąd bezwzględny) δ e /. =.625 =6:25%(błąd względny)

24 Liczby zmiennoprzecinkowe przykłady W wielu zagadnieniach zapis dużych lub bardzo małych liczb w normalnej notacji pozycyjnej jest niewygodny, gdyż wymaga sporej ilości cyfr. Dlatego liczby takie zapisuje się w bardziej wygodny sposób: m e = 9.9 x -3 kg G = 6.67 x - m 3 kg - s -2 N A = 6.22 x 23 mol -

25 Liczby zmiennoprzecinkowe (floating-point numbers) Liczba zmiennoprzecinkowa x =(-) s m p c s znak liczby, m mantysa, p podstawa systemu, c cecha. m e = 9.9 x -3 kg G = 6.67 x - m 3 kg - s -2 N A = 6.22 x 23 mol -

26 Normalizacja liczby zmiennoprzecinkowej Położenie przecinka w liczbie zmiennoprzecinkowej nie jest ustalone = x 2 =.2736 x 3 = 2736 x -2 Znormalizowana liczba zmiennoprzecinkowa to taka liczba, której mantysa spełnia zależność: m <p W systemie dwójkowym znormalizowana liczba zmiennoprzecinkowa ma zawsze część całkowitą równą ±.

27 Zatem, do zakodowania liczby zmiennoprzecinkowej potrzeba zakodować (przyjmujemy, ze podstawa będzie równa 2): znak, mantysę, cechę.

28 Precyzja liczb zmiennoprzecinkowych Założenia: mantysa: 3 bity, bez znaku, liczba stałoprzecinkowa, przecinek po pierwszym bicie, cecha: 3 bity bez znaku, x.xx 2 xxx Możliwe wartości: Brak wielu liczb! (np. 9,, 3, 5,... )

29 Precyzja liczb zmiennoprzecinkowych Próba zakodowania liczby 9 9 =9 2 = = = =(. 2 ) 2 Ale mamy do dyspozycji tylko format: x:xx 2 xxx A zatem mantysa. zostanie obcięta do. i w ten sposób dostaniemy liczbę: (. 2 ) 2 =8 Mamy tu do czynienia z błędem zaokrąglenia. Wniosek: liczba 9 wymaga większej precyzji.

30 Standard IEEE 754 W celu ujednolicenia reprezentacji binarnej oraz operacji numerycznych na różnych platformach sprzętowych, wprowadzono standard zapisu zmiennoprzecinkowego IEEE 754 (William Kahan). Standard ten definiuje: formaty reprezentacji liczb zmiennoprzecinkowych: single-precision (32 bity), double-precision (64bity), single-extended precision ( 43 bitów) double-extended precision ( 79 bitów, zazwyczaj 8 bitów), wartosci specjalne (np. nieskończoność, NaN), zmiennoprzecinkowe operacje, modele zaokrąglania, wyjątki.

31 Ogólny format w standardzie IEEE 754 sign(bit znaku): liczba dodatnia, liczba ujemna, exponent (cecha): kod z nadmiarem (BIAS = 2 e- - ), fraction (mantysa): liczba stałoprzecinkowa, kod U, pozbawiona najbardziej znaczącego bitu reprezentującego część całkowitą bit ten nie jest przechowywany. Typ zera liczby nieznormalizowane liczby znormalizowane nieskończoności NaN (nieokreślone) Cecha od do 2 e- 2 e - 2 e - Mantysa dowolna

32 Liczby pojedynczej precyzji 3 23 bit znaku: liczba dodatnia, liczba ujemna, cecha: (BIAS =27), zakres: , mantysa: m =.fraction Znormalizowane liczby o najmniejszym module: ±2-26 ± Liczby o największym module: ±(( - (/2) 24 )2 28 ) ±

33 Liczby podwójnej precyzji bit znaku: liczba dodatnia, liczba ujemna, cecha: (BIAS =23), zakres: , mantysa: m =.fraction Znormalizowane liczby o najmniejszym module: ±2-22 ± Liczby o największym module: ±(+ ( 2-52) ))2 23 ±

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,

Bardziej szczegółowo

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

Technologie Informatyczne Wykład IV/V

Technologie Informatyczne Wykład IV/V Technologie Informatyczne Wykład IV/V A. Matuszak 22 października 2010 Pozycyjny układ liczenia Cyfry rzymskie: IX+LC=? Cyfry arabskie: 2341 = 2 1000+3 100+4 10+1 1 = 2 10 3 +3 10 2 +4 10 1 +1 10 0 Pozycyjny

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Dodatek do Wykładu 01: Kodowanie liczb w komputerze

Dodatek do Wykładu 01: Kodowanie liczb w komputerze Dodatek do Wykładu 01: Kodowanie liczb w komputerze [materiał ze strony: http://sigma.wsb-nlu.edu.pl/~szyszkin/] Wszelkie dane zapamiętywane przetwarzane przez komputery muszą być odpowiednio zakodowane.

Bardziej szczegółowo

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):

Bardziej szczegółowo

Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1

Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1 Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1 Bity i kody binarne Bit (binary digit) najmniejsza ilość informacji {0, 1}, wysokie/niskie napięcie

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Zmiennoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Informatyka 1. Wykład nr 4 ( ) Plan wykładu nr 4. Politechnika Białostocka. - Wydział Elektryczny

Informatyka 1. Wykład nr 4 ( ) Plan wykładu nr 4. Politechnika Białostocka. - Wydział Elektryczny Rok akademicki 8/9, Wykład nr 4 /8 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 8/9 Wykład nr

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Jednostki informacji - bit. Kodowanie znaków: ASCII, ISO 8859, Unicode liczb: NKB (BCN), U2, BCD. Liczby zmiennoprzecinkowe standard IEEE 754

Jednostki informacji - bit. Kodowanie znaków: ASCII, ISO 8859, Unicode liczb: NKB (BCN), U2, BCD. Liczby zmiennoprzecinkowe standard IEEE 754 Rok akademicki 06/07, Pracownia nr /33 Pracownia nr Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki 06/07 Jednostki informacji

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Mikroinformatyka. Koprocesory arytmetyczne 8087, 80187, 80287, i387

Mikroinformatyka. Koprocesory arytmetyczne 8087, 80187, 80287, i387 Mikroinformatyka Koprocesory arytmetyczne 8087, 80187, 80287, i387 Koprocesor arytmetyczny 100 razy szybsze obliczenia numeryczne na liczbach zmiennoprzecinkowych. Obliczenia prowadzone równolegle z procesorem

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej

Bardziej szczegółowo

ARYTMETYKA KOMPUTERA

ARYTMETYKA KOMPUTERA 006 URZĄDZENIA TECHNIKI KOMPUTEROWEJ ARYTMETYKA KOMPUTERA Systemy liczbowe o róŝnych podstawach 1 UTK System dziesiętny Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Liczba 764.5 oznacza 7 * 10 2 + 6 * 10 1 + 4

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 2: Reprezentacja danych Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Kilka ciekawostek Zapisy binarny, oktalny, decymalny

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Informatyka 1. Wykład nr 4 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 4 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 008/009 Wykład nr 4 (8.04.009) Informatyka, studia stacjonarne I stopnia

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

Podstawy informatyki (2)

Podstawy informatyki (2) Podstawy informatyki (2) dr inż. Sebastian Pluta pluta@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Informacje informatyka to nauka o przetwarzaniu i przechowywaniu informacji informacja

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

Systemem liczenia systemach addytywnych !!" Pozycyjny system liczbowy podstawą systemu pozycyjnego

Systemem liczenia systemach addytywnych !! Pozycyjny system liczbowy podstawą systemu pozycyjnego Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Podstawą systemów liczenia są systemy liczbowe

Bardziej szczegółowo

L6.1 Systemy liczenia stosowane w informatyce

L6.1 Systemy liczenia stosowane w informatyce L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał

Bardziej szczegółowo

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 23 Wyznaczanie wartości wielomianu pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 231 Systemy liczbowe Definicja Systemem liczbowym nazywamy zbiór zasad określających sposób

Bardziej szczegółowo

kodowanie informacji Autor prezentacji: 1 prof. dr hab. Maria Hilczer

kodowanie informacji Autor prezentacji: 1 prof. dr hab. Maria Hilczer kodowanie informacji Autor prezentacji: 1 prof. dr hab. Maria Hilczer Liczba całkowita to ciąg cyfr d n d n-1... d 2 d 1 d 0 system dziesiętny podstawa = 10 d i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 liczba (10)

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki 2014/2015 Pracownia nr 2 (08.10.2014) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Sposób reprezentacji informacji w systemie. Reprezentacja informacji. Dzięki kodowaniu informacji.

Sposób reprezentacji informacji w systemie. Reprezentacja informacji. Dzięki kodowaniu informacji. Sposób reprezentacji informacji w systemie Reprezentacja informacji Jak to się dzieje że w pamięci komputera można przechowywać teksty, obrazy, dźwięki i liczby? Dzięki kodowaniu informacji. Kodowanie

Bardziej szczegółowo

Podstawy informatyki. Reprezentacja danych w systemach cyfrowych

Podstawy informatyki. Reprezentacja danych w systemach cyfrowych Podstawy informatyki Reprezentacja danych w systemach cyfrowych Systemy liczbowe Najpopularniejsze systemy liczbowe: system decymalny (dziesiętny) system binarny (dwójkowy) system heksadecymalny (szesnastkowy)

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Pracownia Komputerowa wyk ad V

Pracownia Komputerowa wyk ad V Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego

Bardziej szczegółowo

BŁĘDY PRZETWARZANIA NUMERYCZNEGO

BŁĘDY PRZETWARZANIA NUMERYCZNEGO BŁĘDY PRZETWARZANIA NUMERYCZNEGO Maciej Patan Uniwersytet Zielonogórski Dlaczego modelujemy... systematyczne rozwiązywanie problemów, eksperymentalna eksploracja wielu rozwiązań, dostarczanie abstrakcyjnych

Bardziej szczegółowo

Temat 4. Kodowanie liczb

Temat 4. Kodowanie liczb Temat 4. Kodowanie liczb Spis treści do tematu 4 4.1. Kodowanie liczb stałopozycyjnych 4.1.1. Naturalny kod binarny NKB 4.1.2. Kod dwójkowo-dziesiętny BCD 4.1.3. Kod Graya 4.1.4. Kod znak-moduł 4.1.5.

Bardziej szczegółowo

Cel wykładu. Cel wykładu. Cel wykładu, cd. Cel wykładu, cd. Cel wykładu, cd. Z. Postawa, "Podstawy Informatyki II" Strona: 1 z 6

Cel wykładu. Cel wykładu. Cel wykładu, cd. Cel wykładu, cd. Cel wykładu, cd. Z. Postawa, Podstawy Informatyki II Strona: 1 z 6 Prof. dr hab. Zbigniew Postawa Zakład Fizyki Nanostruktur i Nanotechnologii pok. 16 (nie 016!) Tel. 5626 e-mail: zbigniew.postawa@uj.edu.pl Sala 057, poniedziałek 16 05 Bez egzaminu C C Cel wykładu Podstawowe

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW. Reprezentacja danych w komputerach

ARCHITEKTURA KOMPUTERÓW. Reprezentacja danych w komputerach Reprezentacja danych w komputerach dr inż. Wiesław Pamuła wpamula@polsl.katowice.pl Literatura 2. J.Biernat: Architektura komputerów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław2002. 3. Null

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod znak-moduł (ZM) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy Wstęp doinformatyki Systemy liczbowe i arytmetyka komputerów Dr inż. Ignacy Pardyka kademia Świętokrzyska Kielce, System dziesiętny Liczba: 5= *+5*+* - każdą z cyfr mnożymy przez tzw. wagę pozycji, która

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

Technologie Informacyjne Wykład 3

Technologie Informacyjne Wykład 3 Technologie Informacyjne Wykład 3 Procesor i jego architektura (CISC, RISC, 32/64 bity) Systemy wieloprocesorowe Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny

Bardziej szczegółowo

Procesor i jego architektura (CISC, RISC, 32/64 bity). Systemy wieloprocesorowe. wer Wojciech Myszka 16 pa«zdziernika 2008

Procesor i jego architektura (CISC, RISC, 32/64 bity). Systemy wieloprocesorowe. wer Wojciech Myszka 16 pa«zdziernika 2008 Procesor i jego architektura (CISC, RISC, 32/64 bity). Systemy wieloprocesorowe. wer. 1.4 Wojciech Myszka 16 pa«zdziernika 2008 CISC I Complex Instruction Set Computers nazwa architektury mikroprocesorów

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Co to jest informacja, oraz w jaki sposób jest ona reprezentowana w komputerze.

Co to jest informacja, oraz w jaki sposób jest ona reprezentowana w komputerze. Co to jest informacja, oraz w jaki sposób jest ona reprezentowana w komputerze. Pojęcie informacji Informacja to dane niosące ze sobą pewne znaczenie. Komputer jest urządzeniem do przetwarzania danych

Bardziej szczegółowo

Podstawy Informatyki Maszyna Turinga

Podstawy Informatyki Maszyna Turinga Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga 2 3 4 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga,

Bardziej szczegółowo

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Komputerowa reprezentacja znaków i liczb dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Plan wykładu Reprezentacja informacji w systemie komputerowym Podstawowe jednostki informacji

Bardziej szczegółowo