Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015"

Transkrypt

1 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1

2 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane tą drogą wyniki są na ogół przybliżone, jednak dokładność obliczeń może być z góry określona i dobiera się ją zależnie od potrzeb. Wykorzystywane są wówczas gdy badany problem nie ma w ogóle rozwiązania analitycznego (danego wzorami), lub korzystanie z takich rozwiązań jest uciążliwe ze względu na ich złożoność. 2

3 Kalkulator, komputer -> maszyna cyfrowa Jakość maszyny cyfrowej wielkość pamięci operacyjnej, szybkość wykonywania operacji matematycznych i logicznych, dopuszczalny zakres liczb podczas obliczeń, dokładność wykonywania podstawowych działań arytmetycznych na liczbach rzeczywistych Zastosowanie do obliczeń w elektronice np.: - analiza obwodów (Spice) - analiza sygnałów 3

4 Zagadnienia omawiane na wykładzie: 1. Zapis liczb w komputerach 2. Metody rozwiązywania układów równań liniowych: - metody dokładne: dekompozycji LU, - metody iteracyjne: Jacobiego, Gaussa-Seidla 3. Wybrane metody przybliżonego wyznaczania rozwiązań równania algebraicznego: bisekcji, regula falsi, siecznych, stycznych, iteracji prostej 4. Aproksymacja funkcji: interpolacja, aproksymacja 4

5 Zapis liczb w komputerach Sem. 2 EiT, 2014/2015 5

6 Każdą liczbę zastosowaną do obliczeń w komputerach należy przedstawić w postaci dogodnej do wykonywania operacji matematycznych Przyjmujemy, że zapiszemy liczby w postaci określonych wartości, które będą występować lub nie, w zależności od pewnej wagi. Jako wagę można zastosować wartości: 0 (nie) lub 1 (tak). Wartości, które wybierzemy do reprezentacji liczb, powinny stanowić jakiś logiczny ciąg, np. 2 0, 2 1, 2 2, 2 3, 2 4,, 2 n Jest to system dwójkowy, p = 2 Liczba 10 zapisana w systemie dziesiętnym, w systemie dwójkowym zostanie zapisana jako: Jaką największą liczbę mogę zapisać? Jaką najmniejszą liczbę mogę zapisać? = = 10 Czy mogę zapisać 2,5? Konieczne jest ustalenie, co w danym rejestrze jest zapisane, oczywiście symbolicznie, w maszynie cyfrowej występuje tylko zapis wartości: 0 i 1 Przyjęto, że każdy element zapisany w maszynie cyfrowej jest nazywany bitem. 6

7 Zapisanie liczby o większej wartości, liczby ułamkowej, liczby ujemnej wymaga stworzenia odpowiedniego systemu zapisu liczb. W naszym przykładzie, przy 4 bitach, można zapisać liczby od 0 do 15, ale co 1. Większy zakres liczb możemy uzyskać zwiększając liczbę bitów. Liczby ułamkowe możemy uzyskać wprowadzając zapis dla części całkowitej i ułamkowej. Liczby dodatnie i ujemne można uzyskać wprowadzając dodatkowy bit na znak. Co zrobić, żeby uzyskać odpowiednią dokładność? Od czego ona zależy? 7

8 Liczby w komputerach są zapisywane w postaci: stałopozycyjnej (stałoprzecinkowej), zmiennopozycyjnej (zmiennoprzecinkowej). Zapis liczby w komputerze w postaci bitów, np. słowo 32-bitowe, 16-bitowe,. Reprezentacja stałopozycyjna Do zapisu liczby stałoprzecinkowej przeznaczamy z góry określoną liczbę bitów, a pozycję przecinka ustala się arbitralnie, w zależności od wymaganej dokładności: S = s c n 1 c 1 c 0 c 1 c 2 c m+1 c m c i 0,, p 1, s +, p podstawa, s znak System dziesiętny p = 10, system dwójkowy (binarny) p = 2 Przyjmujemy, że p = 2, więc c i 0,1 i = n-1, n 2,., - m + 1, - m Słowo 7-bitowe możemy zapisać w postaci: część całkowita 4 bity (n = 4), 1 bit na znak, część ułamkowa 2 bity (m = 2) 0 znak +, 1 znak. 8

9 S = s c n 1 c 1 c 0 c 1 c 2 c m+1 c m c i 0, 1, s 0, 1 Liczba dodatnia S = 0(c n 1 2 n 1 + c n 2 2 n c c c c m 2 m ) Przykład część całkowita część ułamkowa Na część całkowitą przeznaczono 4 bity (n = 4), na część ułamkową 2 bity (m = 2) S = s c 3 c 1 c 0 c 1 c 2 c i 0, 1, s 0, 1 Liczba dodatnia s = 0, wartość maksymalna to: czyli 0( ) = +15,75 Symbol reprezentuje przecinek 9

10 Liczba dodatnia s = 0, najmniejsza wartość większa od zera to: czyli 0( )= + 0,25 Wniosek: można zapisać liczby od 15,75 do + 15,75, ale tylko co 0,25 Przykładowa liczba: s = ( )= 11,50 Podziału na część całkowitą i ułamkową dokonuje programista. Przy ustalonej liczbie bitów trzeba bardzo precyzyjnie określić: część całkowitą (liczbę bitów na część całkowitą) i część ułamkową (liczbę bitów na część ułamkową), żeby uzyskać we wszystkich obliczeniach (operacjach matematycznych) wymagany zakres liczb. Przy ustalonej liczbie bitów Zwiększanie części ułamkowej powoduje zmniejszenie zakresu liczb, natomiast zwiększanie części całkowitej, to zmniejszanie dokładności (precyzji). 10

11 Reprezentacja zmiennopozycyjna Do zapisu liczby zmiennopozycyjnej stosujemy następujący zapis: Z = ( 1) s M W gdzie: s 0,1 M - mantysa, W - cecha, s znak, 0 znak +, 1 znak. Mantysa M jest znormalizowana, liczba ułamkowa. Jeżeli M jest stałe, a zmienia się W, to przesunięciu ulega przecinek stąd nazwa tej reprezentacji liczb. 11

12 Z = ( 1) s M W s = 0 znak +, s = 1 znak Mantysa Przeznaczamy na mantysę n bitów M = 1 + m n m n m n m 1 2 n+1 + m 0 2 n m i 0, 1 część ułamkowa Cecha Przeznaczamy na cechę n bitów W = w n 1 2 n 1 + w n 2 2 n 2 + w n 3 2 n 3 + w w i 0, 1 12

13 Reprezentacja zmiennopozycyjna Sposób zamiany Należy zapisać liczbę 99,00 (system dziesiętny) w systemie binarnym (p = 2) zmiennopozycyjnym: Najbliższa potęga 2, o wartości mniejszej od 99, to 2 6 = 64, s = 0, znak " + " Obliczamy ułamek: Zapis mantysy (6 bitów): 0, x 2 = 1, ,09375 x 2 = 0, ,1875 x 2 = 0, ,375 x 2 = 0,75 0 0,75 x 2 = 1,50 1 0,5 x 2 = 1,0 1 Z = ( 1) s M W = 1, będziemy zapisywać liczbę w postaci: (1 + 0,546875) 64, M = 1 + 0, cecha W = 2 6 s 0,1 Zapis cechy (7 bitów): 64:2 = 0 32:2 = 0 16:2 = 0 8:2 = 0 4:2 = 0 2:2 = znak cecha W =2 6 Zapis liczby mantysa M = 1 + m m m m m m = 1, W = w w w w = 64 Z = [( )] = = +1, =

14 Na zapisanie liczby 99 przeznaczono: 1 bit na znak, siedem bitów na cechę, sześć bitów na mantysę. Przy ograniczaniu liczby bitów, zapis liczby będzie niedokładny, z błędem. Przykładowo: 1 bit na znak, siedem bitów na cechę, pięć bitów na mantysę, wtedy: Z = (2 6 ) = = 1, = + 98 Błąd bezwzględny: = 1, błąd względny 1/99 = 1,01% 1 bit na znak, siedem bitów na cechę, cztery bity na mantysę, wtedy: Z = (2 6 ) = = 1,5 64 = 96 Błąd bezwzględny: = 3, błąd względny 3/99 = 3,03% A co spowoduje ograniczanie liczby bitów na cechę? 14

15 Dokładność zapisu liczby zależy od mantysy, a zakres liczby od cechy. 15

16 Błędy w obliczeniach 16

17 BŁĘDY W OBLICZENIACH Błąd bezwzględny definiuje się w obliczeniach jako różnicę między dokładną (na ogół nieznaną) wartością liczbową x a jej wartością przybliżoną otrzymaną jako wynik rozwiązania pewnego zadania obliczeniowego, δ = x x W celu określenia dokładności obliczeń określa się zwykle graniczny (tzn. maksymalny) błąd bezwzględny δ M = max x x wyrażany w jednostkach wielkości obliczanej, lub graniczny błąd względny ε M = x x x wyrażany w postaci ułamka lub procentu wartości obliczanej wielkości. 17

18 Rozpatruje się trzy główne przyczyny powstawania niedokładności w trakcie realizacji obliczeń: błędy danych wejściowych, błędy obcięcia, błędy zaokrągleń. Błędy danych wejściowych powodowane są przez skończoną długość słowa stosowanego w maszynie cyfrowej (skończoną dyskretną reprezentację liczb stosowanych w obliczeniach komputerowych) i związaną z tym w konsekwencji niemożliwością przedstawienia wartości rzeczywistej w postaci dokładnego zapisu liczbowego. 18

19 Reprezentacja stałopozycyjna S = s c n 1 c 1 c 0 c 1 c 2 c m+1 c m c i 0, 1, s 0, 1 Powtórka Liczba dodatnia S = 0 (c n 1 2 n 1 + c n 2 2 n c c c c m 2 m ) część całkowita część ułamkowa Do zapisu liczby stałoprzecinkowej przeznaczamy z góry określoną liczbę bitów, a pozycję przecinka ustala się arbitralnie, w zależności od wymaganej dokładności Przykład Na część całkowitą przeznaczono 4 bity (n = 4), na część ułamkową 2 bity (m = 2) Liczba dodatnia s = 0, wartość maksymalna to: czyli Symbol reprezentuje przecinek 0 ( ) = +15,75 19

20 Reprezentacja stałopozycyjna Należy zapisać liczbę 0,48 (system dziesiętny) w systemie binarnym, jako liczbę stałopozycyjną: Założenie Zapis liczby w systemie binarnym p = 2 1 bit na znak, cztery bity na część całkowitą, 2 bity na część ułamkową Część całkowita: 0000 Zapis liczby w systemie binarnym Sposób zamiany Część ułamkowa 0,48 x 2 = 0,96 0 0,96 x 2 = 1,92 1 0,92 x 2 = 1,84 1 0,84 x 2 = 1, Wartość w systemie dziesiętnym: = 0,25 Wniosek: nie ma możliwości zapisania dokładnie wartości 0,48 w przyjętym systemie zapisu: znak, 4 bity na część całkowitą i 2 bity na część ułamkową Błąd bezwzględny 0,48 0,25 = 0,23, błąd bezwzględny 0,23/0,48 = 47,9% Błąd danych wejściowych 20

21 Reprezentacja stałopozycyjna Należy zapisać liczbę 16,50 (system dziesiętny) w systemie binarnym stałopozycyjną: Założenie Część całkowita: 16:2 reszta 0 8:2 reszta 0 4:2 reszta 0 2:2 reszta 0 1 reszta 1 Zapis: Zapis liczby w systemie binarnym 1 bit na znak, cztery bity na część całkowitą, 2 bity na część ułamkową Sposób zamiany Część ułamkowa: 0,50 x2 = 1,0 1 0,0 x 2= 0 0 Zapis: 10 Nie można zapisać tej liczby w założonym systemie zapisu (cztery bity na mantysę), liczba wymaga pięciu bitów na mantysę. Można zapisać tylko liczbę 15,75 Błąd bezwzględny 16,50 15,75 = 0,75, błąd bezwzględny 0,75/16,50 = 4,5% Błąd danych wejściowych 21

22 Reprezentacja stałopozycyjna Należy zapisać liczbę (system dziesiętny) w systemie binarnym stałopozycyjną: 11,60 Założenie Część całkowita: Zapis liczby w systemie binarnym Znak, cztery bity na mantysę, 2 bity na cechę Sposób zamiany Część ułamkowa: 11:2 reszta 1 5:2 reszta 1 2:2 reszta 0 1 reszta 1 Zapis: 1011 Wartość w systemie dziesiętnym: 0,60 x2 = 1,2 1 0,2 x 2= 0,4 0 Zapis: 10 Zapis liczby w systemie binarnym: = 11,50 Wniosek: nie ma możliwości zapisania dokładnie wartości 11,60 w przyjętym systemie zapisu, znak, 4 bity na część całkowitą i 2 bity na część ułamkową Błąd bezwzględny 11,60 11,50 = 0,10, błąd bezwzględny 0,10/11,60 = 0,86% Błąd danych wejściowych 22

23 Działania na liczbach w systemie dwójkowym = = 10 1 * 0 = 0 1 * 1 = = 1 23

24 Dodawanie liczb stałopozycyjnych Zasady dodawania: 0+0 = 0, 1+0 = 1, 0+1 = 1, 1+1 = 10 Należy dodać liczby 11,5 i 3,5 w systemie dziesiętnym i binarnym System dziesiętny: 11,5 + 3,5 = 15 Zamiana liczb na binarne, przyjmujemy, że liczby zostaną zapisane : W formacie 1 bit na znak, 4 bity na część całkowitą, 2 bity na część ułamkową Część całkowita Liczba 11 11:2 1 5:2 1 2: Liczba 3 3: Część ułamkowa 0,50 0,50 x 2 = 1 1 0,00 0 Liczba 3, Liczba 11, ,5 = ( ) 3,5 = ( ) 24

25 Dodawanie Liczba 11, Liczba 3, Suma ,5 + 3,5 = ( ) = +15 Liczby zostały dodane prawidłowo, nie występuje błąd 25

26 Zadanie Należy dodać liczby zapisane w systemie dziesiętnym (jest to przeliczenie skali): T F = T C W systemie binarnym liczby te należy zapisać jako liczby całkowite: Przeliczamy temperaturę T c = /5 = 1,8 1,0 obcięcie 2,0 zaokrąglenie T F = T C Wynik poprawny 212 Jeżeli zmienimy kolejność działań, czyli T F = T C 5, to wynik będzie poprawny = /5 = 180 T F = =

27 Wniosek W czasie wykonywania operacji matematycznych występują błędy danych wejściowych, błędy zaokrąglenia i obcięcia, które zależą od reprezentacji liczby w maszynie cyfrowej Na dokładność obliczeń wpływa również kolejność wykonywanych operacji matematycznych. 27

28 Standardy zapisu liczb w maszynach cyfrowych 28

29 Liczba w reprezentacji zmiennopozycyjnej o pojedynczej lub podwójnej precyzji (IEEE 754) jest zapisywana w rejestrach komputera jako liczba o podstawie p = 2 w postaci: Reprezentacja zmiennopozycyjna, pojedyncza precyzja (32 bity): znak cecha mantysa (1 bit) (8 bitów) (23 bity) numer bitu: Reprezentacja zmiennopozycyjna, podwójna precyzja (64 bity): znak cecha mantysa (1 bit) (11 bitów) (52 bity) numer bitu:

30 Zapis liczby Z w standardzie IEEE 754 Z = ( 1) s E wartość stała M 2 s znak, jeżeli s = 0, to jest to liczba dodatnia, jeżeli s = 1, to jest to liczba ujemna, M mantysa, składa się z określonej liczby bitów, zapisywana jako ułamek binarny, E - cecha, składa się z określonej liczby bitów, zapisywana jako liczba. Pojedyncza precyzja: Z = ( 1) s M 2 E 127 M = 1. m 22 m 21 m 2 m 1 m 0 Zajmuje 23 bity: 0 (LSB), 22 (MSB) M = 1 + m m m m m przyjmuje wartości 0 lub 1 E zajmuje 8 bitów: 23 (LSB), 30 (MSB) 30

31 0 albo Cecha, s maksymalna wartość E = 255, czyli , minimalna E = 0, czyli wykładnik może znak, 1 bit zmieniać się od -127 do +128 (2 127 do ) cecha, 8 bitów 2 1 Mantysa, jeżeli wszystkie m są równe 0, to M = 1, jeżeli wszystkie m są równe 1, to M = mantysa, 23 bity 31

32 Przykład: , = +1, ,75 znak cecha mantysa (1 bit) (8 bitów) (23 bity) numer bitu:

33 33

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

BŁĘDY PRZETWARZANIA NUMERYCZNEGO

BŁĘDY PRZETWARZANIA NUMERYCZNEGO BŁĘDY PRZETWARZANIA NUMERYCZNEGO Maciej Patan Uniwersytet Zielonogórski Dlaczego modelujemy... systematyczne rozwiązywanie problemów, eksperymentalna eksploracja wielu rozwiązań, dostarczanie abstrakcyjnych

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 23 Wyznaczanie wartości wielomianu pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 231 Systemy liczbowe Definicja Systemem liczbowym nazywamy zbiór zasad określających sposób

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

Pracownia Komputerowa wyk ad V

Pracownia Komputerowa wyk ad V Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Mikroinformatyka. Koprocesory arytmetyczne 8087, 80187, 80287, i387

Mikroinformatyka. Koprocesory arytmetyczne 8087, 80187, 80287, i387 Mikroinformatyka Koprocesory arytmetyczne 8087, 80187, 80287, i387 Koprocesor arytmetyczny 100 razy szybsze obliczenia numeryczne na liczbach zmiennoprzecinkowych. Obliczenia prowadzone równolegle z procesorem

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Dodatek do Wykładu 01: Kodowanie liczb w komputerze

Dodatek do Wykładu 01: Kodowanie liczb w komputerze Dodatek do Wykładu 01: Kodowanie liczb w komputerze [materiał ze strony: http://sigma.wsb-nlu.edu.pl/~szyszkin/] Wszelkie dane zapamiętywane przetwarzane przez komputery muszą być odpowiednio zakodowane.

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Zmiennoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

Metody numeryczne. dr hab. Piotr Fronczak. pok. 101 GF. Zakład Fizyki Układów Złożonych

Metody numeryczne. dr hab. Piotr Fronczak.  pok. 101 GF. Zakład Fizyki Układów Złożonych Metody numeryczne dr hab. Piotr Fronczak Zakład Fizyki Układów Złożonych www.if.pw.edu.pl/~agatka/numeryczne.html fronczak@if... pok. 101 GF Regulamin Obecność na wykładach nie jest obowiązkowa. Zaliczenie

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Technologie Informacyjne Wykład 3

Technologie Informacyjne Wykład 3 Technologie Informacyjne Wykład 3 Procesor i jego architektura (CISC, RISC, 32/64 bity) Systemy wieloprocesorowe Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny

Bardziej szczegółowo

KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6

KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 DOPUSZCZAJĄC Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje,

Bardziej szczegółowo

ARYTMETYKA KOMPUTERA

ARYTMETYKA KOMPUTERA 006 URZĄDZENIA TECHNIKI KOMPUTEROWEJ ARYTMETYKA KOMPUTERA Systemy liczbowe o róŝnych podstawach 1 UTK System dziesiętny Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Liczba 764.5 oznacza 7 * 10 2 + 6 * 10 1 + 4

Bardziej szczegółowo

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO Aleksandra Nogała nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie olanog@poczta.onet.pl KONSPEKT ZAJĘĆ ( 2 godziny) KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO TEMAT

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Plan wynikowy z przedmiotu: MATEMATYKA

Plan wynikowy z przedmiotu: MATEMATYKA Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY PRZETWORIKI C / A PODSTAWOWE PARAMETRY Rozdzielczość przetwornika C/A - Określa ją liczba - bitów słowa wejściowego. - Definiuje się ją równieŝ przez wartość związaną z najmniej znaczącym bitem (LSB),

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa VI

Wymagania programowe na poszczególne stopnie szkolne klasa VI Wymagania programowe na poszczególne stopnie szkolne klasa VI 6 5 4 3 2 LICZBY NATURALNE Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Podstawy informatyki (2)

Podstawy informatyki (2) Podstawy informatyki (2) dr inż. Sebastian Pluta pluta@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Informacje informatyka to nauka o przetwarzaniu i przechowywaniu informacji informacja

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Matematyka. Klasa IV

Matematyka. Klasa IV Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo