System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

Wielkość: px
Rozpocząć pokaz od strony:

Download "System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb."

Transkrypt

1 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja stało- i zmiennopozycyjna. SYSTEMY LICZBOWE System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. Systemy liczbowe pozycyjne. - jedynkowy system liczbowy - dwójkowy system liczbowy - siódemkowy system liczbowy - ósemkowy system liczbowy - dziesiętny system liczbowy - dwunastkowy system liczbowy - szesnastkowy system liczbowy - sześćdziesiątkowy system liczbowy System jedynkowy. System jedynkowy jest najprostszym systemem zapisu liczb. System ten wykorzystuje do zapisu liczb tylko cyfrę = 1* * *1 2 = 1*1 + 1*1 + 1*1 = = 3 System dwójkowy (binarny). Ponieważ liczby w pamięci komputera reprezentowane są przy użyciu bitów, dlatego w informatyce stosuje się dwójkowy system liczbowy. W

2 tym systemie podstawą jest liczba 2. Do zapisu liczb potrzebne są dwie cyfry: 0 i = 1* * * * * * *2 6 = 1*1 + 0*2 + 1*4 + 0*8 + 0*16 + 1*32 + 1*64 = = 101 Zamiana liczb dziesiętnych na system binarny. Zamianę tę przeprowadzamy dzieląc z resztą liczbę dziesiętną przez 2, pamiętając o późniejszym "wyrzuceniu" zbędnych zer z lewej strony np.: ( ) 2 = ( ) 2 = (10110) 2 (583) 10 = ( ) 2 System siódemkowy. Nazywany również systemem septymalnym. Do zapisu liczb używa się siedmiu cyfr: 0-6 System ósemkowy. Do zapisu liczb w tym systemie wykorzystuje się 8 cyfr: 0, 1, 2, 3, 4, 5, 6, 7 Podstawą jest liczba 8. Cyfrę stojącą na pierwszej pozycji mnożymy

3 razy 8 0, cyfrę na 2 pozycji mnożymy razy 8 1, cyfrę na 3 pozycji mnożymy razy 8 2 itd. 174 = 4* * *8 2 = 4*1 + 7*8 + 1* 64 = = 124 (174) 8 = (124) 10 System dziesiętny. Jest to podstawowy system liczbowy stosowany w większości krajów świata. Do zapisu liczb w tym systemie wykorzystuje się 10 cyfr: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Podstawą pozycji są kolejne potęgi liczby 10. Zapis liczb wygląda jak poniżej: cyfrę stojącą na pierwszej pozycji mnożymy razy Cyfrę na 2 pozycji mnożymy razy 10 1, cyfrę na 3 pozycji razy 10 2 itd = 3* * * *10 3 = 3*1 + 2*10 + 1* *1000 = = 4123 System dwunastkowy. Liczby zapisuje się tu jako ciągi cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu, np. liczba zapisana w dziesiętnym systemie liczbowym jako 1000, w dwunastkowym przybiera postać 6B4, gdyż: = = 1000 System szesnastkowy. Ze względu na specyfikę architektury komputerów, gdzie często najszybszy dostęp jest do adresów parzystych, albo podzielnych przez 4, 8 czy 16, często używany jest szesnastkowy system liczbowy. Sprawdza się on szczególnie przy zapisie dużych liczb takich jak adresy pamięci, zakresy parametrów itp. Do zapisu liczb w systemie szesnastkowym wykorzystuje się 16 znaków (10 cyfr i 6 liter): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. gdzie: A=10, B=11, C=12, D=13, E=14, F=15 Podstawą w systemie szesnastkowym są kolejne potęgi liczny 16. D3A = 10* * *16 2 = 10*1 + 3* *256 = = 3386 System szesnastkowy często spotykany jest też na stronach WWW (HTML), gdzie stosowany jest do zapisu kolorów.

4 #FFFFFF - kolor biały System szesnastkowy jest również stosowany w przypadku użycia kodów ASCII. Znaki są często podawane przy użyciu dwucyfrowych liczb szesnastkowych. Natomiast ludzkie przyzwyczajenie do operowania w systemie dziesiątkowym jest tak ugruntowane, że żaden inny system pozycyjny nie może mieć szerszego znaczenia w komunikacji między ludźmi. System sześćdziesiątkowy. Jest to pozycyjny system liczbowy o podstawie 60. Był używany w Babilonie i to już w 1750 p.n.e., stąd dotarł do Europy. Układ sześćdziesiątkowy obecnie jest używany w oznaczaniu jednostek czasu. Godzina dzieli się na 60 minut, minuta na 60 sekund. Zamiana liczb hexadecymalnych na binarne i odwrotnie. BIN HEX BIN HEX A B C D E

5 F System dwójkowy dobrze pasuje do maszyny, gdyż reprezentacja jednej cyfry zajmuje dokładnie jeden bit. n-cyfrowa liczba (bez znaku) pamiętana jest w słowie n-bitowym. Natomiast dla człowieka jest on zbyt rozwlekły. Dodawanie liczb binarnych. Główne zasady przy dodawaniu liczb binarnych: = = = = 0 (+1 dodajemy do następnej pozycji) (3) (5) (8) 10 Odejmowanie liczb binarnych.

6 Odejmowanie liczb binarnych wykonuje się poprzez zamianę jednej z liczb na ujemną. Odejmowanie jest więc dodawaniem ujemnych liczb binarnych. Liczby binarne można zapisać w postaci ujemnej stosując niżej opisaną zasadę zamiany liczby binarnej dodatniej na ujemną: Zapis: Uzupełnienie do 1 - U1, czyli: ( ) 2 = ( ) U1 Wszystkie bity przepisujemy z zaprzeczeniem. Uzupełnienie do 1 liczby binarnej jest zawsze negacją bitów tej liczby. 2-3 = = -1 2 = = = 100 bity znaku otrzymaliśmy wynik z bitem znaku 1 (liczba ujemna), a należy dokonać ponownie zamiany U1 pomijając bit znaku otrzymujemy 01 z bitem znaku 1 wynikiem jest więc liczba -1 ponieważ = -1

7 Mnożenie liczb binarnych bez znaku mnożnik (11) x mnożnik (13) iloczyny cząstkowe iloczyn = 1* * * * * * * *2 7 = = 143 Dzielenie liczb binarnych. Dzielenie binarne jest to najbardziej skomplikowana operacja arytmetyczną na liczbach binarnych. W poniższym przykładzie oparto się na metodzie, która polega na cyklicznym odejmowaniu odpowiednio przesuniętego dzielnika od dzielnej. W systemie dwójkowym jest to szczególnie proste, ponieważ dzielnika nie musimy mnożyć. Podzielimy liczbę (1110) 2 przez (11) 2 czyli (14:3) 10 :

8 Przesuwamy dzielnik w lewo, aż jego najstarszy niezerowy bit zrówna się z najstarszym, niezerowym bitem dzielnej. Nad dzielną rysujemy kreskę: dzielna przesunięty dzielnik Jeżeli możliwe jest odjęcie dzielnika od dzielnej bez niedomiaru, to nad kreską w kolumnie najmłodszego bitu dzielnika wpisuje się 1 i wykonuje odejmowanie: dzielna 1 1 przesunięty dzielnik różnica dzielnej i przesuniętego dzielnika W następnym kroku dzielnik przesuwa się o jeden bit w prawo i próbuje się tej samej operacji z otrzymaną różnicą. Jeśli odejmowanie jest możliwe, to nad kreską w następnej kolumnie dopisuje się 1, następnie odejmuje się dzielnik od różnicy, przesuwa się go o 1 bit w prawo i kontynuuje się działania. Jeśli odejmowanie nie jest możliwe, to dopisuje się nad kreską 0, przesuwa się dzielnik o 1 bit w prawo i kontynuuje wynik dzielenia dzielna

9 - 1 1 dzielnik dzielna po odejmowaniu przesuniętego dzielnika dzielnika nie można odjąć dzielna po odejmowaniu przesuniętego dzielnika dzielnika nie można odjąć reszta z dzielenia Wyżej opisane operacje wykonuje się do czasu, aż dzielnik osiągnie swoją pierwotną wartość. Pozostała dzielna jest resztą z dzielenia. W powyższym przykładzie otrzymano wynik (100) 2 i resztę (10) 2, tzn. (4 i 2) 10. Wynik ten jest poprawny. 3 mieści się w 4 cztery razy, pozostaje reszta 2. Reprezentacja stałopozycyjna liczb całkowitych. Zapis liczb ujemnych. Liczby całkowite ze znakiem są pamiętane w słowach n-bitowych. Ustalmy n=8.

10 Nieujemna liczba całkowita jest pamiętana jako znak i moduł liczby zapisany w systemie dwójkowym. Powyższe słowo reprezentuje liczbę 77. Natomiast jeśli liczba jest ujemna to istnieje kilka sposobów jej reprezentacji: 1. znak-moduł: wygodny dla człowieka, ale przy operacjach arytmetycznych trzeba porównywać znaki i 0 ma dwie reprezentacje ('dodatnią' i 'ujemną'). 2. znak-uzupełnienie do 1: ta reprezentacja jest mniej wygodna dla człowieka i w niej też 0 ma dwie reprezentacje. To, że 0 ma dwie reprezentacje nie jest tylko sprawą estetyki. Gdy jeden obiekt ma równe reprezentacje, sprawdzenie równości dwóch obiektów staje się niepotrzebnie skomplikowana procedurą. 3. znak-uzupełnienie do 2: ta reprezentacja jest jeszcze mniej wygodna dla człowieka ale w niej 0 (i każda inna reprezentowana liczba) ma tylko jedną reprezentację, ponadto operacje arytmetyczne są wykonywane w prosty sposób. Ze względu na przytoczone powyżej zalety zajmiemy się bliżej sposobem reprezentacji liczb jako znak-uzupełnienie do 2. Ten jest w praktyce używany do reprezentacji liczb całkowitych w komputerach. Uzupełnienie do 1 liczb całkowitych otrzymujemy negując wszystkie bity. x = u1 = Uzupełnienie do 2 liczb całkowitych otrzymujemy negując wszystkie bity i dodając 1. Dla x jak wyżej uzupełnienie do 2 liczby x jest równe:

11 x = u1 = Reprezentacja liczb całkowitych w systemie znak uzupełnienie do 2 (n = 8): dla 0 x 127

12 dla -128 x -1 (80) (-48) Reprezentując liczby w systemie znak - uzupełnienie do 2, przy dodawaniu nie trzeba zwracać uwagi na znak liczby. Wyniki otrzymujemy poprawne i dokładne o ile argumenty i wartości mają swoje reprezentacje jako słowa n-bitowe w systemie znak - uzupełnienie do 2. Zmiana znaku uzupełnienia do 2 liczby (łącznie z bitem znaku) w zapisie n - bitowym:

13 (26) (-26) Dodawanie dwóch liczb w systemie znak uzupełnienie do 2. Dodajemy liczby łącznie z bitem znaku i ewentualne przeniesienie pomijamy. Wynik reprezentuje sumę w systemie znak - uzupełnienie do 2: x = (24) y = ( ) 10 x + y = ( ) 10 Aby umożliwić również zapis liczb ułamkowych, musimy rozszerzyć wagi pozycji w stronę ujemnych potęg podstawy. Część ułamkową

14 oddzielimy od części całkowitej zapisu za pomocą znaku przecinka. waga p n-1 p 2 p 1 p 0, p -1 p -2 p -m cyfry a n-1 a 2 a 1 a 0, a -1 a -2 a -m Wbrew pozorom obliczenie wartości tak zapisanej liczby wcale nie jest trudniejsze. Zasada nie zmienia się i musimy sumować kolejne iloczyny wartości cyfr przez wartości wag pozycji. Obliczenia rozpoczynamy od pierwszej pozycji po prawej stronie. a n-1... a 2 a 1 a 0 a -1 a a -m = a -m p -m a -2 p -2 + a 0 p 0 + a 1 p 1 +a 2 p a n-1 p n-1 W przypadku liczb binarnych p=2. Przykład Obliczyć wartość liczby dwójkowej (11101,011) 2 (11101,011) 2 = 1 * * * * * * * * 2 4 (11101,011) 2 = 1 * 1/8 + 1 * 1/4 + 0 * 1/2 + 1 * * * * * 16 (11101,011) 2 = 1/8 + 1/ (11101,011) 2 = 29 3/8 = 29,375 Zamiana ułamka dziesiętnego na wartość binarną Metoda zamiany jest dwuetapowa. Najpierw zamieniana jest część całkowita ułamka. Wtedy stosuje się cykliczne dzielenie przez 2 i sprawdzanie reszty z dzielenia. Następnie zamienia się część ułamkową. Zamiana polega na cyklicznym mnożeniu ułamka razy 2 i sprawdzaniu, czy wynik nie jest większy lub równy 1. Jeżeli jest >= 1 to wyznaczony bit części ułamkowej jest także równy jeden. Do dalszych obliczeń bierze się część ułamkową wyniku. Czasem zamiana części ułamkowej na postać binarną prowadzi do osiągnięcia nieskończenie długiej kombinacji zer i jedynek. Dlatego zawsze należy przyjąć dodatkowy warunek - ile bitów jest przeznaczone na zapis części ułamkowej. Obliczenia wykonuje się wtedy dotąd, aż osiągnie się potrzebną liczbę bitów.

15 Zamienić liczbę 12 14/20 na postać binarną 8-bitową, gdzie przecinek jest po czterech bitach (4b,4b) /20 = 12,7 stąd: (12,7) 10 = (1100,1011) 2 Zapis zmiennopozycyjny Z zapisem zmiennoprzecinkowym można spotkać się w przypadkach, gdzie przy jego pomocy przedstawia się albo bardzo duże wartości, albo bardzo małe. Zapis ten nazywa się często notacją naukową, np.:

16 Gwiazda Proxima Centauri znajduje się w odległości [km], czyli 9,4608 * Masa elektronu wynosi m e = 0, [g], czyli 9,1095 * [g] Liczba zapisana w systemie zmiennoprzecinkowym składa się z dwóch części: liczby stałoprzecinkowej, której wartość bezwzględna jest mniejsza od wartości podstawy systemu pozycyjnego oraz z podstawy podniesionej do pewnej potęgi zwanej wykładnikiem lub cechą. Wartość liczby jest równa iloczynowi części stałoprzecinkowej i wykładniczej: w = m * p e, m - mantysa, p - podstawa systemu, e - wykładnik potęgowy. Obliczanie wartości dwójkowej liczby zmiennoprzecinkowej Przyjmijmy następujące ustalenia. Dwójkowa liczba zmiennoprzecinkowa zbudowana jest z dwóch części: z mantysy m i wykładnika potęgowego e (zwanego również cechą). Ponieważ podstawa systemu liczenia jest znana i wynosi 2, więc nie ma potrzeby umieszczać jej w zapisie liczby. Mantysa m jest liczbą stałoprzecinkową na moduł mniejszą od 1. Wykładnik e jest liczbą całkowitą. Obie części mogą być zapisane np. w kodzie U2 lub kodzie ZM. Wartość liczby liczymy wg wzoru: w = m * 2 e Obliczenia Niech wykładnik zbudowany będzie z n bitów. Ponieważ jest to liczba całkowita, więc jej wartość obliczamy w poznany wcześniej sposób: czyli zgodny z zapisem dla liczb w kodzie U2 Mantysa ma być ułamkiem mniejszym na moduł od 1. Jeśli jest zbudowana z m bitów, to waga najstarszego bitu wynosi w kodzie U2-2 0, czyli

17 -1. Następna pozycja ma wagę 2-1, czyli 1/2, itd. Rozpiszmy to następująco: m = a n-1, a n-2 a n-3...a 2 a 1 a 0 = a n-1 (-2 0 ) + a n a n a 2 2 -n+3 + a 1 2 -n+2 + a 0 2 -n+1 Dla przykładowej, 4-bitowej mantysy wzór ten przyjmie następującą postać: m = a 3, a 2 a 1 a 0 = a 3 (-2 0 ) + a a a m = a 3, a 2 a 1 a 0 = a 3 * -1 + a 2 * 1/2 + a 1 * 1/4 + a 0 * 1/8 m = a 3, a 2 a 1 a 0 = - a 3 + a 2 / 2 + a 1 / 4 + a 0 / 8 Liczba 8-bitowa, po 4 bity na mantysę i wykładnik ZP =...? D Najpierw wydobywamy z liczby wykładnik e i mantysę m: e m Teraz obliczamy kolejno wartość wykładnika i mantysy: e = 0011 U2 = 0 * (-8) + 0 * * * 1 e = 0011 U2 = e = 0011 U2 = 3 D m = 0,111 U2 = /2 + 1/4 + 1/8 m = 0,111 U2 = 1/2 + 1/4 + 1/8 m = 0,111 U2 = 4/8 + 2/8 + 1/8 m = 0,111 U2 = 7/8

18 Mając e i m, podstawiamy do wzoru i otrzymujemy ZP = 7 D Obliczanie reprezentacji zmiennoprzecinkowej Mamy określony format zapisu liczby zmiennoprzecinkowej w systemie dwójkowym. Wiemy, że wykładnik ma zawierać n - bitów w kodzie U2, a cecha m bitów w zapisie stałoprzecinkowym U2. Przykład prostego systemu zmiennoprzecinkowego, w którym wykładnik i cecha mają po 4 bity długości. Przykładową liczbą niech będzie wartość 56: 56 D = B = U2 - dodajemy zero, aby zaznaczyć, iż jest to liczba dodatnia. Zapiszemy wzór obliczeniowy, a następnie będziemy przesuwać w prawo cyfry mantysy dodając jednocześnie 1 do wykładnika, aż znacząca jedynka znajdzie się na pozycji o wadze 1/ ,000 U2 =2 0000U ,000 U2 =2 0001U2 - przesuwamy cyfry mantysy w prawo, zwiększamy wykładnik 01110,000 U2 =2 0010U2 0111,000 U2 =2 0011U2 011,100 U2 =2 0100U2 01,110 U2 =2 0101U2 0,111 U2 =2 0110U2 - kończymy, mantysa jest znormalizowana Otrzymujemy więc: e = 0110 = 6 D m = 0,111 = 7/8, sprawdzamy: 7/8 x 2 6 = 448/8 = 56

19 Obliczenia dla liczby 254: (254) 10 = ( ) 2 = ( ) u , = przesuwamy o 8 miejsc (8) 10 = (1000) 2 stąd: m = 0, e = 1000 sprawdzamy: (½ + ¼ + 1/8 + 1/16 + 1/32 + 1/64 + 1/128) * 2 8 = (127/128) * 256 = 254.

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Podstawy Systemów Liczbowych

Podstawy Systemów Liczbowych HTTP://WWW.HAKERZY.NET 001 Krzysztof Kryczka Podstawy Systemów Liczbowych Wersja: 1.0 Będzin, dn. 03-11-2010 r. Copyright by Krzysztof Kryczka (gsystem) Data: 03.11.2010 Wydanie I Darmowy poradnik, dostarczony

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

Systemy liczbowe. 1. System liczbowy dziesiętny

Systemy liczbowe. 1. System liczbowy dziesiętny Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

ZAMIANA SYSTEMÓW LICZBOWYCH

ZAMIANA SYSTEMÓW LICZBOWYCH SZKOŁA PODSTAWOWA NR 109 IM. KORNELA MAKUSZYŃSKIEGO W KRAKOWIE UL. MACKIEWICZA 15; 31-214 KRAKÓW; TEL. 0 12 415 27 59 sp109krakow.w.w.interia.pl ; e-mail: sp109krakow@wp.pl; Krakowskie Młodzieżowe Towarzystwo

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

UKŁADY MIKROPROCESOROWE

UKŁADY MIKROPROCESOROWE UKŁADY MIKROPROCESOROWE Kodowanie informacji i systemy liczbowe OPRACOWANIE KŁ MALBORK WPROWADZENIE 1. Pojęcia podstawowe: Czym zajmuje się elektronika? Informacja Sygnał Uproszczona klasyfikacja układów

Bardziej szczegółowo

Wprowadzenie do informatyki ćwiczenia

Wprowadzenie do informatyki ćwiczenia Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie

Bardziej szczegółowo

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm MATEMATYKA Spis treści 1 jednostki miar 2 wzory skróconego mnożenia 3 podzielność liczb 3 przedrostki 4 skala 4 liczby naturalne 5 ułamki zwykłe 9 ułamki dziesiętne 9 procenty 10 geometria i stereometria

Bardziej szczegółowo

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy Wstęp doinformatyki Systemy liczbowe i arytmetyka komputerów Dr inż. Ignacy Pardyka kademia Świętokrzyska Kielce, System dziesiętny Liczba: 5= *+5*+* - każdą z cyfr mnożymy przez tzw. wagę pozycji, która

Bardziej szczegółowo

ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY

ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY Redaktor serii: Marek Jannasz Redakcja: Inga Linder-Kopiecka Korekta: Marek Kowalik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST TEST. Test składa się z 35 zadań. Na jego rozwiązanie masz 90 minut. W każdym zadaniu wybierz jedną, najlepszą według Ciebie odpowiedź i zaznacz na karcie odpowiedzi znakiem x. Do dyspozycji masz wszystkie

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

ZMIERZYĆ SIĘ Z KALKULATOREM

ZMIERZYĆ SIĘ Z KALKULATOREM ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka) SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

LICZENIE NA LICZYDLE

LICZENIE NA LICZYDLE www..pl LICZENIE NA LICZYDLE Liczydło polskie i zapis liczb Zaokrąglanie liczb na liczydle Dodawanie na liczydle Odejmowanie na liczydle Mnożenie na liczydle Dzielenie na liczydle Bibliografia LICZYDŁO

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

- Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej.

- Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej. Reprezentacja danych Różne sposoby przechowywana danych w komputerze - Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej. - Z punktu widzenia systemu KAŻDA

Bardziej szczegółowo

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

Matematyka, kl. 4. Uczeń:

Matematyka, kl. 4. Uczeń: Matematyka, kl. 4 Liczby i działania Program Matematyka z plusem Ocena Uczeń: Zna: pojęcia składnika, sumy, odjemnej, odjemnika, różnicy, czynnika, iloczynu, dzielnej, dzielenia, ilorazu, niewykonalność

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko Jednostki miar stosowane w sieciach komputerowych mgr inż. Krzysztof Szałajko Jednostki wielkości pamięci Jednostka Definicja Przykład Bit (b) 0 lub 1 Włączony / wyłączony Bajt (B) = 8 b Litera w kodzie

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Komputerowa reprezentacja znaków i liczb dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Plan wykładu Reprezentacja informacji w systemie komputerowym Podstawowe jednostki informacji

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania

Bardziej szczegółowo

Ułamki zwykłe. mgr Janusz Trzepizur

Ułamki zwykłe. mgr Janusz Trzepizur Ułamki zwykłe mgr Janusz Trzepizur Ułamek jako część całości W ułamku wyróżniamy licznik i mianownik. kreska ułamkowa licznik mianownik (czytamy: jedna druga) czyli połowa całości. Dwie takie połowy tworzą

Bardziej szczegółowo

1. System pozycyjny zapisu liczb

1. System pozycyjny zapisu liczb W.K.: Kody i liczby 1. System pozycyjny zapisu liczb Oznaczenia: R - podstawa pozycyjnego systemu liczenia (liczba naturalna) L - wartość liczby a i - cyfra ; a i {0,1,.., R-1} Zapis liczby (łańcuch cyfr):

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY

Bardziej szczegółowo

Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne.

Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. W miarę postępu techniki w niepamięć odeszły nawyki do wykonywania pisemnych albo pamięciowych obliczeń. O suwaku logarytmicznym,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Matematyka. Klasa IV

Matematyka. Klasa IV Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa 4

Wymagania programowe na poszczególne stopnie szkolne klasa 4 Wymagania programowe na poszczególne stopnie szkolne klasa 4 Nauczyciel matematyki ocenia osiągnięcia ucznia, wykorzystując następujące formy: prace pisemne (prace klasowe, sprawdziany, kartkówki) odpowiedzi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA V LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA V LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA V LICZBY I DZIAŁANIA Zna pojęcie cyfry, nazwy działań i ich elementów. Rozumie dziesiątkowy system pozycyjny, różnicę pomiędzy cyfrą a liczbą Rozumie pojęcie osi

Bardziej szczegółowo

----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------- Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV edukacyjne z matematyki w klasie IV Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą. Do uzyskania oceny dostatecznej uczeń musi spełniać kryteria wymagane na ocenę

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasy 4 6. Wymagania podstawowe Uczeń: DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM

Matematyka Matematyka z pomysłem Klasy 4 6. Wymagania podstawowe Uczeń: DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM Opis założonych osiągnięć ucznia Wymagania programowe, które stanowią oczekiwane osiągnięcia uczniów zostały podzielone na wymagania podstawowe (bazowe dla przedmiotu) i wymagania ponadpodstawowe (rozszerzające

Bardziej szczegółowo

... (środowisko) ... ... 60 minut

... (środowisko) ... ... 60 minut EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) WYBRANE:... (środowisko)... (kompilator)...

Bardziej szczegółowo

SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV Liczby naturalne SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI 1. Ocenę dopuszczającą otrzymuje uczeń, który: zna pojęcie składnika i sumy, odjemnej, odjemnika i różnicy, czynnika

Bardziej szczegółowo

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych 4. Arytmetyka procesorów 16-bitowych stałoprzecinkowych Liczby stałoprzecinkowe Podstawowym zastosowaniem procesora sygnałowego jest przetwarzanie, w czasie rzeczywistym, ciągu próbek wejściowych w ciąg

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie 5 Matematyka z plusem DKOW /08

Kryteria ocen z matematyki w klasie 5 Matematyka z plusem DKOW /08 Matematyka z plusem DKOW-5002-37/08 DZIAŁ LICZBY NATURALNE WŁASNOŚCI LICZB NATURALNYCH KONIECZNE ocena dopuszczająca rozumie dziesiątkowy system pozycyjny umie zapisywać i odczytywać liczby cyframi i słownie

Bardziej szczegółowo

Materiał nauczania matematyki w klasie IV na podstawie programu Liczę z Pitagorasem

Materiał nauczania matematyki w klasie IV na podstawie programu Liczę z Pitagorasem Materiał nauczania matematyki w klasie IV na podstawie programu Liczę z Pitagorasem Lp. Dział Wymagania programowe programu podstawowe ponadpodstawowe I Działania w zbiorze liczb naturalnych - rachunek

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie dziesiątkowego systemu liczenia, rozumie pojęcie pozycyjnego

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

Matematyka z kluczem klasa 4. I. Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej

Matematyka z kluczem klasa 4. I. Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej Matematyka z kluczem klasa 4 I. Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4

Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4 Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4 Na ocenę dopuszczającą uczeń 1. Zapisać słowami podaną cyframi liczbę naturalną, (co najwyżej liczbę

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa VI

Wymagania programowe na poszczególne stopnie szkolne klasa VI Wymagania programowe na poszczególne stopnie szkolne klasa VI 6 5 4 3 2 LICZBY NATURALNE Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące

Bardziej szczegółowo

Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi

Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych i ułamkach, zna i stosuje algorytmy działań pisemnych oraz potrafi Rozkład materiału nauczania. Matematyka wokół nas Klasa 4 DZIAŁANIA NA LICZBACH NATURALNYCH (22 h) 1 Liczby naturalne. Oś liczbowa 1. 1 ) odczytuje i zapisuje liczby naturalne wielocyfrowe 1. 2 ) interpretuje

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym

Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym S t r o n a 1 Bożena Ignatowska Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym Wprowadzenie W artykule zostaną omówione zagadnienia związane z wykorzystaniem funkcji tekstowych w arkuszu

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Jak napisać program obliczający pola powierzchni różnych figur płaskich?

Jak napisać program obliczający pola powierzchni różnych figur płaskich? Część IX C++ Jak napisać program obliczający pola powierzchni różnych figur płaskich? Na początku, przed stworzeniem właściwego kodu programu zaprojektujemy naszą aplikację i stworzymy schemat blokowy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Przedmiotowe zasady oceniania dla klasy 4 Matematyka z plusem

Przedmiotowe zasady oceniania dla klasy 4 Matematyka z plusem Przedmiotowe zasady oceniania dla klasy 4 Matematyka z plusem 1. Przedmiotowe zasady oceniania (PZO) to podstawowe zasady wewnątrzszkolnego oceniania uczniów zgodny z podstawą programową oraz wewnątrzszkolnymi

Bardziej szczegółowo

Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci.

Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci. Struktura komunikatów sieciowych Każdy pakiet posiada nagłówki kolejnych protokołów oraz dane w których mogą być zagnieżdżone nagłówki oraz dane protokołów wyższego poziomu. Każdy protokół ma inne zadanie

Bardziej szczegółowo

Matematyka klasa 4 Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 4 Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 4 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę EGZAMIN MATURALNY Z INORMATYKI MIN-R1_1-092 MAJ ROK 2009 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Ćwiczenie 3. Konwersja liczb binarnych

Ćwiczenie 3. Konwersja liczb binarnych 1 Laboratorium Architektury Komputerów Ćwiczenie 3 Konwersja liczb binarnych Komputery wykonują operacje przetwarzania danych na wartościach binarnych, podczas gdy współczesna cywilizacja posługuje się

Bardziej szczegółowo

O 3.1. Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4

O 3.1. Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 O 3.1. Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 Kategorie zostały określone następująco: dotyczące wiadomości uczeń zna uczeń rozumie dotyczące przetwarzania wiadomości uczeń

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo