System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.
|
|
- Maria Helena Bielecka
- 9 lat temu
- Przeglądów:
Transkrypt
1 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja stało- i zmiennopozycyjna. SYSTEMY LICZBOWE System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. Systemy liczbowe pozycyjne. - jedynkowy system liczbowy - dwójkowy system liczbowy - siódemkowy system liczbowy - ósemkowy system liczbowy - dziesiętny system liczbowy - dwunastkowy system liczbowy - szesnastkowy system liczbowy - sześćdziesiątkowy system liczbowy System jedynkowy. System jedynkowy jest najprostszym systemem zapisu liczb. System ten wykorzystuje do zapisu liczb tylko cyfrę = 1* * *1 2 = 1*1 + 1*1 + 1*1 = = 3 System dwójkowy (binarny). Ponieważ liczby w pamięci komputera reprezentowane są przy użyciu bitów, dlatego w informatyce stosuje się dwójkowy system liczbowy. W
2 tym systemie podstawą jest liczba 2. Do zapisu liczb potrzebne są dwie cyfry: 0 i = 1* * * * * * *2 6 = 1*1 + 0*2 + 1*4 + 0*8 + 0*16 + 1*32 + 1*64 = = 101 Zamiana liczb dziesiętnych na system binarny. Zamianę tę przeprowadzamy dzieląc z resztą liczbę dziesiętną przez 2, pamiętając o późniejszym "wyrzuceniu" zbędnych zer z lewej strony np.: ( ) 2 = ( ) 2 = (10110) 2 (583) 10 = ( ) 2 System siódemkowy. Nazywany również systemem septymalnym. Do zapisu liczb używa się siedmiu cyfr: 0-6 System ósemkowy. Do zapisu liczb w tym systemie wykorzystuje się 8 cyfr: 0, 1, 2, 3, 4, 5, 6, 7 Podstawą jest liczba 8. Cyfrę stojącą na pierwszej pozycji mnożymy
3 razy 8 0, cyfrę na 2 pozycji mnożymy razy 8 1, cyfrę na 3 pozycji mnożymy razy 8 2 itd. 174 = 4* * *8 2 = 4*1 + 7*8 + 1* 64 = = 124 (174) 8 = (124) 10 System dziesiętny. Jest to podstawowy system liczbowy stosowany w większości krajów świata. Do zapisu liczb w tym systemie wykorzystuje się 10 cyfr: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Podstawą pozycji są kolejne potęgi liczby 10. Zapis liczb wygląda jak poniżej: cyfrę stojącą na pierwszej pozycji mnożymy razy Cyfrę na 2 pozycji mnożymy razy 10 1, cyfrę na 3 pozycji razy 10 2 itd = 3* * * *10 3 = 3*1 + 2*10 + 1* *1000 = = 4123 System dwunastkowy. Liczby zapisuje się tu jako ciągi cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu, np. liczba zapisana w dziesiętnym systemie liczbowym jako 1000, w dwunastkowym przybiera postać 6B4, gdyż: = = 1000 System szesnastkowy. Ze względu na specyfikę architektury komputerów, gdzie często najszybszy dostęp jest do adresów parzystych, albo podzielnych przez 4, 8 czy 16, często używany jest szesnastkowy system liczbowy. Sprawdza się on szczególnie przy zapisie dużych liczb takich jak adresy pamięci, zakresy parametrów itp. Do zapisu liczb w systemie szesnastkowym wykorzystuje się 16 znaków (10 cyfr i 6 liter): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. gdzie: A=10, B=11, C=12, D=13, E=14, F=15 Podstawą w systemie szesnastkowym są kolejne potęgi liczny 16. D3A = 10* * *16 2 = 10*1 + 3* *256 = = 3386 System szesnastkowy często spotykany jest też na stronach WWW (HTML), gdzie stosowany jest do zapisu kolorów.
4 #FFFFFF - kolor biały System szesnastkowy jest również stosowany w przypadku użycia kodów ASCII. Znaki są często podawane przy użyciu dwucyfrowych liczb szesnastkowych. Natomiast ludzkie przyzwyczajenie do operowania w systemie dziesiątkowym jest tak ugruntowane, że żaden inny system pozycyjny nie może mieć szerszego znaczenia w komunikacji między ludźmi. System sześćdziesiątkowy. Jest to pozycyjny system liczbowy o podstawie 60. Był używany w Babilonie i to już w 1750 p.n.e., stąd dotarł do Europy. Układ sześćdziesiątkowy obecnie jest używany w oznaczaniu jednostek czasu. Godzina dzieli się na 60 minut, minuta na 60 sekund. Zamiana liczb hexadecymalnych na binarne i odwrotnie. BIN HEX BIN HEX A B C D E
5 F System dwójkowy dobrze pasuje do maszyny, gdyż reprezentacja jednej cyfry zajmuje dokładnie jeden bit. n-cyfrowa liczba (bez znaku) pamiętana jest w słowie n-bitowym. Natomiast dla człowieka jest on zbyt rozwlekły. Dodawanie liczb binarnych. Główne zasady przy dodawaniu liczb binarnych: = = = = 0 (+1 dodajemy do następnej pozycji) (3) (5) (8) 10 Odejmowanie liczb binarnych.
6 Odejmowanie liczb binarnych wykonuje się poprzez zamianę jednej z liczb na ujemną. Odejmowanie jest więc dodawaniem ujemnych liczb binarnych. Liczby binarne można zapisać w postaci ujemnej stosując niżej opisaną zasadę zamiany liczby binarnej dodatniej na ujemną: Zapis: Uzupełnienie do 1 - U1, czyli: ( ) 2 = ( ) U1 Wszystkie bity przepisujemy z zaprzeczeniem. Uzupełnienie do 1 liczby binarnej jest zawsze negacją bitów tej liczby. 2-3 = = -1 2 = = = 100 bity znaku otrzymaliśmy wynik z bitem znaku 1 (liczba ujemna), a należy dokonać ponownie zamiany U1 pomijając bit znaku otrzymujemy 01 z bitem znaku 1 wynikiem jest więc liczba -1 ponieważ = -1
7 Mnożenie liczb binarnych bez znaku mnożnik (11) x mnożnik (13) iloczyny cząstkowe iloczyn = 1* * * * * * * *2 7 = = 143 Dzielenie liczb binarnych. Dzielenie binarne jest to najbardziej skomplikowana operacja arytmetyczną na liczbach binarnych. W poniższym przykładzie oparto się na metodzie, która polega na cyklicznym odejmowaniu odpowiednio przesuniętego dzielnika od dzielnej. W systemie dwójkowym jest to szczególnie proste, ponieważ dzielnika nie musimy mnożyć. Podzielimy liczbę (1110) 2 przez (11) 2 czyli (14:3) 10 :
8 Przesuwamy dzielnik w lewo, aż jego najstarszy niezerowy bit zrówna się z najstarszym, niezerowym bitem dzielnej. Nad dzielną rysujemy kreskę: dzielna przesunięty dzielnik Jeżeli możliwe jest odjęcie dzielnika od dzielnej bez niedomiaru, to nad kreską w kolumnie najmłodszego bitu dzielnika wpisuje się 1 i wykonuje odejmowanie: dzielna 1 1 przesunięty dzielnik różnica dzielnej i przesuniętego dzielnika W następnym kroku dzielnik przesuwa się o jeden bit w prawo i próbuje się tej samej operacji z otrzymaną różnicą. Jeśli odejmowanie jest możliwe, to nad kreską w następnej kolumnie dopisuje się 1, następnie odejmuje się dzielnik od różnicy, przesuwa się go o 1 bit w prawo i kontynuuje się działania. Jeśli odejmowanie nie jest możliwe, to dopisuje się nad kreską 0, przesuwa się dzielnik o 1 bit w prawo i kontynuuje wynik dzielenia dzielna
9 - 1 1 dzielnik dzielna po odejmowaniu przesuniętego dzielnika dzielnika nie można odjąć dzielna po odejmowaniu przesuniętego dzielnika dzielnika nie można odjąć reszta z dzielenia Wyżej opisane operacje wykonuje się do czasu, aż dzielnik osiągnie swoją pierwotną wartość. Pozostała dzielna jest resztą z dzielenia. W powyższym przykładzie otrzymano wynik (100) 2 i resztę (10) 2, tzn. (4 i 2) 10. Wynik ten jest poprawny. 3 mieści się w 4 cztery razy, pozostaje reszta 2. Reprezentacja stałopozycyjna liczb całkowitych. Zapis liczb ujemnych. Liczby całkowite ze znakiem są pamiętane w słowach n-bitowych. Ustalmy n=8.
10 Nieujemna liczba całkowita jest pamiętana jako znak i moduł liczby zapisany w systemie dwójkowym. Powyższe słowo reprezentuje liczbę 77. Natomiast jeśli liczba jest ujemna to istnieje kilka sposobów jej reprezentacji: 1. znak-moduł: wygodny dla człowieka, ale przy operacjach arytmetycznych trzeba porównywać znaki i 0 ma dwie reprezentacje ('dodatnią' i 'ujemną'). 2. znak-uzupełnienie do 1: ta reprezentacja jest mniej wygodna dla człowieka i w niej też 0 ma dwie reprezentacje. To, że 0 ma dwie reprezentacje nie jest tylko sprawą estetyki. Gdy jeden obiekt ma równe reprezentacje, sprawdzenie równości dwóch obiektów staje się niepotrzebnie skomplikowana procedurą. 3. znak-uzupełnienie do 2: ta reprezentacja jest jeszcze mniej wygodna dla człowieka ale w niej 0 (i każda inna reprezentowana liczba) ma tylko jedną reprezentację, ponadto operacje arytmetyczne są wykonywane w prosty sposób. Ze względu na przytoczone powyżej zalety zajmiemy się bliżej sposobem reprezentacji liczb jako znak-uzupełnienie do 2. Ten jest w praktyce używany do reprezentacji liczb całkowitych w komputerach. Uzupełnienie do 1 liczb całkowitych otrzymujemy negując wszystkie bity. x = u1 = Uzupełnienie do 2 liczb całkowitych otrzymujemy negując wszystkie bity i dodając 1. Dla x jak wyżej uzupełnienie do 2 liczby x jest równe:
11 x = u1 = Reprezentacja liczb całkowitych w systemie znak uzupełnienie do 2 (n = 8): dla 0 x 127
12 dla -128 x -1 (80) (-48) Reprezentując liczby w systemie znak - uzupełnienie do 2, przy dodawaniu nie trzeba zwracać uwagi na znak liczby. Wyniki otrzymujemy poprawne i dokładne o ile argumenty i wartości mają swoje reprezentacje jako słowa n-bitowe w systemie znak - uzupełnienie do 2. Zmiana znaku uzupełnienia do 2 liczby (łącznie z bitem znaku) w zapisie n - bitowym:
13 (26) (-26) Dodawanie dwóch liczb w systemie znak uzupełnienie do 2. Dodajemy liczby łącznie z bitem znaku i ewentualne przeniesienie pomijamy. Wynik reprezentuje sumę w systemie znak - uzupełnienie do 2: x = (24) y = ( ) 10 x + y = ( ) 10 Aby umożliwić również zapis liczb ułamkowych, musimy rozszerzyć wagi pozycji w stronę ujemnych potęg podstawy. Część ułamkową
14 oddzielimy od części całkowitej zapisu za pomocą znaku przecinka. waga p n-1 p 2 p 1 p 0, p -1 p -2 p -m cyfry a n-1 a 2 a 1 a 0, a -1 a -2 a -m Wbrew pozorom obliczenie wartości tak zapisanej liczby wcale nie jest trudniejsze. Zasada nie zmienia się i musimy sumować kolejne iloczyny wartości cyfr przez wartości wag pozycji. Obliczenia rozpoczynamy od pierwszej pozycji po prawej stronie. a n-1... a 2 a 1 a 0 a -1 a a -m = a -m p -m a -2 p -2 + a 0 p 0 + a 1 p 1 +a 2 p a n-1 p n-1 W przypadku liczb binarnych p=2. Przykład Obliczyć wartość liczby dwójkowej (11101,011) 2 (11101,011) 2 = 1 * * * * * * * * 2 4 (11101,011) 2 = 1 * 1/8 + 1 * 1/4 + 0 * 1/2 + 1 * * * * * 16 (11101,011) 2 = 1/8 + 1/ (11101,011) 2 = 29 3/8 = 29,375 Zamiana ułamka dziesiętnego na wartość binarną Metoda zamiany jest dwuetapowa. Najpierw zamieniana jest część całkowita ułamka. Wtedy stosuje się cykliczne dzielenie przez 2 i sprawdzanie reszty z dzielenia. Następnie zamienia się część ułamkową. Zamiana polega na cyklicznym mnożeniu ułamka razy 2 i sprawdzaniu, czy wynik nie jest większy lub równy 1. Jeżeli jest >= 1 to wyznaczony bit części ułamkowej jest także równy jeden. Do dalszych obliczeń bierze się część ułamkową wyniku. Czasem zamiana części ułamkowej na postać binarną prowadzi do osiągnięcia nieskończenie długiej kombinacji zer i jedynek. Dlatego zawsze należy przyjąć dodatkowy warunek - ile bitów jest przeznaczone na zapis części ułamkowej. Obliczenia wykonuje się wtedy dotąd, aż osiągnie się potrzebną liczbę bitów.
15 Zamienić liczbę 12 14/20 na postać binarną 8-bitową, gdzie przecinek jest po czterech bitach (4b,4b) /20 = 12,7 stąd: (12,7) 10 = (1100,1011) 2 Zapis zmiennopozycyjny Z zapisem zmiennoprzecinkowym można spotkać się w przypadkach, gdzie przy jego pomocy przedstawia się albo bardzo duże wartości, albo bardzo małe. Zapis ten nazywa się często notacją naukową, np.:
16 Gwiazda Proxima Centauri znajduje się w odległości [km], czyli 9,4608 * Masa elektronu wynosi m e = 0, [g], czyli 9,1095 * [g] Liczba zapisana w systemie zmiennoprzecinkowym składa się z dwóch części: liczby stałoprzecinkowej, której wartość bezwzględna jest mniejsza od wartości podstawy systemu pozycyjnego oraz z podstawy podniesionej do pewnej potęgi zwanej wykładnikiem lub cechą. Wartość liczby jest równa iloczynowi części stałoprzecinkowej i wykładniczej: w = m * p e, m - mantysa, p - podstawa systemu, e - wykładnik potęgowy. Obliczanie wartości dwójkowej liczby zmiennoprzecinkowej Przyjmijmy następujące ustalenia. Dwójkowa liczba zmiennoprzecinkowa zbudowana jest z dwóch części: z mantysy m i wykładnika potęgowego e (zwanego również cechą). Ponieważ podstawa systemu liczenia jest znana i wynosi 2, więc nie ma potrzeby umieszczać jej w zapisie liczby. Mantysa m jest liczbą stałoprzecinkową na moduł mniejszą od 1. Wykładnik e jest liczbą całkowitą. Obie części mogą być zapisane np. w kodzie U2 lub kodzie ZM. Wartość liczby liczymy wg wzoru: w = m * 2 e Obliczenia Niech wykładnik zbudowany będzie z n bitów. Ponieważ jest to liczba całkowita, więc jej wartość obliczamy w poznany wcześniej sposób: czyli zgodny z zapisem dla liczb w kodzie U2 Mantysa ma być ułamkiem mniejszym na moduł od 1. Jeśli jest zbudowana z m bitów, to waga najstarszego bitu wynosi w kodzie U2-2 0, czyli
17 -1. Następna pozycja ma wagę 2-1, czyli 1/2, itd. Rozpiszmy to następująco: m = a n-1, a n-2 a n-3...a 2 a 1 a 0 = a n-1 (-2 0 ) + a n a n a 2 2 -n+3 + a 1 2 -n+2 + a 0 2 -n+1 Dla przykładowej, 4-bitowej mantysy wzór ten przyjmie następującą postać: m = a 3, a 2 a 1 a 0 = a 3 (-2 0 ) + a a a m = a 3, a 2 a 1 a 0 = a 3 * -1 + a 2 * 1/2 + a 1 * 1/4 + a 0 * 1/8 m = a 3, a 2 a 1 a 0 = - a 3 + a 2 / 2 + a 1 / 4 + a 0 / 8 Liczba 8-bitowa, po 4 bity na mantysę i wykładnik ZP =...? D Najpierw wydobywamy z liczby wykładnik e i mantysę m: e m Teraz obliczamy kolejno wartość wykładnika i mantysy: e = 0011 U2 = 0 * (-8) + 0 * * * 1 e = 0011 U2 = e = 0011 U2 = 3 D m = 0,111 U2 = /2 + 1/4 + 1/8 m = 0,111 U2 = 1/2 + 1/4 + 1/8 m = 0,111 U2 = 4/8 + 2/8 + 1/8 m = 0,111 U2 = 7/8
18 Mając e i m, podstawiamy do wzoru i otrzymujemy ZP = 7 D Obliczanie reprezentacji zmiennoprzecinkowej Mamy określony format zapisu liczby zmiennoprzecinkowej w systemie dwójkowym. Wiemy, że wykładnik ma zawierać n - bitów w kodzie U2, a cecha m bitów w zapisie stałoprzecinkowym U2. Przykład prostego systemu zmiennoprzecinkowego, w którym wykładnik i cecha mają po 4 bity długości. Przykładową liczbą niech będzie wartość 56: 56 D = B = U2 - dodajemy zero, aby zaznaczyć, iż jest to liczba dodatnia. Zapiszemy wzór obliczeniowy, a następnie będziemy przesuwać w prawo cyfry mantysy dodając jednocześnie 1 do wykładnika, aż znacząca jedynka znajdzie się na pozycji o wadze 1/ ,000 U2 =2 0000U ,000 U2 =2 0001U2 - przesuwamy cyfry mantysy w prawo, zwiększamy wykładnik 01110,000 U2 =2 0010U2 0111,000 U2 =2 0011U2 011,100 U2 =2 0100U2 01,110 U2 =2 0101U2 0,111 U2 =2 0110U2 - kończymy, mantysa jest znormalizowana Otrzymujemy więc: e = 0110 = 6 D m = 0,111 = 7/8, sprawdzamy: 7/8 x 2 6 = 448/8 = 56
19 Obliczenia dla liczby 254: (254) 10 = ( ) 2 = ( ) u , = przesuwamy o 8 miejsc (8) 10 = (1000) 2 stąd: m = 0, e = 1000 sprawdzamy: (½ + ¼ + 1/8 + 1/16 + 1/32 + 1/64 + 1/128) * 2 8 = (127/128) * 256 = 254.
Operacje arytmetyczne
PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik
Bardziej szczegółowoSystemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoSYSTEMY LICZBOWE. Zapis w systemie dziesiętnym
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoPrzedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
Bardziej szczegółowoB.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
Bardziej szczegółowo3.3.1. Metoda znak-moduł (ZM)
3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym
Bardziej szczegółowoARYTMETYKA KOMPUTERA
006 URZĄDZENIA TECHNIKI KOMPUTEROWEJ ARYTMETYKA KOMPUTERA Systemy liczbowe o róŝnych podstawach 1 UTK System dziesiętny Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Liczba 764.5 oznacza 7 * 10 2 + 6 * 10 1 + 4
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoSYSTEMY LICZBOWE 275,538 =
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoSystemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoWprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Bardziej szczegółowoZestaw 3. - Zapis liczb binarnych ze znakiem 1
Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b
Bardziej szczegółowoKod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Bardziej szczegółowoARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoSystem Liczbowe. Szesnastkowy ( heksadecymalny)
SYSTEMY LICZBOWE 1 System Liczbowe Dwójkowy ( binarny) Szesnastkowy ( heksadecymalny) Ósemkowy ( oktalny) Dziesiętny ( decymalny) 2 System dziesiętny Symbol Wartość w systemie Liczba 6 6 *10 0 sześć 65
Bardziej szczegółowoPracownia Komputerowa wyk ad IV
Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
Bardziej szczegółowoKod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Bardziej szczegółowo2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoUrządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):
1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu
Bardziej szczegółowoArytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Bardziej szczegółowo1259 (10) = 1 * * * * 100 = 1 * * * *1
Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując
Bardziej szczegółowoPodstawy Informatyki dla Nauczyciela
Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja
Bardziej szczegółowoARCHITEKTURA KOMPUTERÓW Systemy liczbowe
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoRODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.
RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA
Bardziej szczegółowoPracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Bardziej szczegółowoSystemem liczenia systemach addytywnych !!" Pozycyjny system liczbowy podstawą systemu pozycyjnego
Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Podstawą systemów liczenia są systemy liczbowe
Bardziej szczegółowoDr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30
Bardziej szczegółowoOperacje arytmetyczne w systemie dwójkowym
Artykuł pobrano ze strony eioba.pl Operacje arytmetyczne w systemie dwójkowym Zasady arytmetyki w systemie binarnym są identyczne (prawie) jak w dobrze nam znanym systemie dziesiętnym. Zaletą arytmetyki
Bardziej szczegółowoSystemy liczbowe używane w technice komputerowej
Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.
Bardziej szczegółowoARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe
ARCHITEKTURA KOMPUTERÓW 17.11.2010 Liczby zmiennoprzecinkowe Sprawa bardzo podobna jak w systemie dziesiętnym po przecinku mamy kolejno 10-tki do ujemnych potęg, a w systemie binarnym mamy 2-ki w ujemnych
Bardziej szczegółowoPodstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoWstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Bardziej szczegółowoDYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE
ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków
Bardziej szczegółowoPozycyjny system liczbowy
Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
Bardziej szczegółowoArytmetyka binarna - wykład 6
SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2
Bardziej szczegółowoLiczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:
Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
Bardziej szczegółowo1. Operacje logiczne A B A OR B
1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne
Bardziej szczegółowoZnaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000
SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości
Bardziej szczegółowoARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
Bardziej szczegółowoPracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
Bardziej szczegółowoDane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
Bardziej szczegółowoL6.1 Systemy liczenia stosowane w informatyce
L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał
Bardziej szczegółowoTeoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Bardziej szczegółowoStan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
Bardziej szczegółowo12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:
PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej
Bardziej szczegółowoLuty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Bardziej szczegółowoModuł 2 Zastosowanie systemów liczbowych w informacji cyfrowej
Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoNaturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Bardziej szczegółowoĆwiczenie nr 1: Systemy liczbowe
Ćwiczenie nr 1: Systemy liczbowe Barbara Łukawska, Adam Krechowicz, Tomasz Michno Podstawowym systemem liczbowym uŝywanym na co dzień jest system dziesiętny. Podstawą tego systemu jest 10 cyfr 0, 1, 2,
Bardziej szczegółowoPracownia Komputerowa wyk ad VI
Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite
Bardziej szczegółowoTechnologie Informacyjne Wykład 4
Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część
Bardziej szczegółowoPodstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Bardziej szczegółowoSystemem liczenia systemach addytywnych !!" Pozycyjny system liczbowy podstawą systemu pozycyjnego
Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Podstawą systemów liczenia są systemy liczbowe
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej
Bardziej szczegółowoSYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M
SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...
Bardziej szczegółowoArytmetyka stałopozycyjna
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.
Bardziej szczegółowoWstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoJednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).
Wykład 1 1-1 Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Bardziej szczegółowoProjekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowoPodstawy Systemów Liczbowych
HTTP://WWW.HAKERZY.NET 001 Krzysztof Kryczka Podstawy Systemów Liczbowych Wersja: 1.0 Będzin, dn. 03-11-2010 r. Copyright by Krzysztof Kryczka (gsystem) Data: 03.11.2010 Wydanie I Darmowy poradnik, dostarczony
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoInstrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory
Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Poniżej pozwoliłem sobie za cytować za wikipedią definicję zmiennej w informatyce.
Bardziej szczegółowoDZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (
Bardziej szczegółowoSystemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz
PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego
Bardziej szczegółowoTechniki multimedialne
Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo
Bardziej szczegółowoDane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Bardziej szczegółowoDla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego
Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia
Bardziej szczegółowoarchitektura komputerów w. 2
architektura komputerów w. 2 Wiadomości i kody Wiadomości (Informacje) dyskretne ciągłe Kod - zbiór ciągów kodowych oraz reguła przyporządkowania ich wiadomościom. Ciąg kodowy - sygnał mający postać ciągu
Bardziej szczegółowoReprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej
Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne
Bardziej szczegółowoJęzyki i metodyka programowania. Reprezentacja danych w systemach komputerowych
Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Bardziej szczegółowoSystemy liczbowe. 1. System liczbowy dziesiętny
Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga
Bardziej szczegółowoDodawanie liczb binarnych
1.2. Działania na liczbach binarnych Liczby binarne umożliwiają wykonywanie operacji arytmetycznych (ang. arithmetic operations on binary numbers), takich jak suma, różnica, iloczyn i iloraz. Arytmetyką
Bardziej szczegółowoPodstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze
Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoArytmetyka. Arytmetyka. Magdalena Lemańska. Magdalena Lemańska,
Arytmetyka Magdalena Lemańska System dziesiętny System dziesiętny Weźmy liczbę 178. Składa się ona z jednej setki, siedmiu dziesiątek i ośmiu jedności. System dziesiętny System dziesiętny Weźmy liczbę
Bardziej szczegółowoPodstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze
Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowo