Zapis liczb binarnych ze znakiem

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zapis liczb binarnych ze znakiem"

Transkrypt

1 Zapis liczb binarnych ze znakiem

2 W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2)

3 Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang. SM Signed Magnitude) jest najbardziej zbliżony do systemu zapisu liczb używanego przez nas samych. Liczba ZM składa się z dwóch części - bitu znaku oraz bitów wartości liczby (modułu): b n-1 b n-2 b n-3... b 2 b 1 b 0 b n-1 - bit znaku liczby b n-3... b 0 - bity modułu liczby Dla liczb dodatnich i zera bit znaku ma wartość 0, dla liczb ujemnych i zera ma wartość 1. Format zapisu ZM musi być ściśle ustalony, aby wiadomo było, który bit jest bitem znaku - w operacjach arytmetycznych bit znaku musimy traktować inaczej niż inne bity.

4 Wartość dziesiętna liczby w zapisie ZM Moduł liczby ZM jest zapisany w naturalnym kodzie dwójkowym NBC, zatem w celu obliczenia jej wartości moduł mnożymy przez 1, gdy bit znaku wynosi 0 lub przez -1, gdy bit znaku wynosi 1. Wzór jest następujący: L ZM = (-1) bit znaku x moduł liczby Rozpisując poszczególne bity otrzymujemy: b n-1 b n-2...b 2 b 1 b 0 = (-1)b n-1 (b n-2 2 n b b b ) gdzie b - bit, cyfra dwójkowa 0 lub 1 n - liczba bitów w zapisie liczby

5 Przykład 1 Obliczyć wartość dziesiętną liczby (ZM). Pierwszy bit zapisu ZM jest bitem znaku. Wartość 1 informuje nas, iż jest to liczba ujemna. Pozostałe bity tworzą wartość liczby. Moduł jest zapisany w naturalnym systemie dwójkowym, zatem: (ZM) = (-1) 1 ( ) (ZM) = - ( ) (ZM) = - 55 (10)

6 Przykład 2 Obliczyć wartość dziesiętną liczby (ZM). Bit znaku ma wartość 0, zatem jest to liczba dodatnia. Wartość tej liczby jest równa wartości jej modułu zapisanego w naturalnym kodzie dwójkowym (ZM) = (-1) 0 ( ) (ZM) = ( ) (ZM) = 31 (10)

7 Procedura wyznaczania zapisu ZM liczby dziesiętnej 1. Jeśli liczba jest dodatnia, to bit znaku ma wartość 0. W przeciwnym razie bit znaku ma wartość Obliczamy wartość absolutną liczby, czyli jej moduł. 3. Wyznaczamy bity modułu 4. Otrzymane bity modułu uzupełniamy w miarę potrzeby bitami o wartości 0, aby otrzymać ustaloną w formacie liczbę bitów dla modułu. 5. Do bitów modułu dodajemy bit znaku i otrzymujemy zapis ZM.

8 Przykład Przedstawić w 8-mio bitowym kodzie ZM liczbę o wartości dziesiętnej -9. Wyznaczamy bit znaku. Liczba -9 jest ujemna, zatem b 7 = 1 (najstarszy bit). Wartość absolutna z -9 to 9 (po prostu opuszcza się znak -). Obliczamy zapis dwójkowy modułu 9 (10) = 1001 (2). Moduł 8-mio bitowej liczby ZM składa się z 7 bitów, zatem do otrzymanego wyniku dodajemy trzy początkowe zera otrzymując Łączymy bit znaku 1 z bitami modułu i dostajemy zapis ZM liczby -9 (10) = (ZM)

9 Zakres liczb w zapisie ZM Zadanie polega na znalezieniu najmniejszej i największej wartości liczby, którą da się przedstawić w danym zapisie ZM. Łatwo zauważyć, że w obu przypadkach moduł musi mieć wartość maksymalną, a bit znaku 1 dla wartości najmniejszej i 0 dla wartości największej. Ponieważ moduł jest zapisany w naturalnym kodzie dwójkowym NBC, jego wartość jest równa maksymalnej wartości n-1 bitowej liczby dwójkowej. Dla n bitów otrzymujemy: min (ZM) = 1b n-2 b n-3...b 2 b 1 b 0 = (-1) (b n-2 2 n-2 + b n-3 2 n b b b ) = -2 n max (ZM) = 0b n-2 b n-3...b 2 b 1 b 0 = 1 (b n-2 2 n-2 + b n-3 2 n b b b ) = 2 n-1-1

10 Zakres liczby w zapisie ZM Zakres n bitowej liczby w kodzie ZM wynosi Z (ZM) = <-2 n-1 + 1, 2 n-1-1>

11 Zapis U1 Drugim podejściem do rozwiązania problemu liczb ze znakiem jest system uzupełnień do 1 zwany systemem U1 (ang. 1C - One's Complement). W systemie tym wszystkie bity zapisu liczby posiadają swoje wagi (w ZM bit znaku nie posiadał wagi). Najstarszy bit jest bitem znaku i ma wagę równą (-2 n-1 +1), gdzie n oznacza ilość bitów w zapisie liczby. Pozostałe bity posiadają wagi takie jak w naturalnym systemie dwójkowym

12 Wartość dziesiętna liczby w zapisie U1 Wartość liczby U1 obliczamy zgodnie z poznanymi zasadami - cyfry mnożymy przez wagi pozycji, na których się znajdują i dodajemy otrzymane iloczyny: b n-1 b n-2 b n-3...b 2 b 1 b 0 (U1) = b n-1 (-2 n-1 +1) + b n-2 2 n-2 + b n-3 2 n b b b gdzie: b - bit, cyfra dwójkowa 0 lub 1 n - liczba bitów w zapisie liczby

13 Przeliczanie liczb dziesiętnych na zapis U1 Jeśli liczba jest dodatnia, to najstarszy bit znakowy posiada wartość 0. Pozostałe bity służą do zapisu liczby w naturalnym kodzie binarnym: 0111 (U1) = 7 (10), 0001 (U1) = 1 (10), (U1) = 127 (10) Jeśli liczba jest ujemna, to najstarszy bit znakowy ma wartość 1. Pozostałe bity są negacjami bitów modułu wartości liczby: 1101 (U1) = (-2) (10) : moduł 2 (10) = 010 (2) : NOT 010 = (U1) = (-3) (10) : moduł 3 (10) = 011 (2) : NOT 011 = (U1) = (-5) (10) : moduł 5 (10) = 101 (2) : NOT 101 = 010

14 Procedura wyznaczania zapisu U1 dla liczby dziesiętnej 1.Jeśli liczba jest dodatnia, znajdujemy jej reprezentację w naturalnym kodzie binarnym i uzupełniamy bitami o wartości 0 do uzyskania zadanej liczby bitów wymaganej przez przyjęty format zapisu U1. 2.Jeśli liczba jest ujemna, obliczamy jej moduł. Moduł przedstawiamy w naturalnym systemie dwójkowym uzupełniając go bitami o wartości 0 do długości przyjętego formatu U1. Następnie wszystkie bity zamieniamy na przeciwne i w wyniku otrzymujemy zapis U1.

15 Przykład 1 Wyznaczyć 8-mio bitowy zapis U1 liczby dziesiętnej 76. Liczba 76 jest dodatnia, zatem wyznaczamy jej zapis w naturalnym systemie dwójkowym: 76 (10) = (2) Otrzymaną liczbę dwójkową uzupełniamy bitami o wartości 0 do długości formatu otrzymując: 76 (10) = (U1)

16 Przykład 2 Wyznaczyć 8-mio bitowy zapis U1 liczby dziesiętnej (-113). Liczba (-113) jest ujemna. Jej moduł wynosi 113. Wyznaczamy zapis dwójkowy modułu: 113 (10) = (2) Otrzymany zapis uzupełniamy bitami 0 do długości 8 bitów. Następnie negujemy wszystkie bity i otrzymujemy w ten sposób zapis U1 liczby -113: -113 (10) = NOT = (U1).

17 Zakres liczb w zapisie U1 Liczba U1 przyjmuje wartość największą dla bitu znaku równego 0 i pozostałych bitów równych 1. Ponieważ pozostałe bity przedstawiają w tym przypadku liczbę n-1 bitową w naturalnym kodzie dwójkowym, to dla n bitowego kodu U1 otrzymujemy: max (U1) = 2 n-1-1. Najmniejszą wartość liczba U1 przyjmuje dla bitu znakowego równego 1 (waga ujemna) i pozostałych bitów równych 0. Ponieważ w tym przypadku do wagi bitu znakowego nic nie dodajemy, otrzymujemy: min (U1) = -2 n-1 + 1

18 Zakres liczb w zapisie U1 Zakres n bitowej liczby w kodzie U1 wynosi Z (U1) = (-2 n-1 + 1, 2 n-1-1) Zakres ten jest identyczny z zakresem liczb w kodzie ZM.

19 Zapis U2 Zapis U1 posiada kilka niedogodności (arytmetyka zmieniamy wagę bitu znakowego z (-2 n-1 + 1) na (-2 n-1 ), gdzie n oznacza ilość bitów w formacie kodu. Wagi stają się teraz jednorodne - bit znakowy posiada wagę ujemną, lecz o wartości bezwzględnej takiej samej jak w naturalnym kodzie dwójkowym. Nowy kod nosi nazwę uzupełnień do podstawy 2 lub w skrócie U2 (ang. 2C - Two's Complement). 19

20 Wartość dziesiętna liczby w zapisie U2 Wartość liczby U2 obliczamy zgodnie z poznanymi zasadami - cyfry mnożymy przez wagi pozycji, na których się znajdują i dodajemy otrzymane iloczyny. Waga bitu znakowego jest ujemna. b n-1 b n-2 b n-3...b 2 b 1 b 0 (U2) = b n-1 (-2 n-1 ) + b n-2 2 n-2 + b n-3 2 n b b b gdzie b - bit, cyfra dwójkowa 0 lub 1 n - liczba bitów w zapisie liczby

21 Przykład Najstarszy bit określa znak liczby. Jeśli jest równy 0, liczba jest dodatnia i resztę zapisu możemy potraktować jak liczbę w naturalnym kodzie dwójkowym (U2) = = 107(10). Jeśli bit znaku ustawiony jest na 1, to liczba ma wartość ujemną. Bit znaku ma wagę (-2n-1), gdzie n oznacza liczbę bitów w wybranym formacie U2. Reszta bitów jest zwykłą liczbą w naturalnym kodzie dwójkowym. Wagę bitu znakowego i wartość pozostałych bitów sumujemy otrzymując wartość liczby U2: (U2) = (-27) = = (- 21)(10). Zwróć uwagę, iż postać ujemna liczby U2 nie jest już tak czytelna dla nas jak w przypadku kodów ZM (tylko zmiana bitu znaku) i U1 (negacja wszystkich bitów).

22 przeliczanie ujemnej liczby dziesiętnej na zapis U2 sposób 1 Liczba ujemna musi mieć ustawiony na 1 bit znaku. Zatem nasze zadanie sprowadza się do znalezienia wartości pozostałych bitów. Bit znaku stoi na pozycji o wadze (-2 n-1 ), n - ilość bitów w formacie U2. Pozostałe bity zapisu liczby tworzą naturalny od dwójkowy. Wartość tego kodu musi być taka, aby po dodaniu jej do wagi pozycji znakowej otrzymać wartość kodowanej liczby. Zapiszmy to w formie równania: kodowana liczba = waga bitu znakowego + wartość kodu pozostałych bitów kodowana liczba = (-2 n-1 ) + wartość kodu pozostałych bitów stąd wartość kodu pozostałych bitów = 2 n-1 + kodowana liczba Po wyznaczeniu wartości tego kodu tworzymy jego zapis w systemie dwójkowym, uzupełniamy w miarę potrzeby bitem 0 do długości formatu U2-1 i dodajemy bit znakowy 1. Konwersja jest gotowa

23 Przykład Wyznaczyć 8-mio bitowy kod U2 dla liczby dziesiętnej (-45) (10). Wyznaczamy moduł wagi pozycji znakowej. Dla n = 8, 2 n-1 = 2 7 = 128 wartość kodu pozostałych bitów = (-45) = 83 = (2) Dodajemy bit znaku równy 1 i otrzymujemy: (-45) (10) =

24 przeliczanie ujemnej liczby dziesiętnej na zapis U2 sposób 2 Jeśli do liczby 2 n (n - ilość bitów w formacie U2) dodamy przetwarzaną liczbę dziesiętną, to w wyniku otrzymamy wartość kodu dwójkowego równoważnego bitowo (tzn. o takiej samej postaci) kodowi U2 przetwarzanej liczby. Wynik dodawania wystarczy zapisać w postaci naturalnego kodu dwójkowego i konwersja jest zakończona.

25 Przykład Wyznaczyć 8-mio bitowy kod U2 dla liczby dziesiętnej (-45). (10) (-45) = = 211 = (2) Stąd (-45) = (10) (U2)

26 Zakres liczb w zapisie U2 Największa liczba U2 powstaje dla bitu znaku równego 0, a pozostałych bitów równych 1. Ponieważ pozostałe bity przedstawiają wartość w naturalnym kodzie binarnym i jest ich n-1, to max (U2) = 2 n-1-1 Z kolei najmniejszą wartość liczby U2 otrzymamy dla bitu znaku równego 1, a pozostałych bitów równych 0. W tym przypadku wartość liczby jest równa wadze pozycji znakowej, czyli min (U2) = (-2 n-1 )

27 Zakres liczb w zapisie U2 Zakres n bitowej liczby w kodzie U2 wynosi Z (U2) = (-2 n-1, 2 n-1-1) W porównaniu z systemami ZM i U1, zakres liczb U2 jest niesymetryczny - liczb ujemnych jest o jedną więcej niż liczb dodatnich

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Wprowadzenie do informatyki ćwiczenia

Wprowadzenie do informatyki ćwiczenia Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Podstawy Systemów Liczbowych

Podstawy Systemów Liczbowych HTTP://WWW.HAKERZY.NET 001 Krzysztof Kryczka Podstawy Systemów Liczbowych Wersja: 1.0 Będzin, dn. 03-11-2010 r. Copyright by Krzysztof Kryczka (gsystem) Data: 03.11.2010 Wydanie I Darmowy poradnik, dostarczony

Bardziej szczegółowo

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy Wstęp doinformatyki Systemy liczbowe i arytmetyka komputerów Dr inż. Ignacy Pardyka kademia Świętokrzyska Kielce, System dziesiętny Liczba: 5= *+5*+* - każdą z cyfr mnożymy przez tzw. wagę pozycji, która

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych 4. Arytmetyka procesorów 16-bitowych stałoprzecinkowych Liczby stałoprzecinkowe Podstawowym zastosowaniem procesora sygnałowego jest przetwarzanie, w czasie rzeczywistym, ciągu próbek wejściowych w ciąg

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych:

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych: Zmienna i typ Pascal typy danych Zmienna to obiekt, który może przybierać różne wartości. Typ zmiennej to zakres wartości, które może przybierać zmienna. Deklarujemy je w nagłówku poprzedzając słowem kluczowym

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka) SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Komputerowa reprezentacja znaków i liczb dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Plan wykładu Reprezentacja informacji w systemie komputerowym Podstawowe jednostki informacji

Bardziej szczegółowo

UKŁADY MIKROPROCESOROWE

UKŁADY MIKROPROCESOROWE UKŁADY MIKROPROCESOROWE Kodowanie informacji i systemy liczbowe OPRACOWANIE KŁ MALBORK WPROWADZENIE 1. Pojęcia podstawowe: Czym zajmuje się elektronika? Informacja Sygnał Uproszczona klasyfikacja układów

Bardziej szczegółowo

Lista 1 liczby rzeczywiste.

Lista 1 liczby rzeczywiste. Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki

Bardziej szczegółowo

Zestaw ten opiera się na pakietach co oznacza, że dane podczas wysyłania są dzielone na niewielkie porcje. Wojciech Śleziak

Zestaw ten opiera się na pakietach co oznacza, że dane podczas wysyłania są dzielone na niewielkie porcje. Wojciech Śleziak Protokół TCP/IP Protokół TCP/IP (Transmission Control Protokol/Internet Protokol) to zestaw trzech protokołów: IP (Internet Protokol), TCP (Transmission Control Protokol), UDP (Universal Datagram Protokol).

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/7 Język C Instrukcja laboratoryjna Temat: Wprowadzenie do języka C 2 Przygotował: mgr inż. Maciej Lasota 1) Wprowadzenie do języka C. Język C jest językiem programowania ogólnego zastosowania

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 1 Temat ćwiczenia: Adresacja w sieciach komputerowych podstawowe

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę EGZAMIN MATURALNY Z INORMATYKI MIN-R1_1-092 MAJ ROK 2009 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST TEST. Test składa się z 35 zadań. Na jego rozwiązanie masz 90 minut. W każdym zadaniu wybierz jedną, najlepszą według Ciebie odpowiedź i zaznacz na karcie odpowiedzi znakiem x. Do dyspozycji masz wszystkie

Bardziej szczegółowo

1. System pozycyjny zapisu liczb

1. System pozycyjny zapisu liczb W.K.: Kody i liczby 1. System pozycyjny zapisu liczb Oznaczenia: R - podstawa pozycyjnego systemu liczenia (liczba naturalna) L - wartość liczby a i - cyfra ; a i {0,1,.., R-1} Zapis liczby (łańcuch cyfr):

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Struktura i działanie jednostki centralnej

Struktura i działanie jednostki centralnej Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Pracownia komputerowa. Dariusz Wardecki, wyk. VIII

Pracownia komputerowa. Dariusz Wardecki, wyk. VIII Pracownia komputerowa Dariusz Wardecki, wyk. VIII Powtórzenie Podaj wartość liczby przy następującej reprezentacji zmiennoprzecinkowej (Kc = 7) Z C C C C M M M 1 0 1 1 1 1 1 0-1.75 (dec) Rafa J. Wysocki

Bardziej szczegółowo

----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------- Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji

Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji dr Tomasz Ordysiński ordych@wneiz.pl tomaszordysinski.pl Podstawowe

Bardziej szczegółowo

Kodowanie informacji. Elementy teorii informacji.

Kodowanie informacji. Elementy teorii informacji. Wyk lad 1 Kodowanie informacji. Elementy teorii informacji. Kontakt Zak lad Chemii Teoretycznej, p. 4 makowskm@chemia.uj.edu.pl tel. 663 20 28 Rozk lad jazdy Kodowanie informacji, elementy teorii informacji

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Python wstęp do programowania dla użytkowników WCSS

Python wstęp do programowania dla użytkowników WCSS Python wstęp do programowania dla użytkowników WCSS Dr inż. Krzysztof Berezowski Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej Wprowadzenie CHARAKTERYSTYKA JĘZYKA Filozofia języka

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko Jednostki miar stosowane w sieciach komputerowych mgr inż. Krzysztof Szałajko Jednostki wielkości pamięci Jednostka Definicja Przykład Bit (b) 0 lub 1 Włączony / wyłączony Bajt (B) = 8 b Litera w kodzie

Bardziej szczegółowo

ZMIERZYĆ SIĘ Z KALKULATOREM

ZMIERZYĆ SIĘ Z KALKULATOREM ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Adresacja IPv4 - podstawy

Adresacja IPv4 - podstawy Adresacja IPv4 - podstawy LAN LAN... MAN... LAN Internet Internet = sieć sieci Problem jak adresować urządzenia w takiej sieci? 1 Budowa adresu IP rozmiar adresu IP: 4 bajty (32 bity) Adres IP jest hierarchiczny

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

- Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej.

- Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej. Reprezentacja danych Różne sposoby przechowywana danych w komputerze - Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej. - Z punktu widzenia systemu KAŻDA

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Strumienie, pliki. Sortowanie. Wyjątki.

Strumienie, pliki. Sortowanie. Wyjątki. Strumienie, pliki. Sortowanie. Wyjątki. Operacje I/O w Javie Serializacja Zapisuje całą klasę Plik binarny Delimiter nieokreślony Nie da się podglądać Pliki tekstowe Zapisuje wybrane informacje Plik tekstowy

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA Poziomy wymagań edukacyjnych : KONIECZNY (K) - OCENA DOPUSZCZAJĄCA, PODSTAWOWY( P) - OCENA DOSTATECZNA, ROZSZERZAJĄCY(R) - OCENA DOBRA, DOPEŁNIAJĄCY (D) - OCENA BARDZO DOBRA WYKRACZAJACY(W) OCENA CELUJĄCA.

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

I. LICZBY I DZIAŁANIA

I. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA PIERWSZA GIMNAZJUM I. LICZBY I DZIAŁANIA 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej. 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne. 3. Umie

Bardziej szczegółowo

do instrukcja while (wyrażenie);

do instrukcja while (wyrażenie); Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie

Bardziej szczegółowo

Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym

Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym S t r o n a 1 Bożena Ignatowska Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym Wprowadzenie W artykule zostaną omówione zagadnienia związane z wykorzystaniem funkcji tekstowych w arkuszu

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

Laboratorium Sieci Komputerowe

Laboratorium Sieci Komputerowe Laboratorium Sieci Komputerowe Adresowanie IP Mirosław Juszczak 9 października 2014 Mirosław Juszczak 1 Sieci Komputerowe Na początek: 1. Jak powstaje standard? 2. Co to są dokumenty RFC...??? (czego np.

Bardziej szczegółowo

Przegląd podstawowych funkcji Excel.

Przegląd podstawowych funkcji Excel. Przegląd podstawowych funkcji Excel. Spis treści I. Funkcje tekstu oraz pomocnicze... 1 1. FRAGMENT.TEKSTU(tekst;liczba_początkowa;liczba_znaków... 1 2. LEWY(tekst;liczba_znaków)... 2 3. Prawy (tekst;liczba_znaków)...

Bardziej szczegółowo

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2013/2014 TEST

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2013/2014 TEST TEST. Test składa się z 30 zadań. Na jego rozwiązanie masz 90 minut. W każdym zadaniu wybierz jedną, najlepszą według Ciebie odpowiedź. Do dyspozycji masz wszystkie aplikacje zainstalowane na Twoim komputerze,

Bardziej szczegółowo

1. Reprezentacja danych w komputerze

1. Reprezentacja danych w komputerze 1. Reprezentacja danych w komputerze 1.1 Sekwencje bitów W komputerze dane reprezentowane s przez sekwencje bitów cyfry liczbowego systemu binarnego. Te sekwencje bitów interpretowane s w terminach wewntrznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

Ćwiczenie 3. Konwersja liczb binarnych

Ćwiczenie 3. Konwersja liczb binarnych 1 Laboratorium Architektury Komputerów Ćwiczenie 3 Konwersja liczb binarnych Komputery wykonują operacje przetwarzania danych na wartościach binarnych, podczas gdy współczesna cywilizacja posługuje się

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Na ocenę dopuszczającą uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

PL/SQL. Funkcje wbudowane

PL/SQL. Funkcje wbudowane Slajd 1 PL/SQL Opis funkcji SQL PL/SQL(funkcje SQL) M. Rakowski - WSISiZ 1 Slajd 2 Funkcje wbudowane Funkcje wbudowane mają za zadanie umożliwić bardziej zaawansowane operowanie danymi. Funkcje operacji

Bardziej szczegółowo

FUNKCJE TEKSTOWE W MS EXCEL

FUNKCJE TEKSTOWE W MS EXCEL FUNKCJE TEKSTOWE W MS EXCEL ASC W językach korzystających z dwubajtowego zestawu znaków (DBCS) zmienia znaki o pełnej szerokości (dwubajtowe) na znaki o połówkowej szerokości (jednobajtowe). : ASC(tekst)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza

Bardziej szczegółowo

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej Obliczenia w systemach resztowych [Song Y. Yan] Przykład: obliczanie z = x + y = 123684 + 413456 na komputerze przyjmującym słowa o długości 100 Obliczamy kongruencje: x 33 (mod 99), y 32 (mod 99), x 8

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo