Pozycyjny system liczbowy

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pozycyjny system liczbowy"

Transkrypt

1 Arytmetyka binarna

2 Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w systemie dziesiętnym posługujemy się dziesięcioma cyframi, znakami plus i minus oraz przecinkiem określającym pozycję dziesiętna; pozycja poszczególnych cyfr w liczbie określa jaki mnożnik musi zostać zastosowany 27 =

3 Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w systemie dziesiętnym posługujemy się dziesięcioma cyframi, znakami plus i minus oraz przecinkiem określającym pozycję dziesiętna; pozycja poszczególnych cyfr w liczbie określa jaki mnożnik musi zostać zastosowany 27 = czyli dowolną liczbę dodatnią można zapisać jako: n a i i i= dodanie minusa umożliwia reprezentowanie zarówno wartości dodatnich, jak i ujemnych po przecinku umieszczana jest część ułamkowa: mnożnik pierwszej wartości po przecinku wynosi, drugiej 2, itd. system dziesiętny pozwala na dokładną reprezentację dowolnej liczby całkowitej, nie jest to jednak możliwe w przypadku ułamków, które możemy jedynie zapisywać z arbitralnie określoną dokładnością

4 Pozycyjny system liczbowy system pozycyjny o podstawie nie jest oczywiście jedynym możliwym systemem pozycyjnym n cyfrową liczbę całkowitą dodatnią w systemie o podstawie B można zapisać w postaci: n a i B i i= wybór podstawy systemu jest ograniczony faktem, że w systemie o podstawie B do zapisu wartości konieczne jest B symboli, z drugiej strony potrzebne są co najmniej dwa znaki, gdyż jeden z nich () pełni funkcję wypełniacza (placeholder) w informatyce liczby najczęściej wyrażane są w systemie o podstawie dwa, osiem, bądź szesnaście

5 System dwójkowy system pozycyjny o podstawie 2 nazywany jest systemem dwójkowym (binarnym) do zapisu wartości stosowane są dwa symbole i cyfry w systemie dwójkowym nazywane są bitami (bits binary digits) wartość na pozycji n liczby dwójkowej przemnażana jest przez 2 n = =

6 Przechowywanie informacji w postaci bitów na pojedynczym bicie można zapisać dwie (dowolne) wartości, i na n bitach (pozycjach) liczby dwójkowej można zapisać 2 n różnych wartości, największa równa jest 2 n na jednym bajcie (ośmiu bitach), można zapisać 2 8 = 256 różnych wartości, ale ponieważ jedna z nich musi reprezentować zero największą możliwą liczbą jest 2 8 = 255 w komputerze liczby zapisywane są jako słowa o ustalonym rozmiarze, oznacza to, że każda liczba binarna musi mieć taką samą liczbę bitów; w przypadku wartości całkowitych jest to zapewnione przez uzupełnienie liczby zerami z lewej strony

7 Niektóre cechy liczb binarnych jeżeli bit zerowy (skrajny prawy) liczby całkowitej jest zerem, liczba jest parzysta ( - nieparzysta) przesunięcie wszystkich bitów liczby o jedno miejsce w lewo powoduje pomnożenie liczby przez 2 przysunięcie wszystkich bitów liczby bez znaku w prawo o jedno miejsce oznacza podzielenie tej liczby przez dwa (dla ujemnych ta reguła nie działa); liczby nieparzyste po podzieleniu zaokrąglane są w dół negacja wszystkich bitów liczby binarnej jest równoważna wzięciu przeciwieństwa liczby i odjęciu od wyniku jedynki zwiększenie o jeden największej możliwej do zapisania na danej liczbie bitów wartości bez znaku daje zero zmniejszenie zera o jeden daje największą możliwą liczbę bez znaku

8 Zamiana liczb zapisanych w systemie dziesiętnym na dwójkowy znajdujemy największą potęgę liczby dwa mniejszą niż liczba, którą zamieniamy; dla zamienianej liczby dziesiętnej D, takiej że 2 n+ > D > 2 n, jej reprezentacja binarna będzie zapisana na n + bitach i skrajny lewy bit będzie równy od liczby D odejmujemy 2 n i zapamiętujemy wynik R dla każdej potęgi dwójki od 2 n do 2, jeżeli jest ona mniejsza lub równa R, na odpowiadającej jej pozycji w liczbie dwójkowej zapisujemy jedynkę, a potęgę dwójki odejmujemy od R, w przeciwnym wypadku w odpowiedniej pozycji wpisujemy zero

9 Zamiana liczb zapisanych w systemie dziesiętnym na dwójkowy znajdujemy największą potęgę liczby dwa mniejszą niż liczba, którą zamieniamy; dla zamienianej liczby dziesiętnej D, takiej że 2 n+ > D > 2 n, jej reprezentacja binarna będzie zapisana na n + bitach i skrajny lewy bit będzie równy od liczby D odejmujemy 2 n i zapamiętujemy wynik R dla każdej potęgi dwójki od 2 n do 2, jeżeli jest ona mniejsza lub równa R, na odpowiadającej jej pozycji w liczbie dwójkowej zapisujemy jedynkę, a potęgę dwójki odejmujemy od R, w przeciwnym wypadku w odpowiedniej pozycji wpisujemy zero przykład < = > > > < = < = 2 > 2 >

10 Reprezentacja binarna liczby zapisanej w systemie dziesiętnym 3 / 2 = 6 r. 6 / 2 = 3 r. 3 / 2 = r. / 2 = r.

11 Przejście z reprezentacji binarnej do reprezentacji dziesiętnej WAGA x 2 = x 2 = 2 x 2 = 4 x 2 3 = 8 3

12 Ułamki w reprezentacji binarnej. WAGA x 2 3= /8 x 2 2= x 2 = /2 x 2 = x 2 = x 2 2 = 4 55/ 8

13 System szesnastkowy (heksadecymalny) w przypadku systemu szesnastkowego do zapisu liczby koniecznych jest szesnaście symboli, stosuje się dziesięć cyfr,, 2, 3, 4, 5, 6, 7, 8 i 9 oraz litery A, B, C, D, E i F symbole od do 9 mają takie same wartości jak w systemie dziesiętnym natomiast ich mnożniki pozycyjne są inne pozostałym symbolom odpowiadają wartości: A -, B -, C - 2, D - 3, E - 4 i F - 5 każda cyfra systemu szesnastkowego odpowiada jednej z możliwych kombinacji czterech cyfr systemu dwójkowego 2-owy 6-owy -tny owy 6-owy -tny A B C 2 D 3 E 4 F 5 cztery cyfry systemu szesnastkowego pozwalają na zapisanie takiej samej wartości jak szesnaście cyfr systemu binarnego

14 Zamiana liczb zapisanych w systemie szesnastkowym na dwójkowy i odwrotnie 6 2: dla każdej cyfry systemu szesnastkowego należy napisać cztery cyfry dwójkowe reprezentujące tą samą wartość, np.: 4C = 2 i C 6 = : liczbę binarną należy podzielić na grupy po cztery bity zaczynając od prawej strony, jeżeli w ostatniej grupie znalazły się mniej niż cztery bity należy ją uzupełnić zerami z lewej strony (jeżeli liczba binarna zawiera kropkę dziesiętną podziału należy dokonać od prawej do lewej dla części całkowitej i od lewej do prawej dla części ułamkowej); tak otrzymanym grupom należy przypisać równoważne cyfry szesnastkowe, np.: 2 3D 6

15 System ósemkowy w systemie ósemkowym do zapisu liczby stosowanych jest osiem symboli:,, 2, 3, 4, 5, 6 i 7 symbole mają takie same wartości jak w systemie dziesiętnym, a ich mnożniki pozycyjne są potęgami liczby osiem każda cyfra systemu ósemkowego odpowiada jednej z możliwych kombinacji trzech cyfr systemu dwójkowego 2-owy 8-owy -tny

16 Zamiana liczb zapisanych w systemie ósemkowym na dwójkowy i odwrotnie 8 2: dla każdej cyfry systemu ósemkowego należy napisać trzy cyfry dwójkowe reprezentujące tą samą wartość, np.: = = 2 i 4 8 = : liczbę binarną należy podzielić na grupy po trzy bity zaczynając od prawej strony, np.: 2 4 8

17 Dodawanie liczb w systemie binarnym

18 Przykład +

19 Dodawanie liczb w systemie binarnym A B C i S C o A B C i S C o gdzie: A i B dodawane wartości, C i - przeniesienie z poprzedniej kolumny, S - suma, C o - przeniesienie jeżeli wszystkie trzy bity są zerami suma i przeniesienie wynoszą zero jeżeli którykolwiek z dodawanych bitów jest jedynką, a dwa pozostałe są zerami, suma wynosi jeden, a przeniesienie zero jeżeli dwa bity są jedynkami suma wynosi zero i pojawia się niezerowa wartość przeniesienia jeżeli wszystkie trzy bity są jedynkami zarówno suma, jak i przeniesienie wynoszą jeden

20 Odejmowanie liczb w systemie dwójkowym *

21 Przykład

22 Mnożenie liczb w systemie dwójkowym x x x x

23 Przykład x +

24 Dzielenie liczb w systemie dwójkowym :

25 Wartości ujemne w systemie dwójkowym, gdzie stosowane są dwie cyfry, wygodnie jest stosować jedną z nich dla oznaczenia wartości dodatnich a drugą dla oznaczenia wartości ujemnych skrajny lewy bit wykorzystywany jest jako bit znaku, gdzie zero oznacza wartość dodatnią a jeden wartość ujemną problem dwóch zer ( i ) eliminowany jest przez system uzupełnieniowy do dwóch; wartości dodatnie są traktowane jak wartości całkowite bez znaku, natomiast w przypadku wartości ujemnych bit znaku reprezentuje potęgę liczby dwa odpowiadającą swojej pozycji w liczbie wziętą ze znakiem minus a pozostałe bity są traktowane jak wartości dodatnie, np: ( ) system uzupełnieniowy do dwóch jest niesymetryczny względem zera, dla dowolnego rozmiaru liczby dwójkowej wartości ujemnych jest o jeden więcej niż wartości dodatnich (dla dowolnej liczby dwójkowej liczba możliwych kombinacji bitów jest zawsze liczbą parzystą), a ponieważ chcemy aby zero było reprezentowane przez ciąg składający się z samych zer nie ma możliwości aby było inaczej liczby w systemie uzupełnieniowym do dwóch mogą być rozszerzone przez powtórzenie bitu znaku po lewej stronie (jeżeli istnieje konieczność zapisania ich na określonej długości ciągu)

26 Notacja uzupełnieniowa do dwóch wartość liczby w systemie uzupełnieniowym do dwóch otrzymywana jest przez dodawanie do dużej liczby ujemnej (o wartości wynikającej z liczby użytych bitów) odpowiednich potęg dwójki: n 2 2 n a n + a i 2 i istnieje prosta metoda tworzenia wartości w tym systemie: i= należy utworzyć ciąg uzupełnień analizowanej liczby przez negację każdego bitu ( i ) do otrzymanego ciągu należy dodać jedynkę (jak dla operacji bez znaku)

27 Notacja uzupełnieniowa do dwóch wartość liczby w systemie uzupełnieniowym do dwóch otrzymywana jest przez dodawanie do dużej liczby ujemnej (o wartości wynikającej z liczby użytych bitów) odpowiednich potęg dwójki: n 2 2 n a n + a i 2 i istnieje prosta metoda tworzenia wartości w tym systemie: i= należy utworzyć ciąg uzupełnień analizowanej liczby przez negację każdego bitu ( i ) do otrzymanego ciągu należy dodać jedynkę (jak dla operacji bez znaku) np.: oryginalna wartość 87 każdy bit jest odwrócony + dodajemy wartość wyjściowa 87

28 Notacja uzupełnieniowa do dwóch ( + ) 2 2 bit znaku ( ) bit znaku 8

29 Liczby ze znakiem Na n bitach można zapisać wartości ze znakiem od 2 n do +2 n czyli: bajt od 28 do bitów od do bity od do

30 Przepełnienie (overflow) rozmiar wartości, na których dokonywane są obliczenia zależy od architektury komputera niezależnie od architektury istnieje maksymalna możliwa wartość niezależnie od architektury mamy do czynienia ze skończoną precyzją obliczeń zawsze też będzie się pojawiał problem przepełnienia, czyli przekroczenia zakresu reprezentowanych wartości (jeżeli posługiwalibyśmy się trzycyfrowym systemem dziesiętnym, to moglibyśmy np. zapisać w nim wartości i 3 oraz otrzymać poprawną wartość ich sumy, ale w przypadku wartości 5 i 7 ich suma nie jest możliwa do zapisania na trzech pozycjach) przepełnienie nie może wystąpić przy dodawaniu dwóch liczb o przeciwnych znakach przepełnienie może się pojawić np. przy dodawaniu dwóch wartości dodatnich lub dwóch wartości ujemnych (zapisanych w notacji uzupełnieniowej do dwóch), z przepełnieniem mamy do czynienia jeżeli doszło do zmiany znaku (kontrola może być dokonana poprzez bit znaku)

31 Przepełnienie Może się okazać, że prawa łączności i przemienności działań niekoniecznie są spełnione:

32 Przepełnienie Może się okazać, że prawa łączności i przemienności działań niekoniecznie są spełnione: a + (b c) = (a + b) c jeżeli np. a = 7, b = 4 i c = 3 lewa strona wyrażenia zwraca poprawny wynik 8, natomiast po prawej stronie pojawia się przepełnienie: (7 + 4) = czyli wartość, której nie da się zapisać na trzech pozycjach

33 Przepełnienie Może się okazać, że prawa łączności i przemienności działań niekoniecznie są spełnione: a + (b c) = (a + b) c jeżeli np. a = 7, b = 4 i c = 3 lewa strona wyrażenia zwraca poprawny wynik 8, natomiast po prawej stronie pojawia się przepełnienie: (7 + 4) = czyli wartość, której nie da się zapisać na trzech pozycjach a (b c) = a b a c jeżeli np. a = 5, b = 2 i c = 95 lewa strona wyrażenia zwraca poprawny wynik 75, natomiast po prawej stronie pojawia się przepełnienie: (5 2) = 5

34 Przepełnienie - brak odwracalności przykład dla języka C char x=26; printf( %d\n,x); char y=x<<2; printf( %d\n,y); char z=y>>2; printf( %d\n,z); S S S

35 Przepełnienie - brak odwracalności przykład dla języka C char x=26; printf( %d\n,x); char y=x<<2; printf( %d\n,y); char z=y>>2; printf( %d\n,z); S S S

36 Przepełnienie - brak odwracalności przykład dla języka C char x=26; printf( %d\n,x); char y=x<<2; printf( %d\n,y); char z=y>>2; printf( %d\n,z); S S S

37 Przepełnienie - brak odwracalności przykład dla języka C char x=26; printf( %d\n,x); char y=x<<2; printf( %d\n,y); char z=y>>2; printf( %d\n,z); S S S <<

38 Przepełnienie - brak odwracalności przykład dla języka C char x=26; printf( %d\n,x); char y=x<<2; printf( %d\n,y); char z=y>>2; printf( %d\n,z); S S S << >>

39 Dodawanie/odejmowanie w notacji uzupełnieniowej do dwóch

40 Mnożenie liczb dodatnich bez znaku w notacji uzupełnieniowej do dwóch jeżeli skrajny prawy bit mnożnika jest równy jeden kopia mnożnej daje wkład do wyniku dla każdej kolejnej cyfry mnożnika przesuwamy mnożną o jedną cyfrę w lewo algorytm kończy się po przejściu przez wszystkie cyfry mnożnika sumujemy otrzymane wartości

41 Mnożenie liczb dodatnich bez znaku w notacji uzupełnieniowej do dwóch jeżeli skrajny prawy bit mnożnika jest równy jeden kopia mnożnej daje wkład do wyniku dla każdej kolejnej cyfry mnożnika przesuwamy mnożną o jedną cyfrę w lewo algorytm kończy się po przejściu przez wszystkie cyfry mnożnika sumujemy otrzymane wartości mnożna (7 ) mnożnik (5 ) pierwszy częściowy iloczyn drugi częściowy iloczyn trzeci częściowy iloczyn czwarty częściowy iloczyn wynikowy iloczyn (35 )

42 Mnożenie liczb w notacji uzupełnieniowej do dwóch - algorytm Bootha Oznaczmy przez m mnożną zapisaną na x bitach, r - mnożnik zapisany na y bitach, P - wynik mnożenia oraz dwie wielkości pomocnicze A i S. P, A i S muszą mieć rozmiar x + y +. określamy wartości A i S oraz wartość początkową P A najbardziej znaczące bity rejestru wypełniamy wartościami m, pozostałe uzupełniamy zerami S najbardziej znaczące bity rejestru wypełniamy wartościami m w notacji uzupełnieniowej do dwóch, pozostałe uzupełniamy zerami P x najbardziej znaczących bitów wypełniamy zerami, następnie wpisujemy wartości r, pozostałe bity uzupełniamy zerami 2. jeżeli dwa najmniej znaczące bity P wynoszą obliczamy P + A (ignorujemy przepełnienie) obliczamy P + S (ignorujemy przepełnienie) lub pozostawiamy P bez zmian 3. dla wartości otrzymanej w kroku 2 dokonujemy przesunięcia arytmetycznego o jedno miejsce w prawo, otrzymany wynik przypisujemy do P 4. powtarzany kroki 2 i 3 y razy 5. usuwamy najmniej znaczący bit

43 Przykład: m = 3 r = 4 x = 4 y = 4 A (m) S ( m) P (r). P = najmniej znaczące bity wynoszą więc dokonujemy tylko przesunięcia arytmetycznego w prawo (bit najstarszy jest powielany) P = 2. P = najmniej znaczące bity wynoszą więc dokonujemy tylko przesunięcia arytmetycznego w prawo P = 3. P = najmniej znaczące bity wynoszą więc wykonujemy P + S a potem przesunięcie + = 4. P = najmniej znaczące bity wynoszą więc dokonujemy tylko przesunięcia arytmetycznego w prawo P = WYNIK: P ( 2)

44 Liczby zmiennoprzecinkowe notacja naukowa: n = f e gdzie: f - ułamek, e wykładnik zarówno f, jak i e mogą być ujemne jeżeli f jest ujemne liczba n jest ujemna jeżeli e jest ujemne liczba n jest mniejsza od jeden ideą notacji naukowej jest oddzielenie cyfr znaczących (f ) od rzędu wielkości (e)

45 Liczby zmiennoprzecinkowe notacja naukowa: n = f e gdzie: f - ułamek, e wykładnik zarówno f, jak i e mogą być ujemne jeżeli f jest ujemne liczba n jest ujemna jeżeli e jest ujemne liczba n jest mniejsza od jeden ideą notacji naukowej jest oddzielenie cyfr znaczących (f ) od rzędu wielkości (e) ta sama idea jest wykorzystywana w przypadku zapisu liczb zmiennoprzecinkowych, dzięki temu możliwy jest zapis wartości z bardzo szerokiego zakresu z akceptowalną dokładnością obecnie obowiązuje standard IEEE 754 zapisu wartości zmiennoprzecinkowych (IEEE Institute of Electrical and Electronic Engineers) część ułamkowa zapisywana jest w notacji dwójkowej, natomiast wykładnik jest potęgą dwójki

46 Notacja zmiennopozycyjna BAJT pole wykladnika bit znaku pole czesci ulamkowej mantysa W przypadku liczby o pojedynczej (podwójnej) precyzji: bit znak ( wartość nieujemna, - wartość ujemna) 8() bitów wykładnik zapisywany jako liczba ze znakiem w notacji z nadmiarem (jakim zależy od precyzji) 23(52) bity ułamek Zakres wartości jest rzędu ± 38 ± 38 (± 38 ± 38 )

47 Normalizacja wartości każdą wartość można zapisać stosując różne wartości w części ułamkowej dobierając odpowiedni wykładnik mając jednak do czynienia z zapisem wartości na określonej i stałej liczbie pozycji zera poprzedzające daną wartość powodują utratę precyzji aby tego uniknąć wartości zmiennoprzecinkowe zapisywane są w taki sposób, że skrajny lewy bit nie może być zerem; tak zapisana wartość jest liczbą znormalizowaną jeżeli wiadomo, że najbardziej lewy bit jest równy jeden nie ma konieczności zapisywania go dzięki czemu zyskuje się dodatkowy znak

48 Notacja zmiennopozycyjna między dwiema liczbami całkowitymi istnieje nieskończenie wiele wartości rzeczywistych, a więc do ich dokładnego zapisu potrzebnych byłoby nieskończenie wiele bitów istnieje szereg wartości, które nie mogą być zapisane w systemie liczba zero jest zapisywana dokładnie z definicji liczby dodatnie, mieszczą się w zakresie od 2 26 do 2 27, dla liczb większych mamy do czynienia z przepełnieniem dodatnim liczby ujemne, mieszczą się w zakresie od 2 27 do 2 26, dla liczb mniejszych mamy do czynienia z przepełnieniem ujemnym oznacza to, że istnieją wartości bliskie zera, których nie można zapisać; najmniejsza wartość dodatnia w znormalizowanej formie wynosi (niedomiar dodatni), analogiczna sytuacja ma miejsce dla wartości ujemnych w standardzie IEEE wartości bliskie zeru nie są normalizowane, dzięki czemu wykładnik może być równy zero, domyślna jedynka na lewej skrajnej pozycji części ułamkowej może być równa zero i mogą się pojawić poprzedzające zera

49 Notacja zmiennopozycyjna kolejność obliczeń może wpływać na dokładność wyniku mnożenie - dodaje się wykładniki i mnoży mantysy dzielenie - odejmuje się wykładniki i dzieli mantysy przy wykonywaniu ciągu obliczeń obejmującego dodawanie, odejmowanie, mnożenie i dzielenie, w pierwszej kolejności (o ile to możliwe) należy wykonać mnożenie i dzielenie (wpływ na dokładność) w celu sprawdzenia równości dwóch liczb zmiennopozycyjnych należy ustalić czy różnica pomiędzy nimi jest mniejsza od najmniejszego dopuszczalnego błędu

50 Inne dopuszczalne wartości ± liczba, w której zarówno wykładnik, jak i ułamek reprezentuje wartość zerową ± liczba, w której wykładnik składa się z samych jedynek, a ułamek z zer NaN liczba, w której wykładnik składa się z samych jedynek, a ułamek jest niezerowy

51 Notacja z nadmiarem osiem ( + )

52 Notacja z nadmiarem cztery (z ciągami trzybitowymi) ( + )

53 Notacja zmiennopozycyjna pole wykladnika bit znaku pole czesci ulamkowej mantysa

54 Notacja zmiennopozycyjna. () 2 (2) (2) liczba nieujemna. (3) (4) (4). 2 3/ 4

55 Notacja zmiennopozycyjna / 8.?

56 Notacja zmiennopozycyjna 3 / 8. ZLE DOBRZE

57 Błędy zaokrąglenia 2 5/ 8. 2 / 2 nieujemna 2

58 Kolejność dodawania 2 / + 2 / 8 + / (2/ 2 ). (2/ 2 )

59 Kolejność dodawania / 8 + / / ( / 4 ). (2 3/ 4 )

60 Przykład x=.; while(+x>) x/=2; JAVA C PYTHON x.22e 6.22e 6.22e 6 MIN DOUBLE 4.9E e e 38

61 Przykład 2 double c=.39e7; double d=.2e-7; c+d=39,2

62 Przykład 2 double c=.39e7; double d=.2e-7; c+d=39,2 double e=.39e8; double f=.2e-8; e+f=39,

63 Przykład 2 double c=.39e7; double d=.2e-7; c+d=39,2 double e=.39e8; double f=.2e-8; e+f=39, double a=.39e4; double b=.2e-3; a+b=39,

64 Przykład 2 double c=.39e7; double d=.2e-7; c+d=39,2 double e=.39e8; double f=.2e-8; e+f=39, double a=.39e4; double b=.2e-3; a+b=39, double g=.39e8; double h=.2e8; g+h=259,

65 Przykład 3 Dana jest 32-bitowa wartość przedstawiona w postaci binarnej: Jaką wartość reprezentuje???

66 Przykład 3 Dana jest 32-bitowa wartość przedstawiona w postaci binarnej: Jaką wartość reprezentuje??? To zależy od interpretacji!!! Typ Wartość 32-bitowa liczba całkowita bitowa liczba całkowita i cztery znaki glob liczba zmiennoprzecinkowa

67 Przykład 3a int i; scanf( %d,&i); printf( i=%d\n,i); scanf( %lf,&i); printf( i=%d\n,i); printf( i=%lf\n,i);

68 Przykład 3a int i; scanf( %d,&i); 3 printf( i=%d\n,i); scanf( %lf,&i); 3 printf( i=%d\n,i); printf( i=%lf\n,i);

69 Przykład 3a int i; scanf( %d,&i); 3 printf( i=%d\n,i); i=3 scanf( %lf,&i); 3 printf( i=%d\n,i); printf( i=%lf\n,i);

70 Przykład 3a int i; scanf( %d,&i); 3 printf( i=%d\n,i); i=3 scanf( %lf,&i); 3 printf( i=%d\n,i); i= printf( i=%lf\n,i);

71 Przykład 3a int i; scanf( %d,&i); 3 printf( i=%d\n,i); i=3 scanf( %lf,&i); 3 printf( i=%d\n,i); i= printf( i=%lf\n,i); i=.

72 Kodowanie znaków Unicode 6.. pozwala na zapis znaków ze wszystkich pisanych języków świata, w tym ideogramów, a także innych znaków np. emotikonów

73 Kodowanie znaków Unicode 6.. pozwala na zapis znaków ze wszystkich pisanych języków świata, w tym ideogramów, a także innych znaków np. emotikonów np. \u27 \ub5 µ \ub ± \u5a Ś \u27fa

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Pracownia Komputerowa wykład VI

Pracownia Komputerowa wykład VI Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy

Bardziej szczegółowo

Podstawy Informatyki dla Nauczyciela

Podstawy Informatyki dla Nauczyciela Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW Systemy liczbowe

ARCHITEKTURA KOMPUTERÓW Systemy liczbowe ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

Cyfrowy zapis informacji

Cyfrowy zapis informacji F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Arytmetyka. Arytmetyka. Magdalena Lemańska. Magdalena Lemańska,

Arytmetyka. Arytmetyka. Magdalena Lemańska. Magdalena Lemańska, Arytmetyka Magdalena Lemańska System dziesiętny System dziesiętny Weźmy liczbę 178. Składa się ona z jednej setki, siedmiu dziesiątek i ośmiu jedności. System dziesiętny System dziesiętny Weźmy liczbę

Bardziej szczegółowo

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:

B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską: Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka

Bardziej szczegółowo

Systemem liczenia systemach addytywnych !!" Pozycyjny system liczbowy podstawą systemu pozycyjnego

Systemem liczenia systemach addytywnych !! Pozycyjny system liczbowy podstawą systemu pozycyjnego Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Podstawą systemów liczenia są systemy liczbowe

Bardziej szczegółowo

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

L6.1 Systemy liczenia stosowane w informatyce

L6.1 Systemy liczenia stosowane w informatyce L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał

Bardziej szczegółowo

Arytmetyka stało i zmiennoprzecinkowa

Arytmetyka stało i zmiennoprzecinkowa Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja

Bardziej szczegółowo

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles). Wykład 1 1-1 Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany

Bardziej szczegółowo

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego

Bardziej szczegółowo

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa. INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl

Bardziej szczegółowo

Systemem liczenia systemach addytywnych !!" Pozycyjny system liczbowy podstawą systemu pozycyjnego

Systemem liczenia systemach addytywnych !! Pozycyjny system liczbowy podstawą systemu pozycyjnego Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Podstawą systemów liczenia są systemy liczbowe

Bardziej szczegółowo

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Systemy liczbowe. 1. System liczbowy dziesiętny

Systemy liczbowe. 1. System liczbowy dziesiętny Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Prefiksy binarne. kibibit (Kibit) mebibit (Mibit) gibibit (Gibit) tebibit (Tibit) pebibit (Pibit) exbibit (Eibit) zebibit (Zibit) yobibit (Yibit)

Prefiksy binarne. kibibit (Kibit) mebibit (Mibit) gibibit (Gibit) tebibit (Tibit) pebibit (Pibit) exbibit (Eibit) zebibit (Zibit) yobibit (Yibit) Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

...o. 2. ZARYS ORGANIZACJI MASZYNY TYPOWEJ

...o. 2. ZARYS ORGANIZACJI MASZYNY TYPOWEJ 24 2 Zarys organizacji maszyny typowej 2 ZARYS ORGANIZACJI MASZYNY TYPOWEJ [2 Arytmetyka uzupełnieniowa; 22 Krótki opis maszyny typowcjj 23 Kod rozkazowy] 2 ARYTMETYKA UZUPEŁNIENIOWA 2 Zajmiemy się obecnie

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory

Bardziej szczegółowo

Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1

Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1 Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1 Bity i kody binarne Bit (binary digit) najmniejsza ilość informacji {0, 1}, wysokie/niskie napięcie

Bardziej szczegółowo

Dodatek do Wykładu 01: Kodowanie liczb w komputerze

Dodatek do Wykładu 01: Kodowanie liczb w komputerze Dodatek do Wykładu 01: Kodowanie liczb w komputerze [materiał ze strony: http://sigma.wsb-nlu.edu.pl/~szyszkin/] Wszelkie dane zapamiętywane przetwarzane przez komputery muszą być odpowiednio zakodowane.

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe

ARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe ARCHITEKTURA KOMPUTERÓW 17.11.2010 Liczby zmiennoprzecinkowe Sprawa bardzo podobna jak w systemie dziesiętnym po przecinku mamy kolejno 10-tki do ujemnych potęg, a w systemie binarnym mamy 2-ki w ujemnych

Bardziej szczegółowo

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Poniżej pozwoliłem sobie za cytować za wikipedią definicję zmiennej w informatyce.

Bardziej szczegółowo

BŁĘDY OBLICZEŃ NUMERYCZNYCH

BŁĘDY OBLICZEŃ NUMERYCZNYCH BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody

Bardziej szczegółowo

Ćwiczenie nr 1: Systemy liczbowe

Ćwiczenie nr 1: Systemy liczbowe Ćwiczenie nr 1: Systemy liczbowe Barbara Łukawska, Adam Krechowicz, Tomasz Michno Podstawowym systemem liczbowym uŝywanym na co dzień jest system dziesiętny. Podstawą tego systemu jest 10 cyfr 0, 1, 2,

Bardziej szczegółowo

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo