Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI"

Transkrypt

1 Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI

2 Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System dwójkowy (binarny) 2.2. System ósemkowy (oktalny) 2.3. System dziesiętny (decymalny) 2.4. System szesnastkowy (heksadecymalny) 3. Operacje arytmetyczne na liczbach binarnych 3.1. Dodawanie binarne 3.2. Odejmowanie binarne 3.3. Mnożenie binarne 3.4. Dzielenie binarne 4. Zapis liczby binarnej ze znakiem 4.1. Znak moduł ZM 4.2. Znak uzupełnienie do 1 ZU1 (U1) 4.3. Znak uzupełnienie do 2 ZU2 (U2)

3 Jednostki informacyjne Bit (w ang. kawałek, skrót od binary digit, czyli cyfra dwójkowa) najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych stanów przyjął układ. Jednostka logiczna. Jest to również najmniejsza jednostka informacji używana w odniesieniu do sprzętu komputerowego a oznaczana jest za pomocą b. Przeważnie stosuje się podstawowe przedrostki wielokrotności SI, czyli o mnożniku Bit przyjmuje jedną z dwóch wartości, które zwykle określa się jako 0(zero) i 1(jeden)

4 Ponieważ ilość informacji przetwarzanych przez współczesne komputery jest coraz większa, stosuje się wielokrotności bitu i bajtu: 8 bit (8 b)= 1 Bajt (B) 1 kilobit (1 kb)= bity (1 024 b) 1 kilobit na sekundę (1 kb/s)= bitów na sekundę (1 000 b/s) 1 kilobajt (1 kb)= bajty (1024 B) 1 megabajt (1MB)=1 024 kb= B 1 gigabajt (1GB)= MB= kb= B

5 Systemy liczbowe System liczbowy to inaczej zbiór reguł jednolitego zapisu i nazewnictwa liczb. Do zapisywania liczb zawsze używa się pewnego skończonego zbioru znaków, zwanych cyframi, które można zestawićze sobą na różne sposoby, otrzymując nieskończenie wiele kombinacji. Wyróżnia się następujące systemy liczbowe: Dwójkowy Ósemkowy Dziesiętny Szesnastkowy

6 System binarny System liczbowy dwójkowy- binarny- jest pozycyjnym systemem liczbowym, w którym podstawą jest liczba 2. Do zapisu liczb są więc potrzebne tylko dwie cyfry: 0 i 1. Liczby zapisuje się tu jako ciągi cyfr 0 i 1, z których każda jest mnożnikiem kolejnej potęgi podstawy systemu, czyli liczby 2. Używa się go powszechnie w elektronice cyfrowej, gdzie minimalizacja liczby stanów pozwala na zminimalizowanie przekłamań danych. Stąd system ten przyjął się także w informatyce.

7 Sposoby zapisywania liczb w systemie binarnym Zapisując liczbę w systemie binarnym należy zaznaczyć że jest to konkretny system przez dodanie dolnego indeksu np.: 11111(2) lub 11111(B). Jeśli jest to inny system opisuje się go odpowiednio umownymi znakami w ten sam sposób, co pozwala uniknąć ewentualnego błędu, gdyż na przykład liczba może występować w każdym systemie.

8 Zamiana liczby binarnej na dziesiętną: Sposób pierwszy polega na wybraniu odpowiednich liczb- wartości potęg liczby 2. Należy wybrać liczby w taki sposób, aby ich suma była równa wartości liczby przekształcanej. Sumowanie zaczynamy od liczby, która ma wartość najbardziej zbliżoną do wartości przekształcanej liczby. Jeżeli wybieramy daną wartość potęgi liczby 2, to stawiamy pod nią cyfrę 1 lub 0 w zależności czy kolejna potęga zmieści się w przekształcanej liczbie (1) czy nie (0).

9 Zamiana liczby binarnej na dziesiętną: Drugi sposób polega na kolejnym dzieleniu liczby przez 2. Jeżeli po dzieleniu zostaje reszta, to wpisujemy po prawej stronie 1, leżeli liczba dzieli się bez reszty wpisujemy 0.

10 Zamiana liczby binarnej na dziesiętną Należy wszystkie cyfry po kolei z każdej pozycji dodać pomnożone przez kolejnąpotęgęliczby 2. Zaczynając od ostatniej cyfry.

11 System ósemkowy-oktalny Ósemkowy-oktalny-system liczbowy jest pozycyjnym systemem liczbowym o podstawie 8. Do zapisu używa sięw nim ośmiu cyfr, od 0 do 7.

12 Zamiana liczby binarnej na oktalną Liczbę należy podzielićpo 3 bity, zaczynając od prawej strony. Następnie należy zamienićkażde otrzymane trzy cyfry systemu binarnego na odpowiadającąim jedną cyfręsystemu oktalnego. Przykład : (B) = 5462 (O)

13 Zamiana liczby decymalnej na oktalną Przeliczając system decymalny na oktalny wykonujemy takie same czynności jak podczas przeliczania na system binarny, z takąróżnicą, że dzielimy liczbę decymalną przez 8.

14 Zamiana liczby oktalnej na decymalną Przeliczając system oktalny na decymalny należy wszystkie cyfry po kolei z każdej pozycji dodać pomnożone przez kolejnąpotęgęliczby 8. Zaczynając od ostatniej cyfry.

15 System dziesiętny-decymalny System dziesiętny-decymalny-jest systemem liczbowym pozycyjnym, w którym podstawą pozycji sąkolejne potęgi liczby 10. Do zapisu jest potrzebne więc 10 cyfr od 0 do 9.

16 System szesnastkowyheksadecymalny System szesnastkowy- heksadecymalny- jest pozycyjnym systemem liczbowym, w którym podstawą pozycji SA kolejne potęgi liczby 16. Do zapisu liczb potrzebne jest 16 kolejnych znaków od 0 do 9, natomiast od 10 do 15 liczby oznaczane są kolejnymi liczbami alfabetu: A=10, B=11, C=12, D=13, E=14, F=15. System ten jest powszechnie stosowany w informatyce. Jak w każdym pozycyjnym systemie liczbowym, liczby zapisuje się jako ciąg cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby 16. Część całkowitą i ułamkową oddziela separator dziesiętny.

17 Zamiana liczby binarnej na heksadecymalną Przeliczając system binarny na heksadecymalny należy podzielić liczbę po 4 bity, zaczynając od prawej. Następnie należy Zamienic każde otrzymane cztery cyfry systemu binarnego na odpowiadającą im jedną cyfrę systemu heksadecymalnego.

18 Zamiana liczby decymalnej na heksadecymalną Przeliczając system decymalny na heksadecymalny, wykonujemy takie same czynności jak podczas przeliczania na system binarny i ósemkowy, ale dzielimy liczbę decymalną przez 16.

19 Zamiana liczby heksadecymalnej na decymalną Przeliczając system heksadecymalny na decymalny należy wszystkie cyfry po kolei z każdej pozycji dodać pomnożone przez kolejną potęgę liczby 16. Zaczynając od ostatniej cyfry.

20 Operacje arytmetyczne na liczbach binarnych: Dodawanie Aby dobrze wykonaćdodawanie niezbędna jest znajomość tabliczki dodawania, zwłaszcza wyniki dodawania każdej liczby z każdą. W systemie binarnym są tylko dwie cyfry 0 i 1, więc dodawanie jest bardzo proste i składa się tylko z 4 kombinacji.

21 Operacje arytmetyczne na liczbach binarnych: Odejmowanie Przy odejmowaniu należy skorzystaćz tabliczki odejmowania, która wygląda tak:

22 Odejmując 0-1, otrzymując wynik 1 i pożyczkę od następnej pozycji. Pożyczka oznacza konieczność odjęcia 1 do wyniku odejmowania cyfr w następnej kolumnie. Identycznie postępujemy w systemie dziesiętnym, lecz jest to o wiele bardziej skomplikowane. Załóżmy, że od liczb większych odejmujemy mniejsze.

23

24

25 Operacje arytmetyczne na liczbach Przy mnożeniu należy binarnych: Mnożenie skorzystać z tabeli mnożenia. Tabliczka mnożenia binarnego posłuży do tworzenia iloczynów cząstkowych cyfr mnożnej przez cyfry mnożnika. Iloczyny te następnie dodajemy według opisanych zasad i otrzymujemy wynik mnożenia.

26

27

28 Operacje arytmetyczne na liczbach binarnych: Dzielenie Dzielenie binarne jest najbardziej skomplikowanąoperacjąarytmetyczną. Polega na cyklicznym odejmowaniu odpowiednio przesuniętego dzielnika od dzielnej.

29 Porównujemy dzielnąz dzielnikiem. Jeżeli dzielna jest większa lub równa dzielnikowi, to odejmujemy od niej dzielnik. Nad kreskąna pozycji ostatniej cyfry dzielnika należy napisać 1. Jeżeli dzielna jest mniejsza od dzielnika, to nie należy wykonywaćodejmowania, lecz trzeba przesunąć dzielnik o 1 pozycję w prawo i powtórzyć opisane operacje. Jeśli w ogóle dzielnika nie da się odjąćod dzielnej, to wynik dzielenia wynosi 0, a dzielna ma w takim przypadku wartość reszty z dzielenia. W tym przykładzie odejmowanie to jest możliwe więc:

30 Dzielnik trzeba przesunąć o jeden bit w prawo i wykorzystać to samo z otrzymaną różnicą. Jeśli odejmowanie jest możliwe, to nad kreską w następnej kolumnie trzeba dopisać 1, odjąć dzielnik od różnicy, przesunąć go o 1 bit w prawo i kontynuować. Gdy odejmowanie nie jest możliwe trzeba dopisać nad kreską 0 i przesunąć dzielnik o 1 bit w prawo. Te działania należy kontynuować, aż ostatni bit dzielnika zrówna się z ostatnim bitem dzielnej.

31

32 Zapis liczby binarnej ze znakiem Zapis liczby binarnej ze znakiem wymaga co najmniej jednego dodatkowego bitu (bitu znaku). Metody zapisu: 1. Znak moduł- ZM 2. Uzupełnienia znaku jedności- U1 3. Uzupełnienia dwójkowego- U2

33 Znak moduł-zm Liczba ZM składa sięz dwóch części: bitów znaków i wartości modułu. (n-ilość bitów w zapisie liczby)

34 Dla liczb dodatnich i zera, bit znaku ma wartość 0 Dla liczb ujemnych i zera, bit znaku ma wartość 1 Moduł liczby, czyli ZM jest zapisany w naturalnym kodzie dwójkowym. Zatem w celu obliczenia jej wartości moduł mnożymy przez 1, gdy bit znaku wynosi 1.

35 2) Obliczamy wartość absolutną liczby, czyli jej moduł (wartość bezwzględną). 3) Wyznaczamy bity modułu (przeliczamy liczbę dziesiętną na system binarny). 4) Otrzymane bity modułu uzupełniamy w miarę potrzeby bitami o wartości 0, aby otrzymać ustaloną w formacie liczbę bitów dla modułu. 5) Do bitu modułu dodajemy bit znaku i otrzymujemy zapis ZM.

36 Uzupełnienia znaku jedności U1

37

38 Sposób przeliczania liczby dziesiętnej na U1: 1) Jeśli liczba jest dodatnia, znajdujemy jej reprezentację w naturalnym kodzie binarnym i uzupełniamy bitami w wartości 0 do uzyskania żądanej liczby litów. 2) Jeśli liczba jest ujemna obliczamy jej moduł. Przedstawiamy go w naturalnym systemie binarnym, uzupełniając go bitami o wartości 0, do długości przyjętego formatu U1, następnie wszystkie bity zamieniamy na przeciwne i otrzymujemy format zapisu U1.

39 Uzupełnienia dwójkowego-u2. Bit znakowy ma wartość -2n-1 wagi stają się teraz jednorazowe, bit znakowy posiada wagę ujemną lecz wartości bezwzględne takiej samej jak w naturalnym kodzie binarnym. Liczba jest dodatnia, gdy bit znaku ma wartość 0, suma pozostałych wag tworzy zawsze liczbę dodatnią lub 0. Jeżeli bit znaku przyjmuje wartość 1 to liczba jest ujemna. Wartość liczby U2 obliczamy zgodnie z wcześniej poznanymi zasadami- cyfry mnożymy przez wagi pozycji, na których się znajdują i dodajemy otrzymane iloczyny, waga bitu znakowego jest ujemna.

40

41 Przeliczanie liczby dziesiętnej na U2: 1) Dla liczb dodatnich należy znaleźć reprezentację trójkową danej wartości liczbowej a następnie uzupełnić ją bitami o wartości 0 do długości formatu kodu U2 2) Dla liczb ujemnych, jeśli do liczby 2n dodamy przetwarzaną liczbę dziesiętną, to w wyniku otrzymamy wartość kodu binarnego, równoważnego bitowo kodowi U2 przetwarzanej liczby. Wynik dodawania wystarczy zapisać w postaci naturalnego kodu binarnego.

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Systemy liczbowe. 1. System liczbowy dziesiętny

Systemy liczbowe. 1. System liczbowy dziesiętny Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Podstawy Systemów Liczbowych

Podstawy Systemów Liczbowych HTTP://WWW.HAKERZY.NET 001 Krzysztof Kryczka Podstawy Systemów Liczbowych Wersja: 1.0 Będzin, dn. 03-11-2010 r. Copyright by Krzysztof Kryczka (gsystem) Data: 03.11.2010 Wydanie I Darmowy poradnik, dostarczony

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Wprowadzenie do informatyki ćwiczenia

Wprowadzenie do informatyki ćwiczenia Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie

Bardziej szczegółowo

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko Jednostki miar stosowane w sieciach komputerowych mgr inż. Krzysztof Szałajko Jednostki wielkości pamięci Jednostka Definicja Przykład Bit (b) 0 lub 1 Włączony / wyłączony Bajt (B) = 8 b Litera w kodzie

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

ZAMIANA SYSTEMÓW LICZBOWYCH

ZAMIANA SYSTEMÓW LICZBOWYCH SZKOŁA PODSTAWOWA NR 109 IM. KORNELA MAKUSZYŃSKIEGO W KRAKOWIE UL. MACKIEWICZA 15; 31-214 KRAKÓW; TEL. 0 12 415 27 59 sp109krakow.w.w.interia.pl ; e-mail: sp109krakow@wp.pl; Krakowskie Młodzieżowe Towarzystwo

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

LICZENIE NA LICZYDLE

LICZENIE NA LICZYDLE www..pl LICZENIE NA LICZYDLE Liczydło polskie i zapis liczb Zaokrąglanie liczb na liczydle Dodawanie na liczydle Odejmowanie na liczydle Mnożenie na liczydle Dzielenie na liczydle Bibliografia LICZYDŁO

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka) SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Matematyka, kl. 5. Konieczne umiejętności

Matematyka, kl. 5. Konieczne umiejętności Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Komputerowa reprezentacja znaków i liczb dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Plan wykładu Reprezentacja informacji w systemie komputerowym Podstawowe jednostki informacji

Bardziej szczegółowo

ZMIERZYĆ SIĘ Z KALKULATOREM

ZMIERZYĆ SIĘ Z KALKULATOREM ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

Informacja. Informacja. Informacja. Informacja/wiadomość. Zbiór danych zebranych w celu ich przetworzenia i otrzymania wyników (nowych informacji).

Informacja. Informacja. Informacja. Informacja/wiadomość. Zbiór danych zebranych w celu ich przetworzenia i otrzymania wyników (nowych informacji). Informacja Informacja Czynnik, któremu człowiek może przypisać określony sens (znaczenie) w celu wykorzystania do różnych celów. Wszystko to, co może być zużytkowane do bardziej sprawnego wyboru działań

Bardziej szczegółowo

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm MATEMATYKA Spis treści 1 jednostki miar 2 wzory skróconego mnożenia 3 podzielność liczb 3 przedrostki 4 skala 4 liczby naturalne 5 ułamki zwykłe 9 ułamki dziesiętne 9 procenty 10 geometria i stereometria

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

Wstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl

Wstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Wstęp do Informatyki dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura 1. Brookshear, J. G. (2003). Informatyka w ogólnym zarysie. WNT, Warszawa. 3. Małecki, R. Arendt D. Bryszewski A. Krasiukianis

Bardziej szczegółowo

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Matematyka. Klasa IV

Matematyka. Klasa IV Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby

Bardziej szczegółowo

UKŁADY MIKROPROCESOROWE

UKŁADY MIKROPROCESOROWE UKŁADY MIKROPROCESOROWE Kodowanie informacji i systemy liczbowe OPRACOWANIE KŁ MALBORK WPROWADZENIE 1. Pojęcia podstawowe: Czym zajmuje się elektronika? Informacja Sygnał Uproszczona klasyfikacja układów

Bardziej szczegółowo

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby

Bardziej szczegółowo

Podstawy informatyki (2)

Podstawy informatyki (2) Informacje Podstawy informatyki (2) dr inż Sebastian Pluta pluta@icispczpl Instytut Informatyki Teoretycznej i Stosowanej informatyka to nauka o przetwarzaniu i przechowywaniu informacji informacja to:

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę EGZAMIN MATURALNY Z INORMATYKI MIN-R1_1-092 MAJ ROK 2009 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Technika cyfrowa Układy arytmetyczne

Technika cyfrowa Układy arytmetyczne Sławomir Kulesza Technika cyfrowa Układy arytmetyczne Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Układy arytmetyczne UKŁADY ARYTMETYCZNE UKŁADY SUMUJĄCE i ODEJMUJĄCE UKŁADY MNOŻĄCE

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu

Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu Programowanie strukturalne Opis ogólny programu w Turbo Pascalu STRUKTURA PROGRAMU W TURBO PASCALU Program nazwa; } nagłówek programu uses nazwy modułów; } blok deklaracji modułów const } blok deklaracji

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Podręcznik Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk

Podręcznik Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk Podręcznik Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk omawia treści ujęte w nowej podstawie programowej. Jest

Bardziej szczegółowo

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy Wstęp doinformatyki Systemy liczbowe i arytmetyka komputerów Dr inż. Ignacy Pardyka kademia Świętokrzyska Kielce, System dziesiętny Liczba: 5= *+5*+* - każdą z cyfr mnożymy przez tzw. wagę pozycji, która

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY

ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY Redaktor serii: Marek Jannasz Redakcja: Inga Linder-Kopiecka Korekta: Marek Kowalik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1P-091 PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ ROK 2009 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy

Bardziej szczegółowo

REPREZENTACJA DANYCH W PAMIĘCI

REPREZENTACJA DANYCH W PAMIĘCI B REPREZENTACJA DANYCH W PAMIĘCI Adam Sawicki Regedit sawickiap@poczta.onet.pl Jest 10 rodzajów ludzi ci, którzy rozumieją kod dwójkowy i ci, którzy go nie rozumieją. hakerskie ujęcie socjologii W tym

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

Ćwiczenie 3. Konwersja liczb binarnych

Ćwiczenie 3. Konwersja liczb binarnych 1 Laboratorium Architektury Komputerów Ćwiczenie 3 Konwersja liczb binarnych Komputery wykonują operacje przetwarzania danych na wartościach binarnych, podczas gdy współczesna cywilizacja posługuje się

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie dziesiątkowego systemu liczenia, rozumie pojęcie pozycyjnego

Bardziej szczegółowo

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych 4. Arytmetyka procesorów 16-bitowych stałoprzecinkowych Liczby stałoprzecinkowe Podstawowym zastosowaniem procesora sygnałowego jest przetwarzanie, w czasie rzeczywistym, ciągu próbek wejściowych w ciąg

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa VI

Wymagania programowe na poszczególne stopnie szkolne klasa VI Wymagania programowe na poszczególne stopnie szkolne klasa VI 6 5 4 3 2 LICZBY NATURALNE Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

Ułamki zwykłe. mgr Janusz Trzepizur

Ułamki zwykłe. mgr Janusz Trzepizur Ułamki zwykłe mgr Janusz Trzepizur Ułamek jako część całości W ułamku wyróżniamy licznik i mianownik. kreska ułamkowa licznik mianownik (czytamy: jedna druga) czyli połowa całości. Dwie takie połowy tworzą

Bardziej szczegółowo

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST TEST. Test składa się z 35 zadań. Na jego rozwiązanie masz 90 minut. W każdym zadaniu wybierz jedną, najlepszą według Ciebie odpowiedź i zaznacz na karcie odpowiedzi znakiem x. Do dyspozycji masz wszystkie

Bardziej szczegółowo

2 Zarówno zanonimizowany zbiór danych ilościowych, jak i opis jego struktury powinny mieć format csv:

2 Zarówno zanonimizowany zbiór danych ilościowych, jak i opis jego struktury powinny mieć format csv: Zbiór danych ilościowych: 1 Na każdą "bazę danych" składa się zanonimizowany zbiór danych ilościowych zebranych w badaniu oraz opis jego struktury (codebook). 2 Zarówno zanonimizowany zbiór danych ilościowych,

Bardziej szczegółowo

Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji

Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji dr Tomasz Ordysiński ordych@wneiz.pl tomaszordysinski.pl Podstawowe

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Kryteria oceniania na poszczególne stopnie z matematyki - klasa VI

Kryteria oceniania na poszczególne stopnie z matematyki - klasa VI Kryteria oceniania na poszczególne stopnie z matematyki - klasa VI Szkoła Podstawowa nr 9 w Mielcu Na ocenę DOPUSZCZAJĄCĄ uczeń: Oblicza różnice czasu, wymienia jednostki opisujące prędkość, drogę, czas.

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas

Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas Katalog wymagań na poszczególne oceny z matematyki dla kl. VI Program nauczania Matematyka wokół nas OCENA DOPUSZCZAJĄCA (wymagania na ocenę dopuszczającą są równoważne z minimum programowe dla klasy VI)

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie 5 Matematyka z plusem DKOW /08

Kryteria ocen z matematyki w klasie 5 Matematyka z plusem DKOW /08 Matematyka z plusem DKOW-5002-37/08 DZIAŁ LICZBY NATURALNE WŁASNOŚCI LICZB NATURALNYCH KONIECZNE ocena dopuszczająca rozumie dziesiątkowy system pozycyjny umie zapisywać i odczytywać liczby cyframi i słownie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Matematyka, kl. 6. Konieczne umiejętności

Matematyka, kl. 6. Konieczne umiejętności Matematyka, kl. 6 Liczby naturalne i ułamki Program Matematyka z plusem Odczytywanie liczb na osi liczbowej. Zapisywanie potęg w postaci iloczynu i obliczanie ich wartości. Sprawność rachunkowa w pisemnych

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

Matematyka, kl. 4. Uczeń:

Matematyka, kl. 4. Uczeń: Matematyka, kl. 4 Liczby i działania Program Matematyka z plusem Ocena Uczeń: Zna: pojęcia składnika, sumy, odjemnej, odjemnika, różnicy, czynnika, iloczynu, dzielnej, dzielenia, ilorazu, niewykonalność

Bardziej szczegółowo

konsultacje: dr inŝ. Jarosław Forenc Dydaktyka - slajdy prezentowane na wykładzie

konsultacje: dr inŝ. Jarosław Forenc Dydaktyka - slajdy prezentowane na wykładzie Rok akademicki /, Wykład nr /5 Dane podstawowe Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki / Wykład nr (7..) dr inż.

Bardziej szczegółowo

Technologia informacyjna w przykładach i ćwiczeniach

Technologia informacyjna w przykładach i ćwiczeniach Aleksander Bremer Mirosław Sławik Technologia informacyjna w przykładach i ćwiczeniach dla szkół ponadgimnazjalnych Konsultacja mgr inż. Krzysztof Bobowski Redakcja i korekta Jadwiga Kwiecień Projekt okładki

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo