Architektura komputerów

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Architektura komputerów"

Transkrypt

1 Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią, nowoczesna oferta edukacyjna i wzmacniania zdolności do zatrudniania osób niepełnosprawnych Zadanie nr 30 Dostosowanie kierunku Elektronika i Telekomunikacja do potrzeb rynku pracy i gospodarki opartej na wiedzy Łódź, ul. Żeromskiego 116, tel

2 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Notacje systemy zapisu liczb Dane, które są przetwarzane w systemach komputerowych, zawierają cyfry, znaki alfabetu łacińskiego i znaki ze znakami diakrytycznymi ( narodowe np. polskie: ą, ś,ń, ) oraz znaki specjalne, #, +, *, Najpowszechniej używanym systemem liczbowym na zewnątrz komputera jest system dziesiętny Dowolną liczbę możemy przedstawić jako wielomian. Np. 1234,98 = 1 x x x x x x 10-2 Systemy komputerowe przyjmują, przetwarzają i wystawiają na wyjściach ciągi zer i jedynek w kodzie dwójkowym, binarnym

3 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ogólna postać wielomianu dla dowolnej liczby i notacji N = n i= m a i r i Gdzie N liczba zapisana we właściwej notacji; n+1 liczba cyfr w części całkowitej, m liczba cyfr w części ułamkowej, r podstawa notacji W systemie dziesiętnym r=10 W systemie dwójkowym r=2, ósemkowym r=8, itd.

4 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Notacja szesnastkowa (r=16) Ponieważ brakuje cyfr, stosuje się pierwsze, kolejne, litery alfabetu łacińskiego dla wyrażenia cyfr powyżej 9 Notacja dziesiętna Szesnastkowa 0, 1, 2, 3,, 8, 9 0, 1, 2, 3,, 8, 9 10 A 11 B 12 C 13 D 14 E 15 F

5 Przykłady Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Notacja Dziesiętna Dwójkowa Ósemkowa Szesnastkowa F = 1x x x10 0 = x8 2 +4x8 1 +4x8 0 6x x16 0

6 Konwersja liczb Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Jest to przekształcanie zapisów liczbowych z jednego systemu w inny, np. z systemu dwójkowego w dziesiętny lub odwrotnie Algorytm: dzielimy daną wartość całkowita przez wymaganą podstawę, w każdym kroku zapisując resztę; kończymy zapisaniem ilorazu mniejszego od dzielnika. Sprawdzamy, stosując podany wzór na wielomian Przykład: Przekształcić 245 (10) w zapis dwójkowy 245:2 = reszta :2 = 61 + reszta :2 = 30 + reszta :2 = 15 + reszta :2 = 7 + reszta :2 = 3 + reszta :2= 1 + reszta tylko

7 Inne przykłady Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (245) 10 = (?) 8 245:8 = :8 = zostaje 3 (365) 8 (245) 10 = (?) :16 = zostaje 15 (F5) 16 Dla części ułamkowej zamiast dzielenia mnożymy to, co po przecinku: (0,345) 10 = (?) 2 2 x 0,345 = 0,690 2 x 0,690 = 1,380 2 x 0,380 = 0,760 2 x 0,760 = 1,520 2 x 0,520 = 1,040 2 x 0,040 = 0,080 (0,010110) 2 Konwersja pomiędzy systemem dziesiętnym, stosowanym przez użytkownika a binarnym używanym w systemie odbywa się automatycznie przy pomocy podobnego algorytmu

8 Działania arytmetyczne Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ogólne zasady wykonywania działań arytmetycznych są jednakowe we wszystkich notacjach poćwiczymy na zajęciach praktycznych Oprócz tradycyjnego dodawania, odejmowania, mnożenia i dzielenia, często wykonywaną operacją jest przesuwanie (SHIFT) o jedno miejsce w prawo (czyli dzielimy przez podstawę notacji) lub w lewo (mnożymy) W systemach cyfrowych zapisujemy liczby - w prezentacji stałoprzecinkowej (fixed-point) zawsze tyle samo cyfr przed i po przecinku - zmiennoprzecinkowej (floating-point) stała liczba cyfr ale przecinek w takiej pozycji, która jest optymalna dla danej liczby

9 Liczby ujemne Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Sposób pierwszy: znak i moduł Dla przedstawienia liczby potrzebujemy n+1 cyfr; cyfra najbardziej znacząca (pierwsza z lewej strony MSD) przyjmuje wartość 0 dla liczb dodatnich i r-1 dla liczb ujemnych (czyli F dla notacji szesnastkowej, 7 dla ósemkowej, 1 dla binarnej ) Przykłady: liczba reprezentacja (zakładamy razem 5 cyfr) (-2) (+2) (-56) (+11F) F znak moduł

10 Znak i moduł Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Przy stosowaniu zapisu znak i moduł przy działaniach arytmetycznych obie części reprezentacji są przetwarzane oddzielnie, tzn. obliczany jest moduł wyniku i potem dodawany do niego odpowiedni znak System stosowany w miernikach cyfrowych, czasem w sterownikach, zwłaszcza, gdy używany jest kod dziesiętny w obliczeniach wrócimy do tego później

11 Liczby ujemne Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Sposób drugi: liczba ujemna zapisywana w kodzie uzupełnień Jest to PRZEWAŻAJĄCY sposób zapisu liczb w systemach komputerowych Ogólnie stosowane są: dopełnienie (uzupełnienie) do podstawy notacji oraz dopełnienie do podstawy pomniejszonej o 1 Dla zapisu binarnego, który jest powszechnie stosowany w komputerach, mamy więc: - kod uzupełnieniowy do dwóch U2 - kod uzupełnieniowy do jedności U1

12 Kod uzupełnień Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozważmy odejmowanie liczby A od liczby B (B-A) Jest to równoważne z dodawaniem (-A) do B Przy stosowaniu uzupełnień możemy więc odejmowanie zastąpić dodawaniem Ponieważ mnożenie i dzielenie odpowiadają odpowiednio wielokrotnemu dodawaniu lub odejmowaniu możemy stwierdzić, że możliwe jest wykonanie czterech podstawowych działań arytmetycznych przy zastosowaniu WYŁĄCZNIE DODAWANIA

13 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Algorytm mnożenia liczb binarnych bez znaku

14 Algorytm dzielenia liczb binarnych bez znaku Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

15 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Uzupełnienie do podstawy notacji Uzupełnienie do podstawy notacji: [N] r gdzie r podstawa notacji; n liczba cyfr w części całkowitej liczby (N) r [ N ] r = = r 0 n ( N) r gdy gdy ( N) ( N) r r = 0 0 Przykład: U2 dla (01010) 2 n=5 ; r=2: 2 5 (01010) = = dla (0,0010) 2 n=1 ; r=2 2 1 (0,0010) = 10,0000 0,0010 = 1,1110

16 Inne metody obliczania U2 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zmień wartość każdego bitu i dodaj 1: Przykład: [01010] 2 =? - zmieniamy o na 1 i odwrotnie: dodajemy WYNIK: Kopiuj bity zerowe od najmniej znaczącego aż (włącznie) do pierwszej 1 i zmień wartość pozostałych: Przykład: [01010] 2 =? - kopiujemy od prawej: 10 - zmieniamy pozostałe 010 na WYNIK: 10110

17 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Uzupełnienie do podstawy pomniejszonej o 1 [N] r-1 = r n r -m (N) r gdzie r podstawa notacji, n liczba cyfr w części całkowitej, m w części ułamkowej Zauważmy, że [N] r = [N] r-1 + r -m Praktyczna metoda liczenia: - odejmujemy każdą cyfrę od maksymalnej cyfry w danej notacji (tzn. od 9 w notacji dziesiętnej, od 7 w ósemkowej, itd.) U1 (czyli w notacji binarnej): po prostu zamieniamy wartość każdego bitu

18 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Kody uzupełnień oraz zapis znak - moduł Uzupełnienie odpowiada reprezentacji liczby ujemnej Reprezentacja liczby dodatniej nie zmienia się Mamy więc trzy sposoby zapisu liczby ujemnej w systemie binarnym: - znak moduł - U1 - U2 Jeżeli do zapisania jednej liczby w systemie binarnym służy n bitów, zakres liczb w systemach jest następujący: znak-moduł -(2 n-1 1) do +(2 n-1 1) U1 -(2 n-1 1) do +(2 n-1 1) U2 -(2 n-1 ) do +(2 n-1 1)

19 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Działania arytmetyczne w poszczególnych kodach Ćwiczenia przeniesiemy do części praktycznej W zapisie modułowym (Znak moduł) liczby występują w najprostszej postaci, ale niezbędna jest realizacja układowa zarówno dodawania, jak i odejmowania. Musi być dodatkowa logika do określenia znaku wyniku W zapisie U1 generowanie reprezentacji jest proste, ale należy przeprowadzać korekcję przy działaniach ( pożyczki i przeniesienia) W zapisie U2 wszystkie otrzymane wyniki mają postać U2. Nie ma potrzeby korekcji. Metoda jest najkorzystniejsza. Proces powstawania zapisu nie stanowi problemu technicznego.

20 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Liczby zmiennoprzecinkowe Zapis stałoprzecinkowy jest dogodny przy zapisie liczb o ograniczonej wielkości modułu. W komputerze, który wykorzystuje 32 bity do reprezentacji liczby, zakres liczb całkowitych jest ograniczony do: + (2 31 1) czyli ~ Ogólna forma zapisu zmiennoprzecinkowego liczby N: N = F x r E gdzie F ułamek lub mantysa, r to podstawa, a E - wykładnik

21 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Liczby zmiennoprzecinkowe Rozważmy liczbę N = = 0,458 x 10 7 = 0,0458 x 10 8 = 4,58 x 10 6 Trzy ostatnie zapisy to liczby zapisane w poprawnej postaci zmiennoprzecinkowej. Dwa pierwsze zapisy (lewa strona = 0) są bardziej optymalne (nie ma potrzeby zapisu części całkowitej mantysy). Napis wyróżniony: postać znormalizowana (z mantysy zostały wyeliminowane wszystkie znaczące zera)

22 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zapis zmiennoprzecinkowy binarny Mantysa może być dodatnia lub ujemna Wykładnik może być dodatni lub ujemny MAMY WIĘC CZTERY SKŁADNIKI ZAPISU!!! Mantysa (F) i znak mantysy (SF) Wykładnik (E) i znak wykładnika (SE) F jest w formie znormalizowanej, najczęściej w kodzie rzeczywistym binarnym, znak 0 dla + i 1 dla - 0,5 < F < 1 (dlaczego? ) Dla wartości 0 jest wyjątek: wszystkie 4 składniki są równe 0

23 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Standard IEEE (Institute of Electrical & Electronics Engineers) IEEE-754 określa, jak mają być reprezentowane liczby o pojedynczej precyzji (32 bity) i podwójnej precyzji (64) bity w zapisie zmiennoprzecinkowym Wykładnik przesunięty dodawana jest stała przesunięcia (moduł największej liczby ujemnej, jaka może być zapisana w polu wykładnika); umożliwia to porównanie i zrównanie wykładników przed dodawaniem e bitów wykładnika f bitów mantysy 1 bit znaku Razem e + f + 1 bitów bit nr 0

24 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pojedyncza precyzja (słowo 32 bitowe) Liczba -118,625 zostanie zapisana: bit 8 bitów 23 bity znaku Wykładnik Mantysa Ponieważ pole wykładnika jest 8-bitowe; stała przesunięcia =127 Wykładnik równa się 6, przesunięcie 127, czyli 6+127=133

25 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zapisy znormalizowane Istnieją dwa poprawne zapisy dla 0 (+0 oraz -0) (analogicznie istnieje zapis dla + oraz - ) -126 to najmniejszy wykładnik dla liczby znormalizowanej; wszystkie 1 oznaczają nieskończoność Najmniejsze znormalizowane liczby w zapisie pojedynczej precyzji: , x Największe (254 w polu wykładnika i 1 w mantysie): + 3, x 10 38

26 Podwójna precyzja (słowo 64 bitowe) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego bit 11 bitów 52 bity znaku Wykładnik Mantysa Dla liczb znormalizowanych przesunięcie wykładnika wynosi Wartości najmniejsze: +2, x Największe +1, x

27 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Dokładność Zaokrąglanie do najbliższej wartości, w kierunku większej wartości lub w kierunku mniejszej, obcinanie Zaokrąglanie odbywa się najczęściej po każdym działaniu, niedokładności mogą się więc akumulować 63,0/9,0 raczej da w wyniku 7, ale 0,63/0,09 może, z powodu obcinania dać wynik 6 Ograniczony zakres wykładnika w wynikach cząstkowych może się pokazać nieskończoność Identyczne matematycznie działania wykonywane w różnej kolejności mogą dać różne wyniki

28 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Kody binarne (KODUJEMY KOLEJNE CYFRY, NIE LICZBY!) W łańcuchu zawierającym n bitów można zapisać 2 n różnych elementów Cyfry w układzie dziesiętnym (od 0 do 9) mieszczą się w 4-bitowym kodzie, ale mogą być zapisane w różny sposób 4 bity dają możliwości zapisu 16 wielkości Kody wagowe pozycja każdego bitu niesie swoją wagę Kod BCD (binary coded decimal) jest kodem podstawowym (8421) Każda cyfra liczby dziesiętnej zostaje przedstawiona przez 4 bity np. (536) 10 w kodzie BCD przybierze postać: ( ) BCD i działania arytmetyczne są wykonywane cyfra po cyfrze.

29 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Przykłady kodów wagowych do zapisu cyfr Wagi

30 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Działania arytmetyczne - problem Rozważmy przykłady: liczby dziesiętne kod BCD korekta (+6) korekta (+6) Nie ma takiego zapisu w kodzie Ani takiego!

31 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Kody binarne niewagowe; Kod Graya (refleksyjny; cykliczny) Jest to 4-bitowy kod, w którym 16 zakodowanych słów zmienia się kolejno tylko o 1 bit, podczas, gdy przechodzimy od jednego słowa do drugiego: Zapis dziesiętny kod Graya Zapis dzies. kod Graya

32 Kody z wykrywaniem błędów Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Można dodać bit parzystości np. Even BCD; otrzymamy wtedy kod 5 bitowy, gdzie najmniej znaczący bit ma tylko znaczenie kontrolne. Będzie równy 1, gdy liczba jedynek w bitach znaczących jest nieparzysta oraz 0, gdy jest 0 lub parzysta Np. 1 będzie zapisane jako 00011; 2 jako 00101; 3 jako Kod 2-out-of-5 (Dwa z pięciu) koduje cyfry w pięciu bitach, tylko w kombinacjach, gdzie są dwie jedynki, tzn

33 Kody alfanumeryczne Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Są to kody 8 bitowe (256 znaków). Zawierają wszystkie cyfry, litery alfabetu angielskiego (łacińskiego) - duże i małe, znaki interpunkcyjne i pewne dodatkowe Podstawowe znaczenie w systemach komputerowych ma kod ASCII (American Standard Code for Information Interchange) Odpowiednio są znormalizowane zestawy kodów (strony) zawierające znaki narodowe (litery ze znakami diakrytycznymi). Polski język posiada nawet 2 strony (zostały znormalizowane dwa układy klawiatur) Dla potrzeb edycji znormalizowano tablice z różnymi rodzajami, krojami znaków oraz takimi, które mogą być pomocne przy rysowaniu tabel, wzorów itd

34 Przechowywanie danych Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zbiór pojedynczych komórek (każda zawiera bit) to rejestr, determinujący długość słowa W systemie 16 bitowym najczęściej można było manipulować liczbami 16 bitowymi i długość słowa wynosiła 16 bitów, itd. W systemach komputerowych wykorzystywane są odpowiednio słowa 4 bitowe (nibble); 8 bitowe (bajty); 16-, 32 i 64 bitowe. W danym systemie wykorzystywane są również połówki rejestrów (pół słowa) lub rejestry podwojone (128 bitów dla systemu 64 bitowego) Zapis danej liczbowej, znaku, litery, adresu, instrukcji jest ciągiem zer i jedynek i rozróżnienie znaczenia logicznego takiego ciągu jest dokonywane w przeważającym stopniu programowo.

35 Liczby różne sposoby zapisu Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Podsumujmy na przykładzie liczby W słowie 16-bitowym zwykła dwójkowa reprezentacja: bajt 1 bajt W kodzie BCD (w 16 bitach mieszczą się 4 cyfry) Zapis zmiennoprzecinkowy przy zastosowaniu standardu IEEE: 1 bit znaku, 8 bitów wykładnika, 23 bity mantysy

36 Tablice (Arrays) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Łańcuch (string) jest tablicą jednowymiarową Tablica zawiera kolejne wartości elementów macierzy, zapisywane w kolejności: wiersz za wierszem od góry do dołu albo kolumna za kolumną od lewej do prawej W rejestrach znajdą się kolejno: A = Lub

37 Rekordy Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rekord zazwyczaj zawiera jedno, lub więcej pól. Każde pole może zajmować inną liczbę bitów i rejestrów oraz reprezentować inny rodzaj danych i sposobu zapisu Rekordy są wykorzystywane szczególnie w bazach danych

38 KONIEC CZĘŚCI DRUGIEJ Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią, nowoczesna oferta edukacyjna i wzmacniania zdolności do zatrudniania osób niepełnosprawnych Zadanie nr 30 Dostosowanie kierunku Elektronika i Telekomunikacja do potrzeb rynku pracy i gospodarki opartej na wiedzy Łódź, ul. Żeromskiego 116, tel

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Kodowanie informacji. Przygotował: Ryszard Kijanka

Kodowanie informacji. Przygotował: Ryszard Kijanka Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Pracownia Komputerowa wyk ad V

Pracownia Komputerowa wyk ad V Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Ćwiczenie nr 1: Systemy liczbowe

Ćwiczenie nr 1: Systemy liczbowe Ćwiczenie nr 1: Systemy liczbowe Barbara Łukawska, Adam Krechowicz, Tomasz Michno Podstawowym systemem liczbowym uŝywanym na co dzień jest system dziesiętny. Podstawą tego systemu jest 10 cyfr 0, 1, 2,

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW. Reprezentacja danych w komputerach

ARCHITEKTURA KOMPUTERÓW. Reprezentacja danych w komputerach Reprezentacja danych w komputerach dr inż. Wiesław Pamuła wpamula@polsl.katowice.pl Literatura 2. J.Biernat: Architektura komputerów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław2002. 3. Null

Bardziej szczegółowo

Podstawy Systemów Liczbowych

Podstawy Systemów Liczbowych HTTP://WWW.HAKERZY.NET 001 Krzysztof Kryczka Podstawy Systemów Liczbowych Wersja: 1.0 Będzin, dn. 03-11-2010 r. Copyright by Krzysztof Kryczka (gsystem) Data: 03.11.2010 Wydanie I Darmowy poradnik, dostarczony

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Wprowadzenie do informatyki ćwiczenia

Wprowadzenie do informatyki ćwiczenia Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie

Bardziej szczegółowo

1. System pozycyjny zapisu liczb

1. System pozycyjny zapisu liczb W.K.: Kody i liczby 1. System pozycyjny zapisu liczb Oznaczenia: R - podstawa pozycyjnego systemu liczenia (liczba naturalna) L - wartość liczby a i - cyfra ; a i {0,1,.., R-1} Zapis liczby (łańcuch cyfr):

Bardziej szczegółowo

Systemy liczbowe. 1. System liczbowy dziesiętny

Systemy liczbowe. 1. System liczbowy dziesiętny Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

UKŁADY MIKROPROCESOROWE

UKŁADY MIKROPROCESOROWE UKŁADY MIKROPROCESOROWE Kodowanie informacji i systemy liczbowe OPRACOWANIE KŁ MALBORK WPROWADZENIE 1. Pojęcia podstawowe: Czym zajmuje się elektronika? Informacja Sygnał Uproszczona klasyfikacja układów

Bardziej szczegółowo

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 23 Wyznaczanie wartości wielomianu pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 231 Systemy liczbowe Definicja Systemem liczbowym nazywamy zbiór zasad określających sposób

Bardziej szczegółowo

- Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej.

- Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej. Reprezentacja danych Różne sposoby przechowywana danych w komputerze - Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej. - Z punktu widzenia systemu KAŻDA

Bardziej szczegółowo

Cel wykładu. Cel wykładu. Cel wykładu, cd. Cel wykładu, cd. Cel wykładu, cd. Z. Postawa, "Podstawy Informatyki II" Strona: 1 z 6

Cel wykładu. Cel wykładu. Cel wykładu, cd. Cel wykładu, cd. Cel wykładu, cd. Z. Postawa, Podstawy Informatyki II Strona: 1 z 6 Prof. dr hab. Zbigniew Postawa Zakład Fizyki Nanostruktur i Nanotechnologii pok. 16 (nie 016!) Tel. 5626 e-mail: zbigniew.postawa@uj.edu.pl Sala 057, poniedziałek 16 05 Bez egzaminu C C Cel wykładu Podstawowe

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr 1(rok)/1(sem) Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy

Bardziej szczegółowo

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Komputerowa reprezentacja znaków i liczb dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Plan wykładu Reprezentacja informacji w systemie komputerowym Podstawowe jednostki informacji

Bardziej szczegółowo

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko Jednostki miar stosowane w sieciach komputerowych mgr inż. Krzysztof Szałajko Jednostki wielkości pamięci Jednostka Definicja Przykład Bit (b) 0 lub 1 Włączony / wyłączony Bajt (B) = 8 b Litera w kodzie

Bardziej szczegółowo

Technika cyfrowa Wprowadzenie

Technika cyfrowa Wprowadzenie Sławomir Kulesza Technika cyfrowa Wprowadzenie Wykład dla studentów III roku Informatyki Wer. 6.0, 01/10/2016 Organizacja zajęć Wykład: 2h 15 tyg. Zaliczenie Pracownia: 2h 10 tyg. Ocena Materiały: wmii.uwm.edu.pl/~kulesza

Bardziej szczegółowo

Technologie Informatyczne Wykład IV/V

Technologie Informatyczne Wykład IV/V Technologie Informatyczne Wykład IV/V A. Matuszak 22 października 2010 Pozycyjny układ liczenia Cyfry rzymskie: IX+LC=? Cyfry arabskie: 2341 = 2 1000+3 100+4 10+1 1 = 2 10 3 +3 10 2 +4 10 1 +1 10 0 Pozycyjny

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe - budowa i działanie" anie"

Przetworniki analogowo-cyfrowe - budowa i działanie anie Przetworniki analogowo-cyfrowe - budowa i działanie" anie" Wprowadzenie Wiele urządzeń pomiarowych wyposaŝonych jest obecnie w przetworniki A/C. Końcówki takich urządzeń to najczęściej typowe interfejsy

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka) SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

NIEDZIESIĄTKOWE SYSTEMY LICZENIA.

NIEDZIESIĄTKOWE SYSTEMY LICZENIA. NIEDZIESIĄTKOWE SYSTEMY LICZENIA. Inspiracją do powstania artykułu było popularne powiedzenie :,,... to jest oczywiste jak 2 x 2 jest 4. To powiedzenie pokazuje jak bardzo system dziesiętny zakorzenił

Bardziej szczegółowo

----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------- Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi

Bardziej szczegółowo

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy Wstęp doinformatyki Systemy liczbowe i arytmetyka komputerów Dr inż. Ignacy Pardyka kademia Świętokrzyska Kielce, System dziesiętny Liczba: 5= *+5*+* - każdą z cyfr mnożymy przez tzw. wagę pozycji, która

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Podstawy informatyki i architektury systemów komputerowych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki Zakład Informatyki

Bardziej szczegółowo

Temat 4. Kodowanie liczb

Temat 4. Kodowanie liczb Temat 4. Kodowanie liczb Spis treści do tematu 4 4.1. Kodowanie liczb stałopozycyjnych 4.1.1. Naturalny kod binarny NKB 4.1.2. Kod dwójkowo-dziesiętny BCD 4.1.3. Kod Graya 4.1.4. Kod znak-moduł 4.1.5.

Bardziej szczegółowo

Ochrona danych osobowych. Pozycyjne systemy liczbowe. Jednostki informacji. Kodowanie znaków ASCII, ISO 8859, Unicode. Kodowanie liczb NKB, U2, BCD

Ochrona danych osobowych. Pozycyjne systemy liczbowe. Jednostki informacji. Kodowanie znaków ASCII, ISO 8859, Unicode. Kodowanie liczb NKB, U2, BCD Rok akademicki /, Pracownia nr / Pracownia nr Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki / Pracownia nr (8/..) dr inż.

Bardziej szczegółowo

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO Aleksandra Nogała nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie olanog@poczta.onet.pl KONSPEKT ZAJĘĆ ( 2 godziny) KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO TEMAT

Bardziej szczegółowo

Excel - podstawa teoretyczna do ćwiczeń. 26 lutego 2013

Excel - podstawa teoretyczna do ćwiczeń. 26 lutego 2013 26 lutego 2013 Ćwiczenia 1-2 Częste błędy i problemy: 1 jeżeli użyjemy niewłaściwego znaku dziesiętnego Excel potraktuje liczbę jak tekst - aby uniknać takich sytuacji używaj klawiatury numerycznej, 2

Bardziej szczegółowo

Kiedy i czy konieczne?

Kiedy i czy konieczne? Bazy Danych Kiedy i czy konieczne? Zastanów się: czy często wykonujesz te same czynności? czy wielokrotnie musisz tworzyć i wypełniać dokumenty do siebie podobne (faktury, oferty, raporty itp.) czy ciągle

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

BŁĘDY PRZETWARZANIA NUMERYCZNEGO

BŁĘDY PRZETWARZANIA NUMERYCZNEGO BŁĘDY PRZETWARZANIA NUMERYCZNEGO Maciej Patan Uniwersytet Zielonogórski Dlaczego modelujemy... systematyczne rozwiązywanie problemów, eksperymentalna eksploracja wielu rozwiązań, dostarczanie abstrakcyjnych

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze. Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka

Bardziej szczegółowo

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych:

Pascal typy danych. Typy pascalowe. Zmienna i typ. Podział typów danych: Zmienna i typ Pascal typy danych Zmienna to obiekt, który może przybierać różne wartości. Typ zmiennej to zakres wartości, które może przybierać zmienna. Deklarujemy je w nagłówku poprzedzając słowem kluczowym

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.

Bardziej szczegółowo

Struktura i działanie jednostki centralnej

Struktura i działanie jednostki centralnej Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala

Bardziej szczegółowo

2 Zarówno zanonimizowany zbiór danych ilościowych, jak i opis jego struktury powinny mieć format csv:

2 Zarówno zanonimizowany zbiór danych ilościowych, jak i opis jego struktury powinny mieć format csv: Zbiór danych ilościowych: 1 Na każdą "bazę danych" składa się zanonimizowany zbiór danych ilościowych zebranych w badaniu oraz opis jego struktury (codebook). 2 Zarówno zanonimizowany zbiór danych ilościowych,

Bardziej szczegółowo

Jak napisać program obliczający pola powierzchni różnych figur płaskich?

Jak napisać program obliczający pola powierzchni różnych figur płaskich? Część IX C++ Jak napisać program obliczający pola powierzchni różnych figur płaskich? Na początku, przed stworzeniem właściwego kodu programu zaprojektujemy naszą aplikację i stworzymy schemat blokowy

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

Adresowanie obiektów. Adresowanie bitów. Adresowanie bajtów i słów. Adresowanie bajtów i słów. Adresowanie timerów i liczników. Adresowanie timerów

Adresowanie obiektów. Adresowanie bitów. Adresowanie bajtów i słów. Adresowanie bajtów i słów. Adresowanie timerów i liczników. Adresowanie timerów Adresowanie obiektów Bit - stan pojedynczego sygnału - wejście lub wyjście dyskretne, bit pamięci Bajt - 8 bitów - wartość od -128 do +127 Słowo - 16 bitów - wartość od -32768 do 32767 -wejście lub wyjście

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

Spis treści KODOWANIE DANYCH I METODY WERYFIKACJI POPRAWNOŚCI KODOWANIA PI04. Instrukcja do zajęć Podstawy informatyki pracownia specjalistyczna

Spis treści KODOWANIE DANYCH I METODY WERYFIKACJI POPRAWNOŚCI KODOWANIA PI04. Instrukcja do zajęć Podstawy informatyki pracownia specjalistyczna Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć Podstawy informatyki pracownia specjalistyczna Tytuł ćwiczenia KODOWANIE DANYCH I METODY

Bardziej szczegółowo

S Instrukcje rozszerzone oraz umożliwiające operacje na znakach i łańcuchach. Automatyka i mechatronika

S Instrukcje rozszerzone oraz umożliwiające operacje na znakach i łańcuchach. Automatyka i mechatronika Automatyka i mechatronika S7-12 Instrukcje rozszerzone oraz umożliwiające operacje na znakach i łańcuchach Kontynuujemy rozpoczęty opis instrukcji programowania obsługiwanych przez sterowniki S7-12. W

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Obliczenia inżynierskie. Liczby, Programy CAS, Arkusz kalkulacyjny

Obliczenia inżynierskie. Liczby, Programy CAS, Arkusz kalkulacyjny Obliczenia inżynierskie Liczby, Programy CAS, Arkusz kalkulacyjny Reprezentacja liczb w komputerze 2 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10

Bardziej szczegółowo

Temat 1. Zliczanie kropek numeracja dwójkowa

Temat 1. Zliczanie kropek numeracja dwójkowa Temat 1 Zliczanie kropek numeracja dwójkowa Streszczenie Dane w komputerach są zapisywane i przesyłane jako ciągi zer i jedynek. W jaki sposób słowa i liczby mogą być reprezentowane przy pomocy tylko dwóch

Bardziej szczegółowo