Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
|
|
- Szczepan Mucha
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wykład Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2) We wszystkich kodach znak przechowuje się w najstarszym bicie słowa maszynowego. Kod znak-moduł ZM, Z-M, SM (Signed Magnitude), S+M W kodzie znak-moduł wszystkie bity liczby poza najstarszym mają takie same znaczenie jak w kodzie NKB. Najstarszy bit jest bitem znaku: 0 - liczba dodatnia, 1 - liczba ujemna. c Wartość liczby wynosi n 1 i L = ( 1) ci 2. i= 0 Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Liczba (10) Kod ZM Liczba (10) Kod ZM n 2
2 Wykład W kodzie tym występują dwie reprezentacje zera: +0 ( ) i 0 ( ). Zakres liczb w formacie ZM: -2 n-1 +1 L 2 n-1-1 Zakres liczb 8-bitowych w kodzie ZM: (ZM) = = -127 (minimalna) (ZM) = = 127 (maksymalna) Zakres liczb 16-bitowych w kodzie ZM: (ZM) = = (minimalna) (ZM) = = (maksymalna) Przedstawienie liczby dziesiętnej w kodzie ZM: - znak liczby zakodować w starszym bicie słowa maszynowego - moduł liczby przedstawić w kodzie NKB - rozszerzyć liczbę zerami z lewej strony do formatu słowa maszynowego (10) =L (ZM) -117 (10) = 117 (10) = (NKB) (ZM) (w formacie 8-bitowym) (ZM) (w formacie 16-bitowym). Obliczenie wartości dziesiętnej liczby w kodzie ZM: (ZM) = L (10) 1 liczba ujemna L (10) = (-1) 1 ( ) = -(32+8+2) = -42 (10) (ZM) = L (10) 0 liczba dodatnia L (10) = (-1) 0 ( ) = = 73 (10) Wadą kodu ZM jest utrudnione wykonanie operacji dodawania i odejmowania. Tak w przypadku dodawania porównywane są znaki liczb, jeśli są równe wykonuje się dodawanie modułów liczb, jeśli róŝne porównują się moduły i wykonuje się odejmowanie mniejszego modułu od większego. W celu uproszczenia operacji arytmetycznych na liczbach ze znakiem stosowane są kody z uzupełnieniem.
3 Wykład Uzupełnienia liczb Wykonanie operacji arytmetycznych na liczbach ze znakiem wymaga wykorzystania pojęcia uzupełnienie liczb. W pozycyjnym systemie liczbowym o podstawie P dla n-cyfrowej liczby definiuje się dwa rodzaje uzupełnień: 1. uzupełnienie P-te: L = P n L dla L 0 L = 0 dla L = 0 2. uzupełnienie (P-1)-sze: L = P n L P 0 W zaleŝności od podstawy systemu liczbowego uzupełnienia przyjmują nazwy: uzupełnienie dwójkowe U2 i jedynkowe U1 (dla P=2), uzupełnienie dziesiątkowe U10 i dziesiątkowe U9 (P=10), szesnastkowe U16 i piętnastkowe U15 (P=16). Uzupełnienie P-te moŝna uzyskać przez dodanie do uzupełnienia (P-1)-szego wartości P 0 : L = L + P 0 MoŜna zauwaŝyć, Ŝe dwukrotne uzupełnienie danej liczby pozwala uzyskać jej pierwotną wartość: P P n n n n L = P ( P L) = L L P 0 = P n ( P Przykład (2) U2, U1 n 0 L P ) P 0 = L
4 Wykład Obliczenie uzupełnienia z definicji jest stosunkowo trudne. MoŜna je uprościć: uzupełnienie (P-1)-sze moŝna utworzyć przez odjęcie kaŝdej cyfry liczby od (P-1). Dla systemu dwójkowego tej operacji odpowiada zwykła negacja bitów (zamiana wartości bitów na przeciwną). Dla uzupełnienia P-go do tak obliczonej wartości naleŝy jeszcze dodać 1 (P 0 ). Przykład (2) U2, U1 538 (10) U10, U9 Niektóre kody BCD dwójkowo-dziesiętne posiadają taką własność, Ŝe uzupełnienia dziesiątkowe cyfr dziesiętnych uzyskuje się przez zanegowanie bitów ich dwójkowej reprezentacji (kody samouzupełniające). Upraszcza to wykonanie operacji arytmetycznych na liczbach BCD. Reprezentacja liczb w kodzie U1 (uzupełnień do jedności) - Najstarszy bit jest bitem znaku: 0 - liczba dodatnia, 1 - liczba ujemna. - W kodzie U1 liczby dodatnie zapisywane są tak samo jak w NKB, ale najbardziej znaczący bit traktowany jest jako bit znaku, dla liczby dodatniej przyjmuje wartość 0. - Liczby ujemne otrzymywane są poprzez bitową negację danej liczby, bit znakowy przyjmuje wtedy wartość 1.
5 Wykład Starszy bit słowa ma wagę -2 n n 2 i 1 i 2 i 0 n 1 - Wartość liczby wynosi = ( 2 + 1) = L c n c. Reprezentacja liczb w kodzie U1 w 8-bitowym formacie: Liczba (10) Kod U1 Liczba (10) Kod U W kodzie tym występują dwie reprezentacje zera: +0 ( ) i 0 ( ). Zakres liczb w formacie U1: -2 n-1 +1 L 2 n-1-1 Zakres liczb 8-bitowych w kodzie U1: (U1) = = -127 (minimalna) (U1) = = 127 (maksymalna) Zakres liczb 16-bitowych w kodzie U1: (U1) = = (minimalna) (U1) = = (maksymalna) Przedstawienie liczby dziesiętnej w kodzie U1: - znak liczby zakodować w starszym bicie słowa maszynowego - moduł liczby przedstawić w kodzie NKB - rozszerzyć moduł zerami z lewej strony do formatu słowa maszynowego
6 Wykład jeśli liczba jest ujemna zanegować wszystkie bity modułu (10) =L (U1) -117 (10) = 117 (10) = (NKB) (U1) (w formacie 8-bitowym) (U1) (w formacie 16-bitowym). Obliczenie wartości dziesiętnej liczby w kodzie U1: (U1) = L (10) 1 liczba ujemna L (10) = 1 ( ) + ( ) = = (32+8+2) = -85 (10) (U1) = L (10) 0 liczba dodatnia L (10) = 0 ( ) + ( ) = = 73 (10) Arytmetyka w kodzie U1 - Dodawanie w kodzie U1 polega na zwykłym dodawaniu bitowym - Jeśli na najstarszym bicie wystąpi przeniesienie, to naleŝy je dodać do końcowego wyniku.
7 Wykład Reprezentacja liczb w kodzie U2(uzupełnień do dwóch) - Najstarszy bit jest bitem znaku: 0 - liczba dodatnia, 1 - liczba ujemna. - W kodzie U2 liczby dodatnie zapisywane są tak samo jak w NKB, ale najbardziej znaczący bit traktowany jest jako bit znaku, dla liczby dodatniej przyjmuje wartość 0. - Liczby ujemne otrzymywane są poprzez bitową negację danej liczby oraz dodania do zanegowanej liczby jedynki, bit znakowy przyjmuje wtedy wartość 1. - Starszy bit słowa ma wagę -2 n-1. n 2 i 1 i 2 i 0 n 1 - Wartość liczby wynosi = ( 2 ) = L c n c. Reprezentacja liczb w kodzie U2 w 8-bitowym formacie: Liczba (10) Kod U2 Liczba (10) Kod U W kodzie tym występuje jedna reprezentacja zera: Zakres liczb w formacie U2: -2 n-1 L 2 n-1-1, jest niesymetryczny dla górnej i dolnej granicy. Nie istnieje liczba przeciwna do najmniejszej -2 n-1. Zakres liczb 8-bitowych w kodzie U1: (U2) = -2 7 = -128 (minimalna)
8 Wykład (U2) = = 127 (maksymalna) Zakres liczb 16-bitowych w kodzie U2: (U2) = = (minimalna) (U2) = = (maksymalna) Przy rozszerzeniu słowa zajmowanego przez liczbę w kodzie U2, dodawany obszar wypełnia się bitem znaku. Przedstawienie liczby dziesiętnej w kodzie U2: - moduł liczby przedstawić w kodzie NKB - rozszerzyć moduł zerami z lewej strony do formatu słowa maszynowego - jeśli liczba jest ujemna zanegować wszystkie bity liczby - do wyniku dodać (10) =L (U2) -117 (10) = 117 (10) = (NKB) po negacji bitów (U2) (w formacie 8-bitowym) (U2) (w formacie 16-bitowym). Obliczenie wartości dziesiętnej liczby w kodzie U2: (U2) = L (10) 1 liczba ujemna L (10) = 1 (-2 7 ) + ( ) = = (32+8+2) = -86 (10) (U2) = L (10) 0 liczba dodatnia L (10) = 0 (-2 7 ) + ( ) = = 73 (10)
9 Wykład Arytmetyka w kodzie U2 Dodawanie Dodawanie liczb w kodzie U2 odbywa się standardową metodą (bit po bicie) traktujemy liczby jako zwykłe liczby binarne (dodatnie), dodajemy je otrzymując wynik w kodzie U2. W operacji dodawania bierze udział takŝe bit znaku, a przeniesienie poza najstarszy bit znaku jest ignorowane. Składniki Suma a i b i p i p i+1 s i Dodawanie dowolnych liczb w kodzie U2 daje poprawny wynik zawsze wtedy, gdy mieści się on w zakresie liczb dla danego formatu. Jeśli znaki obu składników są jednakowe, a znak sumy jest przeciwny to suma wykracza poza zakres reprezentowalności dla danego formatu, czyli powstaje przepełnienie (overflow). KaŜdy procesor posiada w swoim rejestrze znaczników flagi, które sygnalizują, czy w wyniku wykonania operacji powstało przeniesienie ze starszego bitu wyniku (znacznik CF Carry Flag) oraz czy powstało przepełnienie (znacznik OF Overflow Flag). Ustawienie znacznika OF=1 sygnalizuje błąd wykonania operacji, natomiast CF=1 nie sygnalizuje błędu. Przykładowy rejestr znaczników procesora:
10 Wykład Przykłady (-60) (10) + 74 (10) =? 60 (10) + (-74) (10) =? (-60) (10) + (-74) (10) =?
11 Wykład (10) + 74 (10) =? Odejmowanie Odejmowanie odbywa się według tych samych zasad jak w NKB. W operacji odejmowania bierze udział bit znaku, a poŝyczka spoza najstarszego bitu jest ignorowana. Wynik odejmowania jest poprawny, jeśli mieści się w zakresie liczb dla danego formatu. PoŜyczka tylko do bitu znaku lub tylko z bitu znaku Przykłady 60 (10) - 74 (10) =?
12 Wykład (-60) (10) - 74 (10) =? MnoŜenie Do praktycznych algorytmów mnoŝenia liczb w kodzie U2 naleŝą: - algorytm Robertsona - algorytm powielonego znaku - algorytm Bootha Algorytm Robertsona Algorytmie Robertsona traktujemy liczby w kodzie U2 tak jak w NKD z tym, Ŝe mnoŝnik pozbawiamy najstarszego bitu (znaku). Otrzymany iloczyn naleŝy skorygować, dodając poprawkę. Iloczyn dwóch liczb A i B w kodzie U2 moŝna rozłoŝyć na sumę dwóch składników: n 1 A B = -b n 2 n A + A = n 1 i i= 0 i 0 b 2 i i i b 2 to jest mnoŝnik pozbawiony znaku. Pierwszy składnik to poprawka korekcyjna dla przypadku ujemnego mnoŝnika, wynosi tyle, co dopełnienie mnoŝnej przesuniętej w lewo o n bitów. Przykład (-5) (10) (-3) (10) =? (-5) (10) = 1011 (U2) (-3) (10) = 1101 (U2)
13 Wykład Obliczenie pseudoiloczynu: Obliczenie poprawki: Korygowanie wyniku: +
14 Wykład Algorytm powielonego znaku: - dwukrotnie zwiększyć kaŝdą z liczb, powielając bit znaku na wszystkie dodatkowe pozycje - po wykonaniu rozszerzenia znakowego liczby są mnoŝone jak w kodzie NKB - otrzymywany wynik powinien być liczbą o długości równej sumie długości mnoŝonych liczb bity wykraczające poza tę długość są ignorowane. Przykład Algorytm Bootha: 1. W młodszej części wyniku zapisać mnoŝnik, starszą część wyzerować. Przyjmuje się, Ŝe bit przeniesienia BP=0. 2. a) Jeśli bit przeniesienia jest ustawiony BP=1, do starszej części wyniku dodać mnoŝną. b) Jeśli bieŝący najmłodszy bit znacznika jest ustawiony, od starszej części wyniku odjąć mnoŝną. c) Jeśli oba te bity są ustawione lub oba wyzerowane, nie wykonuje się Ŝadnych czynności. 3. Wynik przesunąć w prawo o 1 bit powielając bit znakowy, wychodzący bit zapisać do bitu przeniesienia BP. 4. Czynności opisane w punktach 2 i 3 powtórzyć dla wszystkich bitów mnoŝnika. Przykłady
15 Wykład
16 Wykład Dzielenie Operacja dzielenia dla liczb w U2 jest bardzo skomplikowana, dlatego zwykle operacja dzielenia wykonuje się na dodatnich odpowiednikach liczb U2 przedstawionych w kodzie NKB. W przypadku róŝnych znaków liczb wynik i/lub reszta zamieniane są na postać ujemną U2. Metoda dzielenia w U2 składa się z następujących kroków: - zapamiętanie znaków dzielonych liczb - zamiana liczb ujemnych na dodatnie - wykonanie dzielenia dla liczb naturalnych - zmiana wyniku na postać U2, jeśli znak dzielnej i dzielnika róŝnią się. Podczas dzielenia znaki wyniku i reszty przyjmują wartości przedstawione w tabeli.
17 Wykład Dzielna Dzielnik Wynik Reszta Przykład -12 (10) : 4 (10) = -3 (10) 12 (10) =1100 (NKB) 4 (10) =0100 (NKB) (NKB) = 1101 (U2)
Podstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Bardziej szczegółowoKod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoArytmetyka stałopozycyjna
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.
Bardziej szczegółowoArchitektura systemów komputerowych. Poziom układów logicznych. Układy mnoŝące i dzielące
Architektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Plan wykładu Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoWprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Bardziej szczegółowoPlan wykładu. Architektura systemów komputerowych. MnoŜenie realizacja sprzętowa (wersja 1) Układy mnoŝące liczby całkowite.
Plan wykładu rchitektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka sekwencyjna
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoArytmetyka binarna - wykład 6
SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowoPracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
Bardziej szczegółowoOperacje arytmetyczne
PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Bardziej szczegółowoSystemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
Bardziej szczegółowoSYSTEMY LICZBOWE. Zapis w systemie dziesiętnym
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoSYSTEMY LICZBOWE 275,538 =
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoNaturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Bardziej szczegółowoSystem Liczbowe. Szesnastkowy ( heksadecymalny)
SYSTEMY LICZBOWE 1 System Liczbowe Dwójkowy ( binarny) Szesnastkowy ( heksadecymalny) Ósemkowy ( oktalny) Dziesiętny ( decymalny) 2 System dziesiętny Symbol Wartość w systemie Liczba 6 6 *10 0 sześć 65
Bardziej szczegółowoARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
Bardziej szczegółowoSystem liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.
2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja
Bardziej szczegółowoPodstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Bardziej szczegółowoPracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Bardziej szczegółowoKodowanie liczb całkowitych w systemach komputerowych
Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja
Bardziej szczegółowoZestaw 3. - Zapis liczb binarnych ze znakiem 1
Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b
Bardziej szczegółowoARYTMETYKA KOMPUTERA
006 URZĄDZENIA TECHNIKI KOMPUTEROWEJ ARYTMETYKA KOMPUTERA Systemy liczbowe o róŝnych podstawach 1 UTK System dziesiętny Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Liczba 764.5 oznacza 7 * 10 2 + 6 * 10 1 + 4
Bardziej szczegółowoPrzedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
Bardziej szczegółowoSystemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Bardziej szczegółowo1259 (10) = 1 * * * * 100 = 1 * * * *1
Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoInformatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy
Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka
Bardziej szczegółowoPracownia Komputerowa wyk ad V
Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowoCyfrowy zapis informacji
F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Bardziej szczegółowoB.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoWstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Bardziej szczegółowoSystemy liczenia. 333= 3*100+3*10+3*1
Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=
Bardziej szczegółowoUkłady arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011
Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Kod znak-moduł (ZM) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoTeoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Bardziej szczegółowoArytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Bardziej szczegółowoTechniki multimedialne
Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo
Bardziej szczegółowoRODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.
RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA
Bardziej szczegółowoprzeniesienie pożyczka
1.4. Działania arytmetycznie 33 liter i znaków (jest tzw. kodem alfanumerycznym). Większość kombinacji kodowych może mieć dwa różne znaczenia; o wyborze właściwego decyduje to, który z symboli Litery",
Bardziej szczegółowoPracownia Komputerowa wyk ad VI
Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoDZIESIĘTNY SYSTEM LICZBOWY
DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca
Bardziej szczegółowoInformatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc
Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,
Bardziej szczegółowoPracownia Komputerowa wyk ad IV
Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowo1. Operacje logiczne A B A OR B
1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków
Bardziej szczegółowoWstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoReprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej
Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne
Bardziej szczegółowoDr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30
Bardziej szczegółowoArchitektura systemów komputerowych. Arytmetyka maszyn cyfrowych
Architektura systemów komputerowych Plan wykładu. Typy danych w komputerach. 2. Układ arytmetyczno-logiczny. 3. Instrukcje zależne od ALU. 4. Superskalarność. Cele Wiedza na temat arytmetyki maszyn cyfrowych.
Bardziej szczegółowoWydział Mechaniczny. Instrukcja do zajęć laboratoryjnych
Politechnika Białostocka Wydział Mechaniczny Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Arytmetyka układów cyfrowych część 1 dodawanie i odejmowanie liczb binarnych Numer ćwiczenia: 1 Laboratorium
Bardziej szczegółowoMNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)
MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy
Bardziej szczegółowoJednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).
Wykład 1 1-1 Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoCyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2
Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym
Bardziej szczegółowoStan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
Bardziej szczegółowoSystemy liczbowe używane w technice komputerowej
Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.
Bardziej szczegółowoL6.1 Systemy liczenia stosowane w informatyce
L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał
Bardziej szczegółowo2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Bardziej szczegółowoDYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE
ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
Bardziej szczegółowoOperacje arytmetyczne w systemie dwójkowym
Artykuł pobrano ze strony eioba.pl Operacje arytmetyczne w systemie dwójkowym Zasady arytmetyki w systemie binarnym są identyczne (prawie) jak w dobrze nam znanym systemie dziesiętnym. Zaletą arytmetyki
Bardziej szczegółowoPodstawy Informatyki dla Nauczyciela
Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja
Bardziej szczegółowo4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
Bardziej szczegółowoOpis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej
Bardziej szczegółowoPlan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.
Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby
Bardziej szczegółowoInformatyka 1. Wykład nr 4 ( ) Plan wykładu nr 4. Politechnika Białostocka. - Wydział Elektryczny
Rok akademicki 8/9, Wykład nr 4 /8 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 8/9 Wykład nr
Bardziej szczegółowoZnaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000
SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości
Bardziej szczegółowo12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:
PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
Bardziej szczegółowoInstrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory
Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Poniżej pozwoliłem sobie za cytować za wikipedią definicję zmiennej w informatyce.
Bardziej szczegółowoKod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci
Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f
Bardziej szczegółowoUrządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):
1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu
Bardziej szczegółowoLiczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:
Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,
Bardziej szczegółowoWprowadzenie do informatyki ćwiczenia
Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie
Bardziej szczegółowoINFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.
INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowoO systemach liczbowych
O systemach liczbowych 1. Systemy liczbowe Literatura:Turski,Propedeutyka...;Skomorowski,... 1.1. Dwójkowy system pozycyjny W dziesiętnym systemie pozycyjnym ciąg cyfr 321.23 oznacza liczbę 3 10 2 +2 10
Bardziej szczegółowoPozycyjny system liczbowy
Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w
Bardziej szczegółowoAKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ
KDEMI MORSK KTEDR NWIGCJI TECHNICZEJ ELEMETY ELEKTRONIKI LORTORIUM Kierunek NWIGCJ Specjalność Transport morski Semestr II Ćw. 4 Podstawy techniki cyfrowej Wersja opracowania Marzec 5 Opracowanie: mgr
Bardziej szczegółowo