Podstawy Informatyki
|
|
- Antonina Łuczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Informatyki Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42
2 Reprezentacja liczb całkowitych reprezentacja znak - moduł, w której wartość najbardziej znaczacego bitu określa znak liczby (jeśli 0, to +; jeśli 1, to ). bit waga znak Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 2 / 42
3 Reprezentacja liczb całkowitych reprezentacja znak - moduł, w której wartość najbardziej znaczacego bitu określa znak liczby (jeśli 0, to +; jeśli 1, to ). bit waga znak reprezentacja uzupełnienia do dwóch (U2), w której wartość najbardziej znaczacego bitu określa znak liczby (-128). bit waga Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 2 / 42
4 Reprezentacja liczb całkowitych reprezentacja znak - moduł, w której wartość najbardziej znaczacego bitu określa znak liczby (jeśli 0, to +; jeśli 1, to ). bit waga znak reprezentacja uzupełnienia do dwóch (U2), w której wartość najbardziej znaczacego bitu określa znak liczby (-128). bit waga We obydwu kodach znak przechowuje się w najstarszym bicie słowa maszynowego. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 2 / 42
5 Reprezentacja znak - moduł Przykłady reprezentacji znak - moduł: Liczba(10) Kod ZM Liczba(10) Kod ZM Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 3 / 42
6 Reprezentacja znak - moduł Reprezentacja ZNAK-MODUŁ - uwagi: Występuja dwie reprezentacje liczby 0 Zakres liczb L w formacie ZM: 2 n L 2 n 1 1 Zakres liczb 8-bitowych w kodzie ZM: 127,..., (ZM) = = 127 (minimalna) (ZM) = = 127 (maksymalna) Zakres liczb 16-bitowych: 32767,..., (ZM) = = (minimalna) (ZM) = = (maksymalna) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 4 / 42
7 Reprezentacja znak - moduł Przedstawienie liczby dziesiętnej w kodzie ZM znak liczby zakodować w najstarszym bicie słowa maszynowego moduł liczby przedstawić w kodzie BINARNYM rozszerzyć liczbę zerami z lewej strony do formatu słowa maszynowego, i.e., zadanej długości: 1B, 2B, 4B, itd. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 5 / 42
8 Reprezentacja znak - moduł Przedstawienie liczby dziesiętnej w kodzie ZM znak liczby zakodować w najstarszym bicie słowa maszynowego moduł liczby przedstawić w kodzie BINARNYM rozszerzyć liczbę zerami z lewej strony do formatu słowa maszynowego, i.e., zadanej długości: 1B, 2B, 4B, itd. Przykład: 117 (10) =? ZM 117 = 117 = (2) (ZM) (w formacie 8-bitowym) (ZM) (w formacie 16-bitowym) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 5 / 42
9 Reprezentacja uzupełnienia do dwóch bit waga Najstarszy bit jest bitem znaku: 0 - liczba dodatnia, 1 - liczba ujemna. Obliczenie liczby dokonuje się poprzez zsumowanie poszczególnych wag liczby. W kodzie U2 liczby dodatnie zapisywane sa tak samo jak w zwykłym kodzie binarnym, ale najbardziej znaczacy bit traktowany jest jako bit znaku. Liczby ujemne otrzymywane sa poprzez bitowa negację danej liczby oraz dodania do zanegowanej liczby jedynki. Nie ma podwójnej reprezentacji zera, ale przedział jest niesymetryczny. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 6 / 42
10 Reprezentacja uzupełnienia do dwóch bit waga Zakres liczb w formacie U2: 2 n 1 L 2 n 1 1 Nie istnieje liczba przeciwna do najmniejszej 2 n 1. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 7 / 42
11 Reprezentacja uzupełnienia do dwóch bit waga Zakres liczb w formacie U2: 2 n 1 L 2 n 1 1 Nie istnieje liczba przeciwna do najmniejszej 2 n 1. Zakres liczb 8-bitowych: < 128; 127 >: (U2) = 2 7 = 128 (minimalna) (U2) = = 127 (maksymalna) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 7 / 42
12 Reprezentacja uzupełnienia do dwóch bit waga Zakres liczb w formacie U2: 2 n 1 L 2 n 1 1 Nie istnieje liczba przeciwna do najmniejszej 2 n 1. Zakres liczb 8-bitowych: < 128; 127 >: (U2) = 2 7 = 128 (minimalna) (U2) = = 127 (maksymalna) Zakres liczb 16-bitowych: < 32768; >: (U2) = 2 15 = (minimalna) (U2) = = (maksymalna) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 7 / 42
13 Reprezentacja uzupełnienia do dwóch - przykłady bit waga Liczba(10) Kod U2 Liczba(10) Kod U Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 8 / 42
14 Zmiana długości słowa Jeśli chcemy liczbę n-bitowa reprezentować na m-bitach, gdzie m > n, to: w reprezentacji znak - moduł: należy przesunać bit znaku do najdalszej lewej pozycji oraz wypełnić pozostałe wolne pozycje zerami. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 9 / 42
15 Zmiana długości słowa Jeśli chcemy liczbę n-bitowa reprezentować na m-bitach, gdzie m > n, to: w reprezentacji znak - moduł: należy przesunać bit znaku do najdalszej lewej pozycji oraz wypełnić pozostałe wolne pozycje zerami. w reprezentacji uzupełnień do dwóch należy przesunać bit znaku do najdalszej lewej pozycji, a powstałe puste pozycje wypełnić kopiami bitu znaku. (Dla liczb dodatnich zerami, a dla ujemnych jedynkami.) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 9 / 42
16 Zmiana długości słowa - przykłady znak - moduł: liczba reprezentacja znak modu liczba bitw Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 10 / 42
17 Zmiana długości słowa - przykłady znak - moduł: liczba reprezentacja znak modu liczba bitw uzupełnienie do dwóch: liczba reprezentacja U2 liczba bitw Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 10 / 42
18 Od 8-bitowego kodu ZM do 8-bitowego kodu U2 W przypadku liczb całkowitych dodatnich kod ZM jest również kodem U2 tej liczby, np. 97 (10) = (ZM) = (U2) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 11 / 42
19 Od 8-bitowego kodu ZM do 8-bitowego kodu U2 W przypadku liczb całkowitych dodatnich kod ZM jest również kodem U2 tej liczby, np. 97 (10) = (ZM) = (U2) W przypadku liczb całkowitych ujemnych, aby otrzymać kod U2 należy: Bit znaku zamienić na zero. Wykonać negację bitowa otrzymanego kodu. Dodać jedynkę. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 11 / 42
20 Od 8-bitowego kodu ZM do 8-bitowego kodu U2 W przypadku liczb całkowitych dodatnich kod ZM jest również kodem U2 tej liczby, np. 97 (10) = (ZM) = (U2) W przypadku liczb całkowitych ujemnych, aby otrzymać kod U2 należy: Bit znaku zamienić na zero. Wykonać negację bitowa otrzymanego kodu. Dodać jedynkę. Przykład: 97 (10) = (ZM) Bit znaku zamieniamy na 0: Wykonujemy negację: Dodajemy 1: (10) = (ZM) = (U2) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 11 / 42
21 Arytmetyka liczb całkowitych w systemie U2 Negowanie: należy zanegować wszystkie bity liczby negowanej (negacja bitowa) i do otrzymanego wyniku dodać 1. Przykład: = 76 (10) = 76 (10) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 12 / 42
22 Dodawanie liczb w systemie U2 Dodawanie liczb w systemie U2 odbywa się standardowa metoda (bit po bicie). W operacji dodawania bierze udział bit znaku. Przeniesienie ze starszego bitu znakowego jest IGNOROWANE. Dodawanie liczb w systemie U2 daje poprawny wynik wtedy, gdy mieści się on w zakresie liczb dla danego formatu. Jeśli znaki obu składników sa jednakowe, a znak sumy jest przeciwny, to suma wykracza poza zakres reprezentowalności dla danego formatu, czyli powstaje przepełnienie (overflow). Przepełnienie jest sygnalizowane ustawieniem specjalnego znacznika w rejestrze znaczników procesora (OF=1); OF = Overflow Flag = przepełnienie. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 13 / 42
23 Dodawanie liczb w systemie U2 Wskaźnik przepełnienia: c z c l = 1 c z - przeniesienie z pozycji znakowej c l - przeniesienie do pozycji znakowej Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 14 / 42
24 Dodawanie liczb w systemie U2 - przykłady c z = 0, c l = = 64 (10) = 64 (10) przepelnienie c z c l = 1 = Przepełnienie Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 15 / 42
25 Dodawanie liczb w systemie U2 - przykłady = 53 (10) = 65 (10) = 12 (10) c z = 1, c l = 1 c z c l = 0 = Brak przepełnienia, przeniesiony bit z pozycji znakowej jest ignorowany. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 16 / 42
26 Dodawanie liczb w systemie U2 - przykłady = 53 (10) = 127 (10) przepelnienie c z = 1, c l = 0 c z c l = 1 = Przepełnienie Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 17 / 42
27 Dodawanie liczb w systemie U2 - przykłady = 60 (10) = 74 (10) = 14 (10) c z = 0, c l = 0 c z c l = 0 = Brak przepełnienia. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 18 / 42
28 Odejmowanie liczb w systemie U2 Odejmowanie to dodawanie liczby przeciwnej. Przykład: 2-7 = 2+(-7)=-5 2 (10) = (10) = (10) = = Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 19 / 42
29 Odejmowanie liczb w systemie U2 Odejmowanie to dodawanie liczby przeciwnej. Przykład: 2-7 = 2+(-7)=-5 2 (10) = (10) = (10) = = = 2 (10) = 7 (10) = 5 (10) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 19 / 42
30 Mnożenie liczb całkowitych w systemie U2 - przykłady 10 (10) 2 = = = 20 (10) 10 (10) 2 1 = = = 5 (10) 10 (10) 2 2 = = = 40 (10) 10 (10) 2 2 = = = 2.5 (10) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 20 / 42
31 Mnożenie liczb całkowitych w systemie ZM - przykłady 10 (10) 2 = = = 20 (10) 10 (10) 2 1 = = = 5 (10) 10 (10) 2 2 = = = 40 (10) 10 (10) 2 2 = = = 2.5 (10) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 21 / 42
32 Metody mnożenia liczb w systemie binarnym 1. Metoda mnożenia bezpośredniego. Jest stosowana do liczb zapisanych w kodzie ZM (znak moduł). Mnożenie w tej metodzie przebiega tak, jak mnożenie pisemne liczb dziesiętnych. Zatem jest ono zastapione wielokrotnym dodawaniem odpowiednio przesuniętej mnożnej. 2. Metoda Robertsona. 3. Algorytm powielonego znaku 4. Dwa warianty metody Bootha - dotyczy mnożenia ułamków w reprezentacji U2. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 22 / 42
33 Metoda mnożenia bezpośredniego - przykład = 17 (10) = 5 (10) = 85 (10) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 23 / 42
34 Metoda mnożenia bezpośredniego - przykład = 13 (10) = 3 (10) = 39 (10) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 24 / 42
35 Metoda Robertsona Stosowana jest dla liczb w systemie U2 Dla obu czynników dodatnich wykonujemy METODE MNOŻENIA BEZPOŚREDNIEGO. Dla obu czynników ujemnych wykonujemy następujac a prcedurę:. Bit znaku mnożnika ustawiamy na 0 Wykonujemy możenie METODA MNOŻENIA BEZPOŚREDNIEGO Otrzymany iloczyn korygujemy, odejmujac poprawkę. Dla mnożnej dotatniej i ujemnego mnożnika wykonujemy procedure jak dla obu czynników ujemnych; Dla sytuacji odwrotnej zamieniamy argumenty! Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 25 / 42
36 Metoda Robertsona - przykład 1 ( 5) (10) ( 3) (10) =? ( 5) (10) = 1011 (U2) ( 3) (10) = 1101 (U2) PSEUDOILOCZYN Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 26 / 42
37 Metoda Robertsona - przykład 1 Poprawka korekcyjna dla przypadku ujemnego mnożnika, wynosi tyle, co dopełnienie dwójkowe mnożnej przesuniętej w lewo o n 1 bitów A = 1011 A = A 2 3 = A = = Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 27 / 42
38 Metoda Robertsona - przykład 1 Poprawka korekcyjna dla przypadku ujemnego mnożnika, wynosi tyle, co dopełnienie dwójkowe mnożnej przesuniętej w lewo o n 1 bitów A = 1011 A = A 2 3 = A = = PSEUDOILOCZYN POPRAWKA = 15 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 27 / 42
39 Metoda Robertsona - przykład 2 (3) (10) ( 13) (10) =? (3) (10) = (U2) ( 13) (10) = (U2) PSEUDOILOCZYN Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 28 / 42
40 Metoda Robertsona - przykład 2 Poprawka korekcyjna dla przypadku ujemnego mnożnika, wynosi tyle, co dopełnienie dwójkowe mnożnej przesuniętej w lewo o n 1 bitów A = A = A 2 4 = A = = Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 29 / 42
41 Metoda Robertsona - przykład 2 Poprawka korekcyjna dla przypadku ujemnego mnożnika, wynosi tyle, co dopełnienie dwójkowe mnożnej przesuniętej w lewo o n 1 bitów A = A = A 2 4 = A = = PSEUDOILOCZYN POPRAWKA = 39 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 29 / 42
42 Algorytm powielonego znaku Dwukrotnie zwiększyć każda z liczb, powielajac bit znaku na wszystkie dodatkowe pozycje Po wykonaniu rozszerzenia znakowego liczby sa mnożone jak w kodzie BINARNYM Wynik powinien być liczba o długości równej sumie długości mnożonych liczb - bity wykraczajace poza tę długość sa ignorowane. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 30 / 42
43 Algorytm powielonego znaku - przykład Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 31 / 42
44 Mnożenie I metoda BOOTH A wariant I Porównywanie par bitów mnożnika (w U2). Badamy poczawszy od ostatniej pary bitów (cyfr) mnożnika. 1. Jeżeli badana para jest kombinacja 1 0, to od iloczynu częściowego odejmujemy mnożna A i przesuwamy wynik o jedno miejsce w prawo. 2. Jeżeli badana para jest odpowiednio para 0 1, to dodajemy mnożna do iloczynu częściowego i przesuwamy cały wynik o jedno miejsce w prawo. 3. Jeżeli badana para jest para o jednakowych cyfrach 0 0 lub 1 1, to wykonujemy tylko przesunięcie w prawo. 4. Jeżeli w skład pary wchodzi bit znakowy (znak), to nie wykonujemy przesunięcia. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 32 / 42
45 Mnożenie I metoda BOOTH A - przykład 1 Rozważmy dwie liczby: A = 7 32 = (ZM) = (U2) Aby obliczyć B = 1 32 = (ZM) = (U2) A B do liczby B na najmniej znaczacej pozycji dopisujemy 0, stad:. B = (U2) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 33 / 42
46 Mnożenie I metoda BOOTH A - przykład 1 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 34 / 42
47 Mnożenie I metoda BOOTH A - przykład 1 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 34 / 42
48 Mnożenie I metoda BOOTH A - przykład 1 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 34 / 42
49 Mnożenie I metoda BOOTH A - przykład 1 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 3. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 34 / 42
50 Mnożenie I metoda BOOTH A - przykład 1 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 3. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 4. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 34 / 42
51 Mnożenie I metoda BOOTH A - przykład 1 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 3. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 4. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 5. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 34 / 42
52 Mnożenie I metoda BOOTH A - przykład 1 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 3. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 4. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 5. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 6. para 1-1 ( (U2) ) - nic nie robimy, bo w skład pary wchodzi bit znaku. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 34 / 42
53 Mnożenie I metoda BOOTH A - przykład (U2) (U2) = (U2) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 35 / 42
54 Mnożenie I metoda BOOTH A - przykład 2 Rozważmy dwie liczby: A = 7 32 = (ZM) = (U2) Aby obliczyć B = 3 32 = (ZM) = (U2) A B do liczby B na najmniej znaczacej pozycji dopisujemy 0, stad:. B = (U2) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 36 / 42
55 Mnożenie I metoda BOOTH A - przykład 2 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 37 / 42
56 Mnożenie I metoda BOOTH A - przykład 2 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 37 / 42
57 Mnożenie I metoda BOOTH A - przykład 2 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 37 / 42
58 Mnożenie I metoda BOOTH A - przykład 2 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 3. para 0-1 ( (U2) ) - dodajemy mnożna do iloczynu częściowego i przesuwamy cały wynik o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 37 / 42
59 Mnożenie I metoda BOOTH A - przykład 2 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 3. para 0-1 ( (U2) ) - dodajemy mnożna do iloczynu częściowego i przesuwamy cały wynik o jedno miejsce w prawo, 4. para 0-0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 37 / 42
60 Mnożenie I metoda BOOTH A - przykład 2 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 3. para 0-1 ( (U2) ) - dodajemy mnożna do iloczynu częściowego i przesuwamy cały wynik o jedno miejsce w prawo, 4. para 0-0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 5. para 0-0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 37 / 42
61 Mnożenie I metoda BOOTH A - przykład 2 Badamy kolejne bity mnożnika (czyli kolejne bity liczby B): 1. para 1-0 ( (U2) ) - od iloczynu częściowego odejmujemy mnożna (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. para 1-1 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 3. para 0-1 ( (U2) ) - dodajemy mnożna do iloczynu częściowego i przesuwamy cały wynik o jedno miejsce w prawo, 4. para 0-0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 5. para 0-0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 6. para 0-0 ( (U2) ) - nic nie robimy, bo w skład pary wchodzi bit znaku. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 37 / 42
62 Mnożenie I metoda BOOTH A - przykład (U2) (U2) = (U2) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 38 / 42
63 Mnożenie metoda BOOTH A - II wariant 1. Przesuwamy mnożna o jedno miejsce w prawo (uzyskujemy A 2 - A - pół ). 2. Badamy ostatni bit mnożnika, jeżeli jest on równy 1, to dodajemy mnożna do iloczynu częściowego, który jest równy zeru na poczatku mnożenia, jeżeli ostatni bit mnożnika jest równy 0, to nie wykonujemy żadnego działania. 3. Przesuwamy iloczyn częściowy o jedno miejsce w prawo. 4. Przechodzimy do badania kolejnego bitu mnożnika. Jeżeli badany bit jest bitem znaku, to wtedy gdy jego wartość wynosi 1, to odejmujemy mnożna od iloczynu częściowego, zaś gdy jest on równy 0 nie wykonujemy żadnego działania. 5. Uzyskany iloczyn częściowy przesuwamy o jedno miejsce w lewo (powrót do A), wynik jest w postaci U2. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 39 / 42
64 Mnożenie II metoda BOOTH A - przykład Rozważmy dwie liczby: A = = (ZM) = (U2) Aby obliczyć B = = (ZM) = (U2) A B przesuwamy mnożna o jedno miejsce w prawo - uzyskanie wartości A - pół :. A = (U2) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 40 / 42
65 Mnożenie II metoda BOOTH A - przykład 1. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 41 / 42
66 Mnożenie II metoda BOOTH A - przykład 1. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 41 / 42
67 Mnożenie II metoda BOOTH A - przykład 1. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, 3. bit 0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 41 / 42
68 Mnożenie II metoda BOOTH A - przykład 1. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, 3. bit 0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 4. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 41 / 42
69 Mnożenie II metoda BOOTH A - przykład 1. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, 3. bit 0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 4. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, 5. bit 0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 41 / 42
70 Mnożenie II metoda BOOTH A - przykład 1. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, 3. bit 0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 4. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, 5. bit 0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 6. bit znaku 1 ( (U2) ) - robimy tzw. poprawkę - odejmujemy mnożna od iloczynu częściowego, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 41 / 42
71 Mnożenie II metoda BOOTH A - przykład 1. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół (iloczyn częściowy wynosi na poczatku 0), następnie przesuwamy wynik o jedno miejsce w prawo, 2. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, 3. bit 0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 4. bit 1 ( (U2) ) - do iloczynu częściowego dodajemy mnożna A-pół, następnie przesuwamy wynik o jedno miejsce w prawo, 5. bit 0 ( (U2) ) - przesuwamy iloczyn częściowy o jedno miejsce w prawo, 6. bit znaku 1 ( (U2) ) - robimy tzw. poprawkę - odejmujemy mnożna od iloczynu częściowego, 7. otrzymany wynik przesuwamy o jedno miejsce w lewo. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 41 / 42
72 Mnożenie II metoda BOOTH A - przykład Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 42 / 42
Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Bardziej szczegółowoArytmetyka binarna - wykład 6
SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2
Bardziej szczegółowoNaturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Bardziej szczegółowoArytmetyka stałopozycyjna
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoKod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Bardziej szczegółowoWprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Bardziej szczegółowoPracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
Bardziej szczegółowoARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
Bardziej szczegółowoMNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)
MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy
Bardziej szczegółowoPodstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Bardziej szczegółowoSystem liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.
2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoOperacje arytmetyczne
PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik
Bardziej szczegółowoPodstawy Informatyki dla Nauczyciela
Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja
Bardziej szczegółowoArytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Bardziej szczegółowoPracownia Komputerowa wyk ad V
Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowo1. Operacje logiczne A B A OR B
1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoB.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
Bardziej szczegółowoWstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Bardziej szczegółowoARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Bardziej szczegółowoDr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30
Bardziej szczegółowoSystemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Bardziej szczegółowoLiczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:
Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,
Bardziej szczegółowoZestaw 3. - Zapis liczb binarnych ze znakiem 1
Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b
Bardziej szczegółowo1259 (10) = 1 * * * * 100 = 1 * * * *1
Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoInformatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy
Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka
Bardziej szczegółowoCyfrowy zapis informacji
F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoPozycyjny system liczbowy
Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków
Bardziej szczegółowo2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Bardziej szczegółowoUkłady arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011
Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy
Bardziej szczegółowoStan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
Bardziej szczegółowoSystemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoSYSTEMY LICZBOWE. Zapis w systemie dziesiętnym
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoprzeniesienie pożyczka
1.4. Działania arytmetycznie 33 liter i znaków (jest tzw. kodem alfanumerycznym). Większość kombinacji kodowych może mieć dwa różne znaczenia; o wyborze właściwego decyduje to, który z symboli Litery",
Bardziej szczegółowoTechnika cyfrowa Układy arytmetyczne
Sławomir Kulesza Technika cyfrowa Układy arytmetyczne Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Układy arytmetyczne UKŁADY ARYTMETYCZNE UKŁADY SUMUJĄCE i ODEJMUJĄCE UKŁADY MNOŻĄCE
Bardziej szczegółowoSYSTEMY LICZBOWE 275,538 =
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Kod znak-moduł (ZM) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoPracownia Komputerowa wyk ad IV
Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoReprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej
Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne
Bardziej szczegółowoArchitektura systemów komputerowych. Arytmetyka maszyn cyfrowych
Architektura systemów komputerowych Plan wykładu. Typy danych w komputerach. 2. Układ arytmetyczno-logiczny. 3. Instrukcje zależne od ALU. 4. Superskalarność. Cele Wiedza na temat arytmetyki maszyn cyfrowych.
Bardziej szczegółowoTeoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Bardziej szczegółowoPracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Bardziej szczegółowoWprowadzenie do informatyki ćwiczenia
Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoArchitektura systemów komputerowych. Poziom układów logicznych. Układy mnoŝące i dzielące
Architektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Plan wykładu Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka
Bardziej szczegółowoOpis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi
Bardziej szczegółowoPlan wykładu. Architektura systemów komputerowych. MnoŜenie realizacja sprzętowa (wersja 1) Układy mnoŝące liczby całkowite.
Plan wykładu rchitektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka sekwencyjna
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej
Bardziej szczegółowoWstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoDYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE
ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5
Bardziej szczegółowoPrzedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
Bardziej szczegółowoOperacje arytmetyczne w systemie dwójkowym
Artykuł pobrano ze strony eioba.pl Operacje arytmetyczne w systemie dwójkowym Zasady arytmetyki w systemie binarnym są identyczne (prawie) jak w dobrze nam znanym systemie dziesiętnym. Zaletą arytmetyki
Bardziej szczegółowoPodstawy Informatyki Maszyna Turinga
Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga 2 3 4 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga,
Bardziej szczegółowoArytmetyka stało i zmiennoprzecinkowa
Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja
Bardziej szczegółowo3.3.1. Metoda znak-moduł (ZM)
3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
Bardziej szczegółowoRODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.
RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA
Bardziej szczegółowoDZIESIĘTNY SYSTEM LICZBOWY
DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca
Bardziej szczegółowoDla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego
Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
Bardziej szczegółowoINFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.
INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl
Bardziej szczegółowoPodstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze
Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoUkłady kombinacyjne 1
Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowoKodowanie liczb całkowitych w systemach komputerowych
Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja
Bardziej szczegółowoModuł 2 Zastosowanie systemów liczbowych w informacji cyfrowej
Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
Bardziej szczegółowoSzybkie układy mnożące
Szybkie układy mnożące Operacja mnożenia Operacje dodawania i mnożenia są podstawą algorytmów obliczania wartości innych złożonych funkcji matematycznych oraz przetwarzania sygnałów Implementacje bitowo-szeregowe
Bardziej szczegółowo9 10 = U1. Przykład dla liczby dziesiętnej ( 9): negacja 1001= =10110 U1. Podsumowując: w zapisie dziesiętnym
2 Egzamin maturalny z informatyki Zadanie 1. Liczba binarna (8 pkt) Kod uzupełnień do jedności to jeden ze sposobów maszynowego zapisu liczb całkowitych, tradycyjnie oznaczany skrótem U1. Zapis liczb całkowitych
Bardziej szczegółowoDodawanie liczb binarnych
1.2. Działania na liczbach binarnych Liczby binarne umożliwiają wykonywanie operacji arytmetycznych (ang. arithmetic operations on binary numbers), takich jak suma, różnica, iloczyn i iloraz. Arytmetyką
Bardziej szczegółowoProgramowanie Niskopoziomowe
Programowanie Niskopoziomowe Wykład 2: Reprezentacja danych Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Kilka ciekawostek Zapisy binarny, oktalny, decymalny
Bardziej szczegółowoPlan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.
Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby
Bardziej szczegółowoSzybkie układy mnożące
Szybkie układy mnożące Operacja mnożenia Operacje dodawania i mnożenia są podstawą algorytmów obliczania wartości innych złożonych funkcji matematycznych oraz przetwarzania sygnałów Implementacje bitowo-szeregowe
Bardziej szczegółowoKod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci
Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f
Bardziej szczegółowoMetody numeryczne II. Reprezentacja liczb
Metody numeryczne II. Reprezentacja liczb Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Reprezentacja liczb Reprezentacja stałopozycyjna
Bardziej szczegółowoPracownia Komputerowa wyk ad VI
Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite
Bardziej szczegółowoOperatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia:
Operatory logiczne Komputery i ich logika AND - && Podstawy programowania w C++ Operatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia: CPA: PROGRAMMING ESSENTIALS IN C++ https://www.netacad.com
Bardziej szczegółowoTechniki multimedialne
Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo
Bardziej szczegółowo