Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy"

Transkrypt

1 Wstęp doinformatyki Systemy liczbowe i arytmetyka komputerów Dr inż. Ignacy Pardyka kademia Świętokrzyska Kielce, System dziesiętny Liczba: 5= *+5*+* - każdą z cyfr mnożymy przez tzw. wagę pozycji, która jest kolejną potęgą liczby będącej podstawą systemu liczenia: 5 () =* + 5* + * - liczbę dziesiętną można zapisać jako: L () =a n * n + a n- * n- + a n- * n a * + a * + a * Współczynniki a nmogą mieć wartość:,,,,,5,6,7,8,9 Slajd Slajd Inne systemy System dwójkowy W technice komputerowej praktyczne zastosowanie znalazły systemy: o podstawie - tzw. system binarny (dwójkowy) używany do przechowywania i przetwarzania danych przez układy elektroniczne komputera o podstawie 6 - tzw. system heksadecymalny (szesnastkowy), używany głównie do prezentacji niektórych danych m.in. adresów komórek pamięci Liczbę w systemie o podstawie możemy przedstawić jako: L () =a n * n + a n- * n- + a n- * n a * + + a * + a * współczynniki a n mogą przybierać tylko dwie wartości: lub Slajd Slajd System szesnastkowy Konwersja do Liczbę w systemie szesnastkowym (o podstawie 6) możemy przedstawić jako: L (6) =a n *6 n + a n- *6 n- + a n- *6 n a *6 + a *6 + a *6 współczynniki a n mogą być liczbami:,,,,,5,6,7,8,9,,,,,,5 Cyfry od do 5 zastąpiono w zapisie literami: -, - B, C, D, E, 5 F Najmłodszy bit Najstarszy bit Podziel liczbę dziesiętną przez z resztą (reszta może być albo). Zapisz resztę na najmłodszej pozycji. Wynik dzielenia podziel przez z resztą. Resztę zapisz na starszej pozycji. itd. aż do otrzymania najstarszego bitu. Np. 69 () = () Slajd 5 Slajd 6

2 Konwersja do Konwersja do 6 Liczba dziesiętna 69 to binarnie: lgorytm zamiany liczby binarnej na heksadecymalną: dzielimy liczbę binarną na tzw. kęsy (tetrady) o długości bitów (licząc od ostatniej pozycji) czyli: Dla każdej tetrady znajdujemy wartość dziesiętną i zapisujemy ją w postaci heksadecymalnej binarnie dziesiętnie 5 heksadecymalnie 5 tak więc: 5 (6) =*6 + 5*6 =6+5=69 Slajd 7 Slajd 8 SCII SCII Znak B C K L ź + Kod dzies Kod binarny Znak a b c k l Ż Ă - Kod dzies Kod binarny NUL SOH STX ETX EOT 5 ENQ 6 CK 7 BEL 8 BS 9 HT NL VT NP CR SO 5 SI 6 DLE 7 DC 8 DC 9 DC DC NK SYN ETB CN 5 EM 6 SUB 7 ESC 8 FS 9 GS RS US SP! " 5 # 6 $ 7 % 8 & 9 ' ( ) * +, / : 59 ; 6 < 6 = 6 > 6? B 67 C 68 D 69 E 7 F 7 G 7 H 7 I 7 J 75 K 76 L 77 M 78 N 79 O 8 P 8 Q 8 R 8 S 8 T 85 U 86 V 87 W 88 X 89 Y 9 Z 9 [ 9 \ 9 ] 9 ^ 95 _ 96 ` 97 a 98 b 99 c d e f g h 5 i 6 j 7 k 8 l 9 m n o p q r 5 s 6 t 7 u 8 v 9 w x y z { 5 } 6 ~ 7 DEL Slajd 9 Slajd UNICODE Jednostki informacji 56 znaków alfanumerycznych jakie można zakodować za pomocą rozszerzonego kodu SCII nie dawało możliwości zakodowania znaków diakrytycznych wielu języków, w tym japońskiego, arabskiego, hebrajskiego itd. UNICODE kod o długości 6 bitów dla każdego znaku, daje możliwość zakodowania 6 czyli 6556 znaków kbit [Kb]= b= bity Mbit[Mb]= Kb=8576 bity Gbit = Mb = bitów Tbit = Gb = bitów byte = 8 bitów kb = bajtów= B MB= KB=8576 B Slajd Slajd

3 Systemy liczbowe Liczby dziesiętne Podstawa ( cyfr) = ( * )+(* )+(* )+(* ) Liczby dwójkowe (binarne) Podstawa (cyfry:,) cyfrowa (bitowa) liczba d d d 9 d d d => d * +d * + +d * +d * () = ( ) Liczby szesnastkowe (heksadecymalne) Podstawa6(cyfry:,,,,,5,6,7,8,9,,B,C,D,E,F) d 7 d 6 d 5 d d d d d => d 7 *6 7 +d 6 * 6 + +d *6 +d *6 () = ( C D) 6 => C*6 +*6 + D*6 Reprezentacja danych Za pomocą bitów możemy reprezentować: Znaki 6 liter => 5 bitów Wielkie i małe litery + znaki interpunkc. => 7 bitów (na 8) Inne języki świata => 6 bitów (unicode) Liczby bez znaku - unsigned numbers (,,, n- ) Wartości logiczne ->False,=>True Kolory dresy / rozkazy le n bitów może reprezentować jedynie n rzeczy Slajd Slajd ZM liczby ujemne ZM - problemy Najstarszy bit bit znaku => +, => - Pozostałe bity moduł Znak-moduł (sign and magnitude) MIPSużywa -bit liczb całkowitych (6-bit immediates/displacements) + ten to: - ten to:. Złożone układy arytmetyczne Konieczność badania znaku. Dwie reprezentacje zera x = + ten x8 = - ten W programie będzie więc(+ ==-) Reprezentacja odrzucona Slajd 5 Slajd 6 U (one s complement) Liczba ujemna po zanegowaniu bitów Przykład: 7 = -7 = Liczby dodatnie mają wiodące zera,liczby ujemne wiodące jedynki Podwójna reprezentacja zera x =+ ten xffffffff =- ten U (two s complement) Liczby dodatnie najstarszy bit Liczba ujemna: zanegowanie bitów + JEDEN Przykład = - = + = 7 = -7 = + = Liczby dodatnie: najstarszy bit Liczby ujemne: najstarszy bit Slajd 7 Slajd 8

4 U U n- nieujemnych n- ujemnych Jednozero n- - dodatnich... two = ten... two = ten... two = ten two =,7,8,65 ten... two =,7,8,66 ten... two =,7,8,67 ten... two =,7,8,68 ten... two =,7,8,67 ten... two =,7,8,66 ten two = ten... two = ten... two = ten Slajd 9 Slajd U Negacja U Można traktować jako rozwinięcie potęgi ze znakiem: d x(- ) +d x d x +d x +d x Przykład two = x- +x +x x +x +x = = -,7,8,68 ten +,7,8,6 ten =- ten UWG: należy określić długość liczby: tutaj bity Inwersjakażdego na i każdej na, do rezultatu dodać Suma liczby i jej inwersji (one s complement) musi być... two =- ten Niech x oznacza inwersję x Wtedy x + x = - x+x += x +=-x Np: - na + na - x: two x : two +: two () : two +: two Slajd Slajd Powielanie znaku Porównanie kodów Konwersja liczby U zapisanej na n bitach do postaci zapisanej na większej liczbie bitów Powielenie bitu znaku (sign bit) na starsze pozycje U dodatnie, powiel Uujemne,powiel Przykład: 6-bit - ten na -bit: two two N decimal (+N) NKB N (-N) ZM N (-N) U N (-N) U Slajd Slajd

5 LU Dodawanie I- instruction 5 ten +6 ten (5 ten ) + (6 ten ) = ( ten )...() () () () () Carries -bit memory address () () () () Slajd 5 Slajd 6 Odejmowanie Mnożenie przez : Bit ing ten -5 ten ( ten ) - ( 5 ten ) = ( 7 ten ) W lewo (x << ) mnoży przez: = = 6 = - = -6 ten -5 ten = ten +(-5 ten ) ( ten ) + ( -5 ten ) Dla liczb całkowitych bez znaku a także dla U (uzupełnienie dwójowe, complement). = ( 7 ten ) Slajd 7 Slajd 8 Dzielenie przez : Bit ing Mnożenie liczb całkowitych Logical w prawo (x >> ) dzieli przez (liczby bez znaku): = 7 = 9 = = Zaokrągla w dół! rytmetycznie w prawo (x >> ) dzieli (dla liczb w kodzie U) = 7 = -7 = = - Zaokrągla w dół! 5 ten x6 ten (5 ten ) x ( 6 ten ) = ( ten ) M RL RH = W kodzie U gdy mnożnik ujemny potrzebna korekta wyniku: odjąć Mod starszej tetrady. Slajd 9 Slajd 5

6 Mnożenie: sprzęt Mnożenie: przykład M Mnożna Mnożna () x Mnożnik () M... M Iloczyn () kierunek przesuwania (w prawo) Układ sterowania SHF RH RL LU C C -bit LU right dd Control... Q... Q Mnożnik C Q M Initial values dd dd dd Slajd Slajd Mnożnik ujemny: przykład x (9) x () x x (7) Unsigned Signed (-7) x () (-7) x = (-7) (-7) x = (-) (-) Prosty algorytm mnożenia da wynik nieporawny (7)! Slajd lgorytm Bootha: mnożnik > Mnożnik: (blok k jedynek pomiędzy zerami) Mx() =Mx( ) =Mx(6+8++) 5 =Mx uwaga: n + n n-k = n+ n-k =>Mx()=Mx( 5 - ) lgorytm: Odejmij M gdy rozpoczyna się blok jedynek (-) Dodaj M gdy blok się skończył (-) Zastosuj metodę dla każdego bloku jedynek Slajd lgorytm Bootha: mnożnik < Reprezentacja liczb ujemnych U (X): {x n- x n-...x x } X=- n- +x n- * n- +x n- * n-...x * Prawostronne zero jest na pozycji k Reprezentacja X = { X k- X } X=- n- + n-... k+ +x k- * k-...x * - n- + n- + + k+ =- k+ X=- k+ +x k- * k-...x * lgorytm Bootha - schemat STRT =, Q - M Mnożna Q Mnożnik Count n Q,Q - = = - M + M = rithmetic shift right:, Q, Q - Count Count - (-) początek bloku, więc odejmij M Count =? END Slajd 5 Slajd 6 6

7 Przykład (/) Przykłady (/) początkowo 7 () x () Q Q - M =- M =+ M (7) x () () (-7) x () (-) (7) x (-) (-) (-7) x (-) () Slajd 7 Slajd 8 Dzielenie liczb całkowitych Dzielenie bez znaku liczby całkowite binarne bez znaku dzielnik (divisor) reszty cząstkowe iloraz (quotient) dzielna (dividend) reszta (remainder) STRT Q M dzielnik Q dzielna Count n, left:, Q - M <? Count Count - Q + M dzielna = iloraz * dzielnik + reszta Count =? END Iloraz w Q Reszta w Slajd 9 Slajd Dzielenie: sprzęt Control dd SLL M... M -bit LU Dzielnik write write... Q... Q Dzielna 7/: Dzielenie: przykład Q M = Wartości początkowe =-M =+M =-M =+M =-M Q = =-M =+M Slajd Slajd 7

8 Dzielenie ze znakiem Rozwiązanie najprostsze: Negować iloraz jeśli znaki dzielnej i dzielnika różne Reszta i dzielna muszą być tego samego znaku reszta = (dzielna iloraz * dzielnik) (+7) / (+): Q = ; R = (-7) / (+): Q = -; R = - (+7) / (-): Q = -; R = (-7) / (-): Q = ; R = - Dzielenie ze znakiem: schemat STRT + M, Q dzielna M dzielnik, Count n left:, Q S, Count Count- M =? S=? - M = and Q Q=? Slajd Count =? END Iloraz w Q Reszta w Slajd Q Przykłady (/) M = Wartości początkowe Q = Q M = Wartości początkowe dd dd dd Q = dd Przykłady (/) Wart. początkowe (7) / () (7) / (-) (-7) / () (-7) / (-) Slajd 6 Slajd 5 Q M = Wart. początkowe dd dd dd Q = dd Q M = Q = Liczby zmiennoprzecinkowe FP. 5 FP standard: IEEE = mantysa wykładnik mantysa znak & moduł: ZM (pominięta wiodąca ) Własności: Dłuższa mantysa większa dokładność. Dłuższy wykładnik większy zakres. = xb8 wykładnik, reprezentacja polaryzowana: BIS BIS = 7 = -7 = - = =... = 8 Slajd 7 Slajd 8 8

9 FP standard: IEEE 75 Formaty: Pojedyncza precyzja (single-precision) mantysa: bity, wykładnik: 8 bitów. zakres dodatnich: Podwójna precyzja (double-precision) mantysa: 5 bity, wykładnik: bitów. zakres: Single Precision Double Precision Reprezentacja FP IEEE 75 Znormalizowana notacja: +.xxxx two * yyyytwo S wykładnik bit 8bits bits S wykładnik 9 bit bits bits mantysa (cd.) bits mantysa (significand) mantysa (significand) Exponent: BIS (polaryzowany) Mantysa: ZM Bias 7 (SP) (DP) Slajd 9 Slajd 5 Konwersja do Konwersjado Znak: => dodatnia Wykładnik: two = ten Korekta BIS: - 7 = - Mantysa: =+x - +x - +x - +x - +x = = x x. Mantysa: Znak: ujemny => Wykładnik: + 7 = 8 ten = two. x => -... x Wartość:.6665* - ~.986* -7 Slajd 5 Slajd 5 Negative Overflow NaN Wartości szczególne FP Negative Underflow Expressible Negative Numbers Positive Underflow Expressible Positive Numbers Positive Overflow -(- - )* 8 -.5* -7.5* -7 (- - )* 8 Wartość +/- Liczba nieznormaliz. +/- infinity Wykładnik Mantysa nzero nzero Slajd 5 De-normalizacja Problem: luka reprezentacji FP wokół Liczba min. a =. * -6 = -6 Liczba min. > a: b =... * -6 = a-= -6 b b-a= -9 luka! - + Rozwiązanie: a Denormalizacja liczb: tj. bez wiodącej Liczba min. a = -9 Liczba min. > a: b = -8 a-= -9 b-a= Slajd 5 9

10 Zaokrąglanie Gdy konwersja typów Double single precision integer Zaokrąglanie do + Zawsze w górę:. => ; -. => - Zaokrąglanie do - Zawsze w dół:.999 => ; => - Odrzucanie (truncate) Zerowanie najmłodszych bitów Zaokrąglanie do najbliższej liczby.5 => ;.5 => Błędy FP Czy FP przemienne względem dodawania i odejmowania? x=.5x 8,y=.5x 8, and z =. x + (y + z) =.5x 8 + (.5x 8 +.) =.5x 8 + (.5x 8 ) =. (x + y) + z = (.5x 8 +.5x 8 ) +. = (.) +. =. Operacje: +, - nie są przemienne! Dlaczego? FP aproksymuje rzeczywisty wynik.5x 8 >>. więc.5x 8 +.w reprezentacji FP to dalej.5x 8 Slajd 55 Slajd 56 FP dodawanie / odejmowanie Trudniejsze niż liczb całkowitych Nie można beztrosko dodawać mantys lgorytm De-normalizować aby wykładniki były równe Dodać (odjąć) mantysy Zachować wspólny wykładnik Znormalizować wynik (zmieniając wykładnik) Uwaga: odejmowanie, gdy różne znaki mantys. lgorytm:.. Przesunąć mniejszą z liczb w prawo aż do zrównania wykładników. Dodać mantysy. Znormalizować rezultat. Zaokrąglić mantysę 5. Znormalizować powtórnie FP operacje: + - Np. ( cyfrowa mantysa): = = =. - =. Dodatkowa cyfra do zaokrąglenia. Slajd 57 Slajd 58 FP mnożenie FP dzielenie lgorytm: lgorytm:. Pomnożyć mantysy (mnożenie liczb bez znaku & ustalenie znaku wyniku). Dodać wykładniki (dodawanie liczb całkowitych polaryzowanych - BIS). rmalizować rezultat, sprawdzić over/underflow. Zaokrąglić mantysę 5. rmalizować rezultat powtórnie, sprawdzić over/underflow Np. ( cyfrowa mantysa): = = = Podziel mantysy (dzielenie liczb całkowitych bez znaku & ustalenie znaku). Odejmij wykładniki (odejmowanie liczb całkowitych polaryzowanych BIS). rmalizować rezultat, sprawdzić over/underflow. Zaokrąglić mantysę 5. rmalizować wynik powtórnie, sprawdzając over/underflow Np. ( cyfrowa mantysa):. - / = = = -. - = Slajd 59 Slajd 6

11 FP sprzęt MIPS Slajd 6

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,

Bardziej szczegółowo

L6.1 Systemy liczenia stosowane w informatyce

L6.1 Systemy liczenia stosowane w informatyce L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

Pozycyjny system liczbowy

Pozycyjny system liczbowy Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

Pracownia Komputerowa wykład VI

Pracownia Komputerowa wykład VI Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW. Reprezentacja danych w komputerach

ARCHITEKTURA KOMPUTERÓW. Reprezentacja danych w komputerach Reprezentacja danych w komputerach dr inż. Wiesław Pamuła wpamula@polsl.katowice.pl Literatura 2. J.Biernat: Architektura komputerów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław2002. 3. Null

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

Arytmetyka stało i zmiennoprzecinkowa

Arytmetyka stało i zmiennoprzecinkowa Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Architektura systemów komputerowych. Poziom układów logicznych. Układy mnoŝące i dzielące

Architektura systemów komputerowych. Poziom układów logicznych. Układy mnoŝące i dzielące Architektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Plan wykładu Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Prefiksy binarne. kibibit (Kibit) mebibit (Mibit) gibibit (Gibit) tebibit (Tibit) pebibit (Pibit) exbibit (Eibit) zebibit (Zibit) yobibit (Yibit)

Prefiksy binarne. kibibit (Kibit) mebibit (Mibit) gibibit (Gibit) tebibit (Tibit) pebibit (Pibit) exbibit (Eibit) zebibit (Zibit) yobibit (Yibit) Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Metody numeryczne II. Reprezentacja liczb

Metody numeryczne II. Reprezentacja liczb Metody numeryczne II. Reprezentacja liczb Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Reprezentacja liczb Reprezentacja stałopozycyjna

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

ARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe

ARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe ARCHITEKTURA KOMPUTERÓW 17.11.2010 Liczby zmiennoprzecinkowe Sprawa bardzo podobna jak w systemie dziesiętnym po przecinku mamy kolejno 10-tki do ujemnych potęg, a w systemie binarnym mamy 2-ki w ujemnych

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. MnoŜenie realizacja sprzętowa (wersja 1) Układy mnoŝące liczby całkowite.

Plan wykładu. Architektura systemów komputerowych. MnoŜenie realizacja sprzętowa (wersja 1) Układy mnoŝące liczby całkowite. Plan wykładu rchitektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka sekwencyjna

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Podstawy Informatyki dla Nauczyciela

Podstawy Informatyki dla Nauczyciela Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

Systemem liczenia systemach addytywnych !!" Pozycyjny system liczbowy podstawą systemu pozycyjnego

Systemem liczenia systemach addytywnych !! Pozycyjny system liczbowy podstawą systemu pozycyjnego Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Podstawą systemów liczenia są systemy liczbowe

Bardziej szczegółowo

Technologie informacyjne (3) Zdzisław Szyjewski

Technologie informacyjne (3) Zdzisław Szyjewski Technologie informacyjne (3) Zdzisław Szyjewski Technologie informacyjne Technologie pracy z komputerem Funkcje systemu operacyjnego Przykłady systemów operacyjnych Zarządzanie pamięcią Zarządzanie danymi

Bardziej szczegółowo

Pracownia Komputerowa wyk ad V

Pracownia Komputerowa wyk ad V Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa. INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

Temat 4. Kodowanie liczb

Temat 4. Kodowanie liczb Temat 4. Kodowanie liczb Spis treści do tematu 4 4.1. Kodowanie liczb stałopozycyjnych 4.1.1. Naturalny kod binarny NKB 4.1.2. Kod dwójkowo-dziesiętny BCD 4.1.3. Kod Graya 4.1.4. Kod znak-moduł 4.1.5.

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 2: Reprezentacja danych Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Kilka ciekawostek Zapisy binarny, oktalny, decymalny

Bardziej szczegółowo

Informatyka 1. Wykład nr 4 ( ) Plan wykładu nr 4. Politechnika Białostocka. - Wydział Elektryczny

Informatyka 1. Wykład nr 4 ( ) Plan wykładu nr 4. Politechnika Białostocka. - Wydział Elektryczny Rok akademicki 8/9, Wykład nr 4 /8 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 8/9 Wykład nr

Bardziej szczegółowo

Jednostki informacji - bit. Kodowanie znaków: ASCII, ISO 8859, Unicode liczb: NKB (BCN), U2, BCD. Liczby zmiennoprzecinkowe standard IEEE 754

Jednostki informacji - bit. Kodowanie znaków: ASCII, ISO 8859, Unicode liczb: NKB (BCN), U2, BCD. Liczby zmiennoprzecinkowe standard IEEE 754 Rok akademicki 06/07, Pracownia nr /33 Pracownia nr Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki 06/07 Jednostki informacji

Bardziej szczegółowo

Cel wykładu. Cel wykładu. Cel wykładu, cd. Cel wykładu, cd. Cel wykładu, cd. Z. Postawa, "Podstawy Informatyki II" Strona: 1 z 6

Cel wykładu. Cel wykładu. Cel wykładu, cd. Cel wykładu, cd. Cel wykładu, cd. Z. Postawa, Podstawy Informatyki II Strona: 1 z 6 Prof. dr hab. Zbigniew Postawa Zakład Fizyki Nanostruktur i Nanotechnologii pok. 16 (nie 016!) Tel. 5626 e-mail: zbigniew.postawa@uj.edu.pl Sala 057, poniedziałek 16 05 Bez egzaminu C C Cel wykładu Podstawowe

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Podstawy informatyki (2)

Podstawy informatyki (2) Podstawy informatyki (2) dr inż. Sebastian Pluta pluta@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Informacje informatyka to nauka o przetwarzaniu i przechowywaniu informacji informacja

Bardziej szczegółowo

W jaki sposób użyć tych n bitów do reprezentacji liczb całkowitych

W jaki sposób użyć tych n bitów do reprezentacji liczb całkowitych Arytmetyka komputerowa Wszelkie liczby zapisuje się przy użyciu bitów czyli cyfr binarnych: 0 i 1 Ile różnych liczb można zapisać używajac n bitów? n liczby n-bitowe ile ich jest? 1 0 1 00 01 10 11 3 000001010011100101110111

Bardziej szczegółowo

Technologie informacyjne (3) Zdzisław Szyjewski

Technologie informacyjne (3) Zdzisław Szyjewski Technologie informacyjne (3) Zdzisław Szyjewski Technologie informacyjne Technologie pracy z komputerem Funkcje systemu operacyjnego Przykłady systemów operacyjnych Zarządzanie pamięcią Zarządzanie danymi

Bardziej szczegółowo

Dodawanie liczb binarnych

Dodawanie liczb binarnych 1.2. Działania na liczbach binarnych Liczby binarne umożliwiają wykonywanie operacji arytmetycznych (ang. arithmetic operations on binary numbers), takich jak suma, różnica, iloczyn i iloraz. Arytmetyką

Bardziej szczegółowo

Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1

Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1 Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1 Bity i kody binarne Bit (binary digit) najmniejsza ilość informacji {0, 1}, wysokie/niskie napięcie

Bardziej szczegółowo

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki 2014/2015 Pracownia nr 2 (08.10.2014) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:

B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską: Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka

Bardziej szczegółowo

Arytmetyka stało- i zmiennoprzecinkowa. 1. Informacje wstępne

Arytmetyka stało- i zmiennoprzecinkowa. 1. Informacje wstępne Arytmetyka stało- i zmiennoprzecinkowa 1. Informacje wstępne Każdą informację można przedstawid w komputerze za pomocą łaocucha elemantarnych jednostek, zwanych bitami. W przypadku, gdy chcielibyśmy wyrazid

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Zmiennoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa

Bardziej szczegółowo