Podstawy Informatyki
|
|
- Nina Żurawska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Podstawy Informatyki Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23
2 LICZBY RZECZYWISTE - Algorytm Hornera Pozwala zakodować dziesiętna liczbę rzeczywista posiadajac a zarówno część całkowita, jak i ułamkowa, w innym wybranym systemie pozycyjnym. Ma tylko jedno ograniczenie - należy z góry określić ilość cyfr, na której (co najwyżej) będziemy kodowali część ułamkowa czyli ilość cyfr po przecinku. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 2 / 23
3 LICZBY RZECZYWISTE - Algorytm Hornera Dana jest dziesiętna liczba rzeczywista A. Aby zakodować tę liczbę w systemie o podstawie q: Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 3 / 23
4 LICZBY RZECZYWISTE - Algorytm Hornera Dana jest dziesiętna liczba rzeczywista A. Aby zakodować tę liczbę w systemie o podstawie q: Przyjmujemy dokładność do n cyfr po przecinku z jaka chcemy przedstawić liczbę A. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 3 / 23
5 LICZBY RZECZYWISTE - Algorytm Hornera Dana jest dziesiętna liczba rzeczywista A. Aby zakodować tę liczbę w systemie o podstawie q: Przyjmujemy dokładność do n cyfr po przecinku z jaka chcemy przedstawić liczbę A. Mnożymy A przez podstawę systemu podniesiona do potęgi n. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 3 / 23
6 LICZBY RZECZYWISTE - Algorytm Hornera Dana jest dziesiętna liczba rzeczywista A. Aby zakodować tę liczbę w systemie o podstawie q: Przyjmujemy dokładność do n cyfr po przecinku z jaka chcemy przedstawić liczbę A. Mnożymy A przez podstawę systemu podniesiona do potęgi n. Zaokraglamy wynik mnożenia do liczby całkowitej, a następnie kodujemy ja w wybranym systemie tak, jak koduje się zwyczajne liczby całkowite. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 3 / 23
7 LICZBY RZECZYWISTE - Algorytm Hornera Dana jest dziesiętna liczba rzeczywista A. Aby zakodować tę liczbę w systemie o podstawie q: Przyjmujemy dokładność do n cyfr po przecinku z jaka chcemy przedstawić liczbę A. Mnożymy A przez podstawę systemu podniesiona do potęgi n. Zaokraglamy wynik mnożenia do liczby całkowitej, a następnie kodujemy ja w wybranym systemie tak, jak koduje się zwyczajne liczby całkowite. Na koniec, zgodnie ze wstępnym założeniem, oddzielamy ostatnie n cyfr przecinkiem. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 3 / 23
8 Algorytm Hornera - PRZYKŁAD Zakodować liczbę A = 2875, 1023 w systemie ósemkowym z dokładnościa do 5 miejsc po przecinku. Mnożymy liczbę A przez 8 5 : 2875, = 2875, = Kodujemy liczbę w systemie o podstawie 8. Wynosi ona: (8) Ustalamy miejsce przecinka zgodnie z założeniem, tj. 5473, (8) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 4 / 23
9 Reprezentacja liczb rzeczywistych Liczby rzeczywiste można przedstawiać: w postaci kodu stałoprzecinkowego (stałopozycyjnego) w postaci kodu zmiennoprzecinkowego (zmiennopozycyjnego) Nie jest możliwe przedstawienie nieskończonych zbiorów za pomoca skończonej liczby bitów. Do obliczeń w komputerach stosuje się reprezentację skończonych podzbiorów liczb rzeczywistych. Zgodne jest to ze standardem IEEE 754, gdzie określony został standard zapisu i działań arytmetycznych na liczbach zmiennoprzecinkowych. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 5 / 23
10 REPREZENTACJA STAŁOPOZYCYJNA W notacji stałopozycyjnej możliwe jest reprezentowanie zakresu dodatnich i ujemnych liczb całkowitych ze środkiem w zerze. Przy założeniu ustalonego przecinka pozycyjnego format ten umożliwia również reprezentację liczb ze składnikiem ułamkowym. W notacji stałopozycyjnej nie moga być reprezentowane ani bardzo duże liczby, ani bardzo małe ułamki. Ułamkowe składniki ilorazu przy dzieleniu dwóch dużych liczb moga być utracone. Przykład: }{{}, }{{} = 255, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 6 / 23
11 REPREZENTACJA ZMIENNOPOZYCYJNA SYSTEM CECHA-MANTYSA System jest oparty na podziale liczby na część ułamkowa zwana mantysa oraz na wykładnik potęgi podstawy systemu zwany cecha. Opracowany został na podstawie zapisu liczby w systemie pozycyjnym wagowym. Umożliwia zapis liczb rzeczywistych z ustalonym błędem względnym. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 7 / 23
12 REPREZENTACJA ZMIENNOPOZYCYJNA Przykład liczby binarnej zapisanej w postaci cecha-mantysa na dwóch bajtach }{{}, }{{} cecha mantysa W praktyce zwykle na cechę przeznaczamy jeden bajt, na mantysę minimum trzy bajty. Ilość bajtów przeznaczonych na cechę decyduje o zakresie. Ilość bajtów przeznaczonych na mantysę decyduje o błędzie. Liczby ujemne w mantysie sa kodowane w systemie znak-moduł, zaś dla cechy w systemie u2. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 8 / 23
13 Reprezentacja liczb w systemie cecha-mantysa L = ( 1) s m N c, gdzie: N-podstawa systemu s -to bit znaku: 0 oznacza +, bo ( 1) 0 = 1 1 oznacza, bo ( 1) 1 = 1 c cecha, całkowity wykładnik potęgi, dzięki któremu przecinek w liczbie zostaje przesunięty tak, aby utworzyć mantysę w zgodzie z powyższa definicja. m mantysa - liczba mniejsza od jedności. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 9 / 23
14 Kod FP2 (ang. floating point) Dla kodowania FP2 liczb zmiennoprzecinkowych przyjmuje się mantysę znormalizowana do przedziału 1; 2), czyli 1 (2) ; 10 (2) ). Mantysę zapisuje się w postaci liczby całkowitej dodatniej oraz bitu znaku, cechę przy pomocy kodu U2. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 10 / 23
15 Kodowanie FP2 - przykład dla liczby: Znak Cecha(c) Mantysa(m) mantysy w kodzie U2 w kodzie ZM Bit Waga s L = ( 1) s 1.m 2 c (FP2) 0, 875 (10) = 0, 111 (2) s = 0 c = 0010 (U2) = 2 L = ( 1) 0 1, 11 (2) 2 ( 1) c = 1 = 1111 (U2) m = 1, 110 (2) = m = 1, 110 (2) L = ( 1) = 7 (10) 0, 875 (10) = (FP2) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 11 / 23
16 Kodowanie FP2 - przykład znak Cecha - kod U2 bit waga s Mantysa - kod ZM bit waga L = ( 1) s 1.m 2 c Aby zapisać A = 1984, 0415 (10) w kodzie FP2: Ustalamy znak: s = 0. Stosujac algorytm Hornera zapisujemy liczbę A w systemie binarnym (na takiej liczbie bitów, ile bitów ma mantysa + 1). 1984, = , , 0415 = , Dokonujemy normalizacji czyli przesuwamy przecinek tak, aby przed przecinkiem znajdowała się tylko jedna niezerowa cyfra. Otrzymujemy: 1, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 12 / 23
17 Kodowanie FP2 - przykład Skoro jedyna możliwa niezerowa cyfra w systemie dwójkowym jest 1, to możemy zapamiętać, że ona tam jest i oszczędzić jeden bit nie zapisujac jej. Mantysę tworza kolejne cyfry spisane poczawszy od przecinka, aż po cyfrę, która zapisana zostanie na ostatnim bicie zarezerwowanym dla mantysy (w tym przykładze 10 bitów). Jeśli cyfr jest mniej niż bitów mantysy, to wolne bity uzupełniamy 0). m = Ponieważ przecinek przesunęliśmy o 10 miejsc w lewo, jako cechę trzeba zapisać liczbę 10 w kodzie U2, tj. c = (U2) Zatem 1984, 0415 (10) = (FP2) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 13 / 23
18 Dekodowanie - przykład Zatem: s = 0, stad mamy ( 1) (FP2) m = , stad c = (U2) = 10, a więc mamy 2 10 Podstawiamy do wzoru na L i otrzymujemy: L = ( 1) 0 ( ) 2 10 = = ( ) 1024 = = = 1024 = = Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 14 / 23
19 UWAGA Standard kodu FP2 przewiduje dodatkowo wartości specjalne: Maksymalna wartość cechy przy zerowej wartości mantysy daje w zależności od bitu znaku wartość zwana INF lub INF oznaczajac a odpowiednio i +. Maksymalna wartość cechy przy jakiejkolwiek niezerowej wartości mantysy, to tzw. NaN(ang. Not a Number), czyli wartość, która nie jest poprawna liczba. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 15 / 23
20 Standard IEEE 754 Pojedyncza precyzja = 32 (4 Bajty) kolejne bity (od lewej) liczba bitów znaczenie 1 1 bitznaku cecha(bias = 127) mantysa Podwójna precyzja = 64 (8 Bajtów) kolejne bity (od lewej) liczba bitów znaczenie 1 1 bitznaku cecha(bias = 1023) mantysa Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 16 / 23
21 Standard IEEE 754 Bit znaku: pierwszy bit w zapisie liczby zwany jest bitem znaku. Stan 0 oznacza liczbę dodatnia, stan 1 liczbę ujemna. Aby zatem zmienić znak liczby zmiennoprzecinkowej na przeciwny, wystarczy dokonać negacji tego bitu. Bity kodu cechy: Liczby zmiennoprzecinkowe IEEE 754 zapisuja cechę w kodzie z nadmiarem. W pojedynczej precyzji cecha posiada 8 bitów, a nadmiar wynosi 127. Zatem w polu cechy można zapisać wartości od 127 (wszystkie bity wyzerowane) do 128 (wszystkie bity ustawione na 1). W podwójnej precyzji cecha posiada 11 bitów, a nadmiar wynosi Zatem w polu cechy można zapisać wartości od 1023 do Wzrost ilości bitów cech liczb zmiennoprzecinkowych wpływa na ich zakres. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 17 / 23
22 Standard IEEE 754 Bity mantysy: W pojedynczej precyzji mantysa posiada 23 bity, a w podwójnej precyzji 52 bity. Wzrost liczby bitów mantysy liczb zmiennoprzecinkowych wpływa na ich precyzję, czyli dokładność odwzorowywania liczb rzeczywistych. Mantysy sa zapisywane w stałoprzecinkowym kodzie znak-moduł. Ponieważ mantysa jest prawie zawsze znormalizowana, tj. zawiera się w 1, 2). Wynika stad, iż pierwszy bit całkowity mantysy zawsze wynosi 1. Skoro tak, to nie musi on być zapamiętywany - będzie automatycznie odtwarzany w czasie wykonywania obliczeń na liczbie zmiennoprzecinkowej. W polu mantysy zapamiętujemy tylko bity ułamkowe. Dzięki tej prostej sztuczce zyskujemy jeden dodatkowy bit mantysy - zwiększamy jej rozdzielczość do 24 bitów dla formatu pojedynczej precyzji i do 53 bitów dla formatu podwójnej precyzji. Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 18 / 23
23 IEEE 754 -przykład Obliczyć wartość dziesiętna liczby zmiennoprzecinkowej: (IEEE754) Kod binarny dzielimy na poszczególne pola zawierajace kolejno znak, cechę oraz bity ułamkowe mantysy: s = 0 c = (BIAS=127) = = 6 m = 01, (ZM) = Wartość liczby L (IEEE754) : ( 1) s m 2 c = ( 1) = = = 25 4 = 100 (10) (IEEE754) = 100 (10) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 19 / 23
24 IEEE 754 -przykład Obliczyć wartość dziesiętna liczby zmiennoprzecinkowej: (IEEE754) Kod binarny dzielimy na poszczególne pola zawierajace kolejno znak, cechę oraz bity ułamkowe mantysy: s = 1 c = (BIAS=127) = = 4 m = 01, (ZM) = Wartość liczby: L (IEEE754) = ( 1) s m 2 c = ( 1) = = 27 (10) (IEEE754) = 27 (10) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 20 / 23
25 Wartości specjalne w IEEE 745 Wartość zero W formacie IEEE 754 nie można zapisać w normalny sposób wartości 0, ponieważ mantysa ma domyślna część całkowita równa 1 - w polu mantysy zapamiętywane sa jedynie bity ułamkowe. Dlatego zero jest specjalnym przypadkiem liczby zmiennoprzecinkowej, gdzie zarówno pole wykładnika jak i mantysy zawiera same 0. Bit znaku może przyjmować dowolna wartość (stad możemy dostać dodatnie lub ujemne 0, jednakże przy porównaniu sa one traktowane jak równe sobie). Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 21 / 23
26 Wartości specjalne w IEEE 745 Wartość zdenormalizowana Jeśli wszystkie bity cechy maja wartość 0, lecz mantysa zawiera bity o wartościach 1 (w przeciwnym razie liczba zostanie potraktowana jak opisane wcześniej zero), to jest to tzw. zdenormalizowana liczba zmiennoprzecinkowa. W takim przypadku mantysa nie posiada domyślnej części całkowitej 1, lecz jest liczba ułamkowa, której bity zawarte sa w polu formatu IEEE 754. Wartość zdenormalizowana liczby zmiennoprzecinkowej liczymy według wzoru: Pojedyncza precyzja: L = ( 1) s m 2 126, gdzie m = 00,(pole mantysy) (ZM) Podwójna precyzja: L = ( 1) s m , gdzie m = 00,(pole mantysy) (ZM) Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 22 / 23
27 Wartości specjalne w IEEE 745 Pojedyncza precyzja najmniejsza wartość: (IEEE754) m = 00, (U1) = 2 23 min (IEEE754) = = min (IEEE754) = 1, min (IEEE754) = 1, Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 23 / 23
Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
Bardziej szczegółowoLiczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:
Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
Bardziej szczegółowoPracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoWprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Bardziej szczegółowoPrzedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
Bardziej szczegółowoPracownia Komputerowa wyk ad VI
Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite
Bardziej szczegółowoDr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30
Bardziej szczegółowoDane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Bardziej szczegółowoTeoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Bardziej szczegółowoSystemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
Bardziej szczegółowoWstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Bardziej szczegółowoSystemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoKod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci
Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f
Bardziej szczegółowoReprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej
Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne
Bardziej szczegółowoSYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M
SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...
Bardziej szczegółowoZwykle liczby rzeczywiste przedstawia się w notacji naukowej :
Arytmetyka zmiennoprzecinkowa a procesory cyfrowe Prawa algebry stosują się wyłącznie do arytmetyki o nieograniczonej precyzji x=x+1 dla x będącego liczbą całkowitą jest zgodne z algebrą, dopóki nie przekroczymy
Bardziej szczegółowoArytmetyka binarna - wykład 6
SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2
Bardziej szczegółowo3.3.1. Metoda znak-moduł (ZM)
3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoNaturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Bardziej szczegółowoPodstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze
Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoSystem liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.
2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja
Bardziej szczegółowoPodstawy Informatyki dla Nauczyciela
Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoWstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Bardziej szczegółowoPracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowoArchitektura komputerów Reprezentacja liczb. Kodowanie rozkazów.
Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe
ARCHITEKTURA KOMPUTERÓW 17.11.2010 Liczby zmiennoprzecinkowe Sprawa bardzo podobna jak w systemie dziesiętnym po przecinku mamy kolejno 10-tki do ujemnych potęg, a w systemie binarnym mamy 2-ki w ujemnych
Bardziej szczegółowoPodstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze
Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoDane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowoRODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.
RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory
Bardziej szczegółowoPrefiksy binarne. kibibit (Kibit) mebibit (Mibit) gibibit (Gibit) tebibit (Tibit) pebibit (Pibit) exbibit (Eibit) zebibit (Zibit) yobibit (Yibit)
Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Bardziej szczegółowoMet Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 2 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Arytmetyka zmiennopozycyjna
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoPozycyjny system liczbowy
Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w
Bardziej szczegółowoZestaw 3. - Zapis liczb binarnych ze znakiem 1
Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b
Bardziej szczegółowoKod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Bardziej szczegółowoTechnologie Informacyjne Wykład 4
Technologie Informacyjne Wykład 4 Arytmetyka komputerów Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny Politechnika Wrocławska 30 października 2014 Część
Bardziej szczegółowoARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Bardziej szczegółowoArchitektura komputerów
Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoDodatek do Wykładu 01: Kodowanie liczb w komputerze
Dodatek do Wykładu 01: Kodowanie liczb w komputerze [materiał ze strony: http://sigma.wsb-nlu.edu.pl/~szyszkin/] Wszelkie dane zapamiętywane przetwarzane przez komputery muszą być odpowiednio zakodowane.
Bardziej szczegółowoJęzyki i metodyka programowania. Reprezentacja danych w systemach komputerowych
Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania
Bardziej szczegółowoKod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Bardziej szczegółowoArytmetyka stało i zmiennoprzecinkowa
Arytmetyka stało i zmiennoprzecinkowa Michał Rudowicz 171047 Łukasz Sidorkiewicz 170991 Piotr Lemański 171009 Wydział Elektroniki Politechnika Wrocławska 26 października 2011 Spis Treści 1 Reprezentacja
Bardziej szczegółowoPodstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowoLiczby zmiennoprzecinkowe i błędy
i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan
Bardziej szczegółowoStan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
Bardziej szczegółowoINFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.
INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej
Bardziej szczegółowo4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoPracownia Komputerowa wyk ad V
Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowo2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Zmiennoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
Bardziej szczegółowoInformatyka 1. Wykład nr 4 ( ) Plan wykładu nr 4. Politechnika Białostocka. - Wydział Elektryczny
Rok akademicki 8/9, Wykład nr 4 /8 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 8/9 Wykład nr
Bardziej szczegółowoInformatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc
Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
Bardziej szczegółowoProgramowanie w C++ Wykład 2. Katarzyna Grzelak. 4 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 44
Programowanie w C++ Wykład 2 Katarzyna Grzelak 4 marca 2019 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 44 Na poprzednim wykładzie podstawy C++ Każdy program w C++ musi mieć funkcję o nazwie main Wcięcia
Bardziej szczegółowoLICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Bardziej szczegółowoMETODY NUMERYCZNE. Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)?
METODY NUMERYCZNE Wykład 2. Analiza błędów w metodach numerycznych Met.Numer. wykład 2 1 Po co wprowadzamy liczby w formacie zmiennoprzecinkowym (floating point)? Przykład 1. W jaki sposób można zapisać
Bardziej szczegółowoARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
Bardziej szczegółowoWprowadzenie do metod numerycznych. Krzysztof Patan
Wprowadzenie do metod numerycznych Krzysztof Patan Metody numeryczne Dział matematyki stosowanej Każde bardziej złożone zadanie wymaga opracowania indywidualnej metody jego rozwiązywania na maszynie cyfrowej
Bardziej szczegółowoW jaki sposób użyć tych n bitów do reprezentacji liczb całkowitych
Arytmetyka komputerowa Wszelkie liczby zapisuje się przy użyciu bitów czyli cyfr binarnych: 0 i 1 Ile różnych liczb można zapisać używajac n bitów? n liczby n-bitowe ile ich jest? 1 0 1 00 01 10 11 3 000001010011100101110111
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoProgramowanie w C++ Wykład 2. Katarzyna Grzelak. 5 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41
Programowanie w C++ Wykład 2 Katarzyna Grzelak 5 marca 2018 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 41 Reprezentacje liczb w komputerze K.Grzelak (Wykład 1) Programowanie w C++ 2 / 41 Reprezentacje
Bardziej szczegółowoarchitektura komputerów w. 2
architektura komputerów w. 2 Wiadomości i kody Wiadomości (Informacje) dyskretne ciągłe Kod - zbiór ciągów kodowych oraz reguła przyporządkowania ich wiadomościom. Ciąg kodowy - sygnał mający postać ciągu
Bardziej szczegółowo2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze
23 Wyznaczanie wartości wielomianu pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 231 Systemy liczbowe Definicja Systemem liczbowym nazywamy zbiór zasad określających sposób
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoWstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoTechniki multimedialne
Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo
Bardziej szczegółowoArytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Bardziej szczegółowoSYSTEMY LICZBOWE. Zapis w systemie dziesiętnym
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoMetody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p.
Metody numeryczne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/2002 23:02 p.1/63 Plan wykładu 1. Dokładność w obliczeniach numerycznych 2. Złożoność
Bardziej szczegółowoInformatyka 1. Wykład nr 4 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc
Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 008/009 Wykład nr 4 (8.04.009) Informatyka, studia stacjonarne I stopnia
Bardziej szczegółowoMetody numeryczne II. Reprezentacja liczb
Metody numeryczne II. Reprezentacja liczb Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Reprezentacja liczb Reprezentacja stałopozycyjna
Bardziej szczegółowoBŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
Bardziej szczegółowoWprowadzenie do informatyki - ć wiczenia
Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
Bardziej szczegółowoDokładność obliczeń numerycznych
Dokładność obliczeń numerycznych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 MOTYWACJA Komputer czasami produkuje nieoczekiwane wyniki >> 10*(1-0.9)-1 # powinno być 0 ans = -2.2204e-016 >>
Bardziej szczegółowoMetody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61
Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of
Bardziej szczegółowoSYSTEMY LICZBOWE 275,538 =
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoArytmetyka stało- i zmiennoprzecinkowa. 1. Informacje wstępne
Arytmetyka stało- i zmiennoprzecinkowa 1. Informacje wstępne Każdą informację można przedstawid w komputerze za pomocą łaocucha elemantarnych jednostek, zwanych bitami. W przypadku, gdy chcielibyśmy wyrazid
Bardziej szczegółowoInformatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy
Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka
Bardziej szczegółowoMateriały laboratoryjne. Kodowanie i liczby. dr inż. Zbigniew Zakrzewski. Z.Z. Podstawy informatyki
Materiały laboratoryjne Podstawy informatyki dr inż. Zbigniew Zakrzewski Z.Z. Podstawy informatyki 1 v.1.2 Systemy zapisu liczb a ogół operujemy systemami pozycyjnymi, np. rzymski, dziesiętny. System pozycyjny
Bardziej szczegółowoSystemem liczenia systemach addytywnych !!" Pozycyjny system liczbowy podstawą systemu pozycyjnego
Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Podstawą systemów liczenia są systemy liczbowe
Bardziej szczegółowo