Metoda znak-moduł (ZM)

Wielkość: px
Rozpocząć pokaz od strony:

Download "3.3.1. Metoda znak-moduł (ZM)"

Transkrypt

1 3.3. Zapis liczb binarnych ze znakiem : reszta Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym znakiem graficznym, tzw. minusem, na przykład 6, 22 itd., a liczby dodatnie w niektórych przypadkach plusem +, na przykład +5, +20. W systemie binarnym opartym wyłącznie na zerach i jedynkach brakuje dodatkowego znaku, który wskazywałby na ujemny lub dodatni charakter określonej liczby. Opracowano kilka metod zapisu liczb binarnych ze znakiem, które charakteryzują się różnym stopniem przydatności, między innymi: qq qq qq metodę znak-moduł (ZM), metodę uzupełnień do 1 (U1), metodę uzupełnień do 2 (U2) Metoda znak-moduł (ZM) W metodzie znak-moduł zastosowano prosty zabieg kodowania znaku za pomocą najstarszej cyfry w liczbie binarnej. Najstarszą cyfrę określa się jako znak, pozostałe cyfry są modułem reprezentującym daną liczbę binarną: znak moduł a n 1 a n 2 a 1 a 0 51

2 Rozdział 3 t Arytmetyka liczb binarnych W celu obliczenia wartości naturalnej liczby binarnej ze znakiem należy posłużyć się następującym wzorem: Stosując powyższy (zmodyfikowany) zapis wielomianowy, możemy zauważyć, że znak otrzymanej po obliczeniu liczby zależny jest od wyrażenia: 1 2*najstarsza cyfra liczby. Jeżeli najstarsza cyfra jest jedynką, to wynikiem wyrażenia będzie 1 ; jeżeli zerem, to otrzymamy 1. Obliczony moduł należy przemnożyć przez wyrażenie znakowe, dzięki czemu otrzyma się dodatnią lub ujemną liczbę dziesiętną będącą odpowiednikiem danej liczby binarnej. Aby uzyskać liczbę binarną ze znakiem na podstawie liczby dziesiętnej, należy obliczyć moduł metodą dzielenia przez podstawę (2), a następnie dołączyć 0, jeżeli chce się mieć liczbę dodatnią, lub 1 dla liczby ujemnej. Przykłady: 0111 (Z-M) = = (1 2*0)*(1*2 2 +1*2 1 +1*2 0 ) = 1*(4+2+1) = 7 D 1111 (Z-M) = 2 = (1 2*1)*(1*2 2 +1*2 1 +1*2 0 ) = 1*(4+2+1) = 7 D Jedną z wad metody ZM jest brak możliwości prostego wykonywania operacji arytmetycznych, co znacznie ogranicza jej powszechne stosowanie: ZM 6 D ZM + 6 D 0 20 D Kolejną niedogodnością związaną z systemem znak-moduł jest to, że zero może zostać zapisane na dwa sposoby: ze znakami plus i minus. Stanowi to przykład nieefektywności tej metody, w której tracony jest jeden wyraz kodowy Metoda uzupełnień do 2 (U2) Niedoskonałości systemu ZM spowodowały, że konieczne było opracowanie bardziej naturalnej metody zapisu liczb binarnych ze znakiem. Powstała metoda uzupełnień do 2 (U2), gdzie cyfra określająca znak jest zintegrowana z liczba binarną, co pozwala na wykonywanie obliczeń arytmetycznych. W celu obliczenia wartości liczby binarnej z wykorzystaniem metody U2 należy zastosować poniższy wzór: 52

3 3.3. Zapis liczb binarnych ze znakiem W metodzie U2 wyrażenie znaku jest tak skonstruowane, że uczestniczy w wartości liczby jak pozostałe pozycje. Wartość podstawy w wadze najstarszej liczby określającej znak jest ujemna. Przykłady: 0111 B = = 0*( 2 3 )+1*(2 2 )+1*(2 1 )+1*(2 0 ) = = 7 B 1111 B = = 1*( 2 3 )+1*(2 2 )+1*(2 1 )+1*(2 0 ) = = 1 B Jak widać w przykładach, liczby binarne dodatnie i ujemne U2 wyglądają po przekształceniu na dziesiętne inaczej niż w przypadku metody ZM. Przekształcenie ujemnej liczby dziesiętnej na postać binarną jest bardziej pracochłonne niż w metodzie ZM. 1. Na początku obliczamy postać binarną z wartości bezwzględnej dziesiętnej liczby ujemnej: 5:2 = 2 r = 1 2:2 = 1 r = 0 1:2 = 0 r = 1 5 D = 5 D = 5 D = 101 B 2. Powstałą liczbę binarną należy uzupełnić zerami do liczby cyfr będących krotnością dwójki. W tym przypadku, gdy liczba binarna ma 3 cyfry, dopełniamy do 4. Jeżeli byłoby 5 cyfr, należałoby uzupełnić do ośmiu itd B Następnie należy zamienić wszystkie cyfry w liczbie binarnej na przeciwne, czyli jedynki na zera i odwrotnie: 1010 W ostatnim etapie do powstałej liczby dodaje się binarną jedynkę wynik jest ujemną liczbą binarną: = 1( 2 3 )+0(2 2 )+1(2 1 )+1(2 0 ) = 8+3 = 5 53

4 Rozdział 3 t Arytmetyka liczb binarnych 3.4. Liczby binarne stałoi zmiennoprzecinkowe Podobnie jak w systemie dziesiętnym liczby binarne również mogą być zapisane w postaci ułamkowej. Zapis binarnych liczb pozycyjnych z przecinkiem może przyjąć postać stało- lub zmiennoprzecinkową Liczby stałoprzecinkowe (stałopozycyjne) Liczby stałoprzecinkowe (ang. fixed-point numbers) umożliwiają zapis liczb w postaci ułamkowej, w którym pozycja przecinka ustalana jest arbitralnie w zależności od wymaganej dokładności. Binarną liczbę stałoprzecinkową można potraktować jako złożenie dwóch części liczby całkowitej oraz ułamkowej rozdzielonych przecinkami: część całkowita część ułamkowa , 0101 W celu przekształcenia binarnej liczby stałoprzecinkowej na postać dziesiętną należy posłużyć się poniższym wzorem: a n-1 a 1 a 0, a -1 a -m = a n-1 *2 n-1 + +a 1 *2 1 +a 0 *2 0 +a -1 * a -m *2 -m Wartości wag części ułamkowej przyjmują postać ułamków, gdzie dokładność określona jest przez wagę najmłodszej cyfry. Przykłady: 1101,11 B = , = 1*2 3 +1*2 2 +0*2 1 +1*2 0 +1*2-1 +1*2-2 = ½+¼ = 13,75 D ,1011 = = ½+ 1 / / 16 = 229,6875 D Zamianę liczby dziesiętnej na postać binarną przeprowadza się w dwóch etapach: qq zamiana liczby całkowitej na postać binarną za pomocą cyklicznego dzielenia przez 2; qq zamiana części ułamkowej na postać binarną za pomocą cyklicznego mnożenia przez 2. Jeżeli wynik jest 1, to wyznaczony bit części ułamkowej jest także równy 1. Do dalszych obliczeń wykorzystuje się część ułamkową wyniku. Proces należy wykonywać aż do otrzymania 0. Z wyników iloczynów pobiera się wartości całkowite ułamek liczby binarnej. Otrzymane liczby łączymy, przedzielając część całkowitą i ułamkową przecinkiem. Jeżeli mnożenie przez 2 prowadzi do osiągnięcia nieskończenie długiej kombinacji zer i jedynek, należy przyjąć przybliżoną dokładność, na przykład do 10 miejsc po przecinku. 54

5 3.4. Liczby binarne stało- i zmiennoprzecinkowe Przykład: 10,225 10, :2 = 5 r = 0 5:2 = 2 r = 1 2:2 = 1 r = 0 1:2 = 0 r = 1 10 D = 1010 B 1. 0,225*2 = 0,45 część całkowita ,45*2 = 0,9 część całkowita ,9*2 = 1,8 część całkowita ,8*2 = 1,6 część całkowita ,6*2 = 1,2 część całkowita ,2*2 = 0,4 część całkowita ,4*2 = 0,8 część całkowita ,8*2 = 1,6 część całkowita ,6*2 = 1,2 część całkowita ,2*2 = 0,4 część całkowita 0 0,225 D = 0, B 10,225 D = 1010, B Liczby zmiennoprzecinkowe (zmiennopozycyjne) W odróżnieniu od liczb stałoprzecinkowych liczby zmiennoprzecinkowe (ang. floating-point numbers FP) umożliwiają obsługę większego zakresu liczb (bardzo małych lub bardzo dużych), jednak kosztem wolniejszego przetwarzania i mniejszej dokładności. Termin zmiennoprzecinkowe oznacza, że nie istnieje stała liczba cyfr przed przecinkiem i po nim. UWAGA Komputery przetwarzają najczęściej liczby zmiennoprzecinkowe w przybliżeniu. Nieuwaga programisty podczas operowania na liczbach zmiennoprzecinkowych może prowadzić do przekłamań w otrzymanych wynikach. 55

6 Rozdział 3 t Arytmetyka liczb binarnych Liczba zmiennoprzecinkowa składa się z dwóch części: liczby stałoprzecinkowej (ang. mantissa mantysa, m) oraz podstawy (p) podniesionej do potęgi, zwanej cechą lub wykładnikiem (ang. exponent, e): l FP = m*b e W celu zamiany zmiennoprzecinkowej liczby binarnej na postać dziesiętną należy ze słowa kodu wydobyć cyfry cechy i mantysy (na przykład cyfry cechy i 4 mantysy): cecha mantysa b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 Za pomocą metody uzupełnień do 2 oblicza się wartość cechy: e = b 7 ( 2 3 )+b b b = ( 8)b 7 +4b 6 +2b 5 +b 4 Mantysa jest najczęściej liczbą stałoprzecinkową z przedziału [1, 2). Oblicza się ją na podstawie wzoru: m = b 3 b 2, b 1 b 0 = b 3 ( 2 1 )+b b b02-2 = 2b 3 +b 2 +½b 1 +¼b 2 Otrzymaną cechę i mantysę podstawia się do wzoru: Przykłady: l FP = m*2 e FP e = 1111 U U2 = = 1 D m = 10,01 U2 10,01 U2 = 2+¼ = 1,75 D l FP = m*2 e = 1¾*2-1 = 7 / 4 *½ = 0, FP = 0,875 D FP e = 0001 U U2 = 1 D m = 01,00 U2 01,00 U2 = 1 D l FP = m*2 e = 1*2 1 = 1*2 = FP = 2 D Zamianę liczby dziesiętnej na postać binarną można wykonać, stosując metodę dla liczb stałoprzecinkowych. 56

7 3.4. Liczby binarne stało- i zmiennoprzecinkowe Przykład: 13,7 D 13:2 = 6 r = 1 6:2 = 3 r = 0 3:2 = 1 r = 1 1:2 = 0 r = 1 13 D = 1101 B 0,7*2 = 1,4 część całkowita 1 0,4*2 = 0,8 część całkowita 0 0,8*2 = 1,6 część całkowita 1 0,6*2 = 1,2 część całkowita 1 13,7 D = 1101,1011 B ĆWICZENIA 1. Dokonaj konwersji liczb binarnych do postaci dziesiętnej z wykorzystaniem zapisu wielomianowego: a B b B 2. W celu sprawdzenia wyników pierwszego ćwiczenia liczby dziesiętne przekształć na liczby binarne za pomocą cyklicznego dzielenia przez podstawę. 3. Dokonaj konwersji liczb szesnastkowych do postaci dziesiętnej z wykorzystaniem zapisu wielomianowego: a. F3A H b. 952 H 4. W celu sprawdzenia wyników z pierwszego ćwiczenia liczby dziesiętne przekształć na liczby binarne za pomocą cyklicznego dzielenia przez podstawę. 5. Dokonaj konwersji liczby binarnej do postaci szesnastkowej B z wykorzystaniem zapisu wielomianowego. 57

8 Rozdział 3 t Arytmetyka liczb binarnych ĆWICZENIA ciąg dalszy 6. Wykonaj działania arytmetyczne na liczbach binarnych: a ???? b ???? c. 1 1 d.??????? : 7. Przekształć liczby binarne ze znakiem do postaci dziesiętnej za pomocą kodu U2: a B b B 8. Przekształć dziesiętną liczbę 7 do postaci binarnej. D 9. Przekształć binarną liczbę stałoprzecinkową 1001,11 do postaci dziesiętnej. B 10. Przekształć ułamkową liczbę dziesiętną 17,6 do postaci binarnej. D 58

9 3.4. Liczby binarne stało- i zmiennoprzecinkowe Pytania i polecenia kontrolne Wymień pozycyjne systemy liczbowe. Opisz sposoby konwersji liczb heksadecymalnych na binarne i binarnych na heksadecymalne. Co to jest tabliczka dodawania i odejmowania liczb binarnych? Jakie niedoskonałości skrywa metoda znak-moduł? Jakie niebezpieczeństwo pojawia się przy zaokrąglaniu binarnych liczb zmiennoprzecinkowych? 59

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

Podręcznik Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk

Podręcznik Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk Podręcznik Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk omawia treści ujęte w nowej podstawie programowej. Jest

Bardziej szczegółowo

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

Podstawy Systemów Liczbowych

Podstawy Systemów Liczbowych HTTP://WWW.HAKERZY.NET 001 Krzysztof Kryczka Podstawy Systemów Liczbowych Wersja: 1.0 Będzin, dn. 03-11-2010 r. Copyright by Krzysztof Kryczka (gsystem) Data: 03.11.2010 Wydanie I Darmowy poradnik, dostarczony

Bardziej szczegółowo

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy

Wstęp doinformatyki. Systemy liczbowe i arytmetyka komputerów. System dziesiętny. Inne systemy. System dwójkowy Wstęp doinformatyki Systemy liczbowe i arytmetyka komputerów Dr inż. Ignacy Pardyka kademia Świętokrzyska Kielce, System dziesiętny Liczba: 5= *+5*+* - każdą z cyfr mnożymy przez tzw. wagę pozycji, która

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Jak napisać program obliczający pola powierzchni różnych figur płaskich?

Jak napisać program obliczający pola powierzchni różnych figur płaskich? Część IX C++ Jak napisać program obliczający pola powierzchni różnych figur płaskich? Na początku, przed stworzeniem właściwego kodu programu zaprojektujemy naszą aplikację i stworzymy schemat blokowy

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

Wprowadzenie do informatyki ćwiczenia

Wprowadzenie do informatyki ćwiczenia Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

UKŁADY MIKROPROCESOROWE

UKŁADY MIKROPROCESOROWE UKŁADY MIKROPROCESOROWE Kodowanie informacji i systemy liczbowe OPRACOWANIE KŁ MALBORK WPROWADZENIE 1. Pojęcia podstawowe: Czym zajmuje się elektronika? Informacja Sygnał Uproszczona klasyfikacja układów

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka) SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

- Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej.

- Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej. Reprezentacja danych Różne sposoby przechowywana danych w komputerze - Wszelka informacja przetwarzana przez system komputerowy jest ciągiem zer i jedynek. Niczym więcej. - Z punktu widzenia systemu KAŻDA

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY VI : 1. zamieni ułamek zwykły na dziesiętny dowolnym sposobem 2. porówna ułamek zwykły i dziesiętny 3.

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie dziesiątkowego systemu liczenia, rozumie pojęcie pozycyjnego

Bardziej szczegółowo

Matematyka, kl. 4. Uczeń:

Matematyka, kl. 4. Uczeń: Matematyka, kl. 4 Liczby i działania Program Matematyka z plusem Ocena Uczeń: Zna: pojęcia składnika, sumy, odjemnej, odjemnika, różnicy, czynnika, iloczynu, dzielnej, dzielenia, ilorazu, niewykonalność

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Komputerowa reprezentacja znaków i liczb dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Plan wykładu Reprezentacja informacji w systemie komputerowym Podstawowe jednostki informacji

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Podstawy informatyki i architektury systemów komputerowych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki Zakład Informatyki

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------- Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko Jednostki miar stosowane w sieciach komputerowych mgr inż. Krzysztof Szałajko Jednostki wielkości pamięci Jednostka Definicja Przykład Bit (b) 0 lub 1 Włączony / wyłączony Bajt (B) = 8 b Litera w kodzie

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.i

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.i Matematyka klasa I kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych Liczby i działania Na ocenę dopuszczającą uczeń: - zna pojęcie liczby naturalnej - rozumie różnicę między

Bardziej szczegółowo

Matematyka, kl. 5. Konieczne umiejętności

Matematyka, kl. 5. Konieczne umiejętności Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009 POZIOMY WYMAGAŃ

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY PIERWSZEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY PIERWSZEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY PIERWSZEJ POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA Poziomy wymagań edukacyjnych : KONIECZNY (K) - OCENA DOPUSZCZAJĄCA, PODSTAWOWY( P) - OCENA DOSTATECZNA, ROZSZERZAJĄCY(R) - OCENA DOBRA, DOPEŁNIAJĄCY (D) - OCENA BARDZO DOBRA WYKRACZAJACY(W) OCENA CELUJĄCA.

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Matematyka, kl. 6. Konieczne umiejętności

Matematyka, kl. 6. Konieczne umiejętności Matematyka, kl. 6 Liczby naturalne i ułamki Program Matematyka z plusem Odczytywanie liczb na osi liczbowej. Zapisywanie potęg w postaci iloczynu i obliczanie ich wartości. Sprawność rachunkowa w pisemnych

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych 4. Arytmetyka procesorów 16-bitowych stałoprzecinkowych Liczby stałoprzecinkowe Podstawowym zastosowaniem procesora sygnałowego jest przetwarzanie, w czasie rzeczywistym, ciągu próbek wejściowych w ciąg

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASACH IV-VI NA LEKCJACH MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASACH IV-VI NA LEKCJACH MATEMATYKI PRZEDMIOTOWY SYSTEM OCENIANIA W KLASACH IV-VI NA LEKCJACH MATEMATYKI KONTRAKT 1. Przedmiotem oceniania są: umiejętności, wiedza ucznia, zaangażowanie w proces nauczania (aktywność). 2. Sprawdzanie wiedzy

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem Liczby i wyrażenia algebraiczne WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem zna pojęcie notacji wykładniczej umie oszacować wynik działań umie zaokrąglić

Bardziej szczegółowo

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO

PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM. rok szkolny 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM. rok szkolny 2015/2016 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE PIERWSZEJ GIMNAZJUM rok szkolny 2015/2016 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

Podstawy informatyki (2)

Podstawy informatyki (2) Informacje Podstawy informatyki (2) dr inż Sebastian Pluta pluta@icispczpl Instytut Informatyki Teoretycznej i Stosowanej informatyka to nauka o przetwarzaniu i przechowywaniu informacji informacja to:

Bardziej szczegółowo

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich

Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Wymogi edukacyjne z kryteriami na poszczególne oceny z matematyki dla uczniów klasy pierwszej Publicznego Gimnazjum nr 1 w Strzelcach Opolskich Na ocenę dopuszczającą uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

I. LICZBY I DZIAŁANIA

I. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA PIERWSZA GIMNAZJUM I. LICZBY I DZIAŁANIA 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej. 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne. 3. Umie

Bardziej szczegółowo

Obliczenia inżynierskie. Liczby Programy CAS Arkusz kalkulacyjny

Obliczenia inżynierskie. Liczby Programy CAS Arkusz kalkulacyjny Obliczenia inżynierskie Liczby Programy CAS Arkusz kalkulacyjny 2 3 Pozycyjne systemy liczbowe System dziesiętny ( decymalny, arabski) podstawą kolejnych potęg jest 10 do zapisu potrzebnych 10 cyfr: 1,2,3,4,5,6,7,8,9,0

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA I rok szkolny 2015/2016 Nauczyciel prowadzący zajęcia: Urszula Młynarczyk Marzenna Wychowaniec LICZBY I DZIAŁANIA ARYTMETYCZNE STOPIEŃ dopuszczający dostateczny

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH ROK SZKOLNY 2012/2013

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH ROK SZKOLNY 2012/2013 PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH ROK SZKOLNY 2012/2013 OPRACOWAŁY NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM Bratkowska

Bardziej szczegółowo

Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji

Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji dr Tomasz Ordysiński ordych@wneiz.pl tomaszordysinski.pl Podstawowe

Bardziej szczegółowo