Procent prosty Gdy znamy kapitał początkowy i stopę procentową

Wielkość: px
Rozpocząć pokaz od strony:

Download "Procent prosty Gdy znamy kapitał początkowy i stopę procentową"

Transkrypt

1 cet psty Gdy zay aptał pczątwy stpę pcetwą F = + I aptał ńcwy, pczątwy, dset I = I = stpa pcetwa (w stsuu czy) F = ( + ) aledaze dsetwe 360/360, 365/365, 360/365, 365/360 es wyaży w latach (dla óżych esów ótszych lub dłuższych ż ) F = ( + ) stpa pdeswa dset w czase wyaży w pdesach (półcze = 2, watał = 4, esąc = 2, tydzeń = 52 ) = stpy ówważe eżel w ty say czase d teg saeg aptału geeuą 2 te sae dset =, dla u = 2 =, gdze = stpa pzecęta w ese Gdy dyst wylczae est a pdstawe aptału ńcweg F stpy pcetwe pste wg: t zważay dyst pste zeczywste F = + F D = I = F = + dset płate z góy (p. płata, tóa pesza wtę pżycz, ustalaa a pdstawe welśc aptału d zwtu F stpy dysta d ) wg: D = Fd t ay tzw. dyst pste hadlwe = F D = F( d), ( d < aby D < F ) stpy ówważe w czase (dset=dyst dla te sae pżycz), czyl Fd = ~ d =, d ~ d = + ~ d = (es ówważśc stóp), z teg ( > 0 t d < )

2 zyład 2.5 Oblcz czą stpę zysu z westyc w 26-tygdwy b sabwy watśc ale zł abyty p cee 952,06 zł. D du: Zób zad. 2.4 a pdstawe zyład 2.6 zyład 2.7 decyza zdystwać wesel tee wyupu 90 d p stpe dysta 6%, czy wząć edyt a 90 d p stpe pcetwe 7%? zdystwać wesel tee wyupu 80 d p stpe dysta 6%, czy wząć edyt a 80 d p stpe pcetwe 7%? zyład 2.8 wesel Zapłata za dstawę twaów watśc 95 zł w pstac wesla pdpsaeg a suę 200 zł z tee wyupu lcz stpę dysta ówważą stpę pcetwą. Zad 2.7 Rzlcz pzetag a 3-tygdwe by sabwe watśc ale 50 l zł. Ofety F w l zł za 0000zł

3 cet sładay Rczy es aptalzac = ( + I = F = [ ( + ) ] F ) F =, Stpa pcetwaa czeg czas pcetwaa l( F / ) l( + ) = p. aptał pdw sę p l 2 70 = l( + ) Kaptalzaca pdeswa gdze stpa pdeswa, F ) = ( + ) = ( +, stpa ala. Kaptalzaca cągła F = l ( + ) = e c Stpa efetywa t stpa ówważa stpe pcetwaa sładaeg (w sal u): + = ( + ) ef Stpa pzecęta w ese ( + ) dyst sładae F = ( + ) = = F( + ) = F( + ) wzó Fshea: + = ( + )( f ) eal +

4 zyład 3.7 watść ńcwa aptału Od 000 zł p 2 latach, aptalzaca cza, półcza watala, = 24% zyład 3.0 zyład 3. Czy ówważe są astępuące stpy pcetwaa sładaeg: watala 4 = 3,26%, dwuesęcza 6 = 2,26%? Jeśl e t pda stpy ówważe. zyład 3.4 zyład wg 3.20 Lata z aptalzacą czą, półczą watalą 0 tysęcy pcetwae () (2) (3) w leych latach wg stpy ale = 8,4%, = 6,25%, = 4,22%. Oblcz pzecętą stpę pcetwaa te laty czą, półczą watalą. zyład 3.26 zyład 3.28

5 Mdel watśc aptału w czase pzy stpe sładaeg pcetwaa czeg : K( t) = K( t )( + ) t t = K( t t t )( + ) a dla aptalzac cągłe ze stpą c ( ) ( ) ( ) c t t K t = K t e a dla t < atualzuey aptał pzez dystwae ( t t > 0 ): t K( t) = K( t )( + ) t t K( t ) = ( + ) t t zasada ówważśc aptałów: dtyczy watśc a ażdy et czasu, est zależa d dbu stpy pcetwe K( t ) ( ) K t /( t bwązue dla tzw. stpy ówważe = zyład ówważy cąg aptałów (pzepływów) zyład 4.9 Reta (autet) cąg płatśc R (tzw. at) dywaych w ówych dstępach czasu (tzw. esach bazwych) Typy: psta / ugóla (es bazwy = / es aptalzac dsete) czaswa / weczysta (sńcza / esńcza lczba at) płata z dłu (zwyła) / z góy (aty a ec / a pcząte esu) zwyłe = R ( + ) = Wycea et: = ( ) = R + dcze H esów = R ( + ) stałych atach:, płate z góy = R + ) ( ) H H + t + +, ( ) = R( + ) (, weczyste ) R = zyład 5.3, 5.4, blczae lczby at (5.7) stpy pcetwe (5.8) az et zeych atach (5.) Uwaga: Watść aptału wg zasady pcetwae psteg e że stawć ppaweg delu watśc aptału w czase p. pdzdzał 4.3.

6 Zaaa ety ugóle stałe ace R stpe p (w sal esu aptalzac) typu I w ese bazwy la ( K ) aptalzac typu II w ese aptalzac la ( B ) at a ówważą etę pstą: pzez zaę stpy = ( + p) K ( + p) pzez zaę lczby wysśc at = K, R R = / ( ( + ) ) / / / = B, =, B zyład 5.4, 5.5 ( + ) R = R Zasada ówważśc długu K at R ( ze sty dłuża wezycela, s. 85 Scheaty spłaty długu: = I U a sua dsete aptału zyład , 6.6 R + stała ata R K ( ( + ) stała część aptałwa ) / B =,..., ) ety = (ata autetwa) U K = (aty aleące) dset w ede ace w ese stała część aptałwa ( + ) I = ( )( + ) beżąca spłata dsete spłata aptału w ede ace U I = K U = K Rzeczywsta (cza) stpa pcetwa t stpa ówważąca dług eg spłatę (aptały pzeazae pzez dłuża wezycela są ówważe) α Np. dystuąc a et t = 0 : Aα ( + ) = a α = 0 b β = 0 B ( + ) β β

Spłata długów. Rozliczenia związane z zadłużeniem

Spłata długów. Rozliczenia związane z zadłużeniem płata długów Rozliczeia związae z zadłużeiem Źódła fiasowaia Źódła fiasowaia Kapitał własy wkład właściciela, wpłaty udziałowców, opłaty za akcje, wkład zeczowy, apot. Kapitał obcy kedyty, pożyczki, ie

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Ó ź ę ę ś Ą Ą Ę Ę Ł ę ę ź Ę ę ę ś ś Ł ę ś ś ę Ą ź ę ś ś ś ś ę ś ę ę ź ę ę ś ę ś ę ę ś Ś ś ę ę ś ś ę ę ę ś ę ę ę ę ś ę ź Ł Ą Ę Ł ę ś ź ść ś ę ę ę ę ę ę ś ś ś ę ę ś ę ę ś ę ź Ć ŚĆ ć ś ś ć ę ś ś ę ś ś ź ś

Bardziej szczegółowo

Ą Ą ć Ó Ó Ó Ś Ź Ź Ó ż Ź Ź Ś Ś ż Ę ĘŚ ń ń ć Ś Ą Ę ż ć Ś ć ć Ć Ó Ó ć ć Ó ć Ó ć ć ń ć Ą Ó Ó Ó Ą Ć ń ń Ź Ó ń ć Ó ć ć ć ń ż ć ć Ć Ć ć ż ć Ź Ó ć ć ć ć Ó ć ĘŚ ń ń ż ć Ś ć Ą Ó ń ć ć Ś ć Ę Ć Ę Ó Ó ń ż ź Ó Ó Ś ń

Bardziej szczegółowo

Ł Ą Ę Ń ć Ź ź ĘŚ ÓŁ Ę Ę ń ń ź Ę ń Ż ć ć ń ń ń Ę ń Ę ń ń Ę ń Ę ń ń ć ć ń Ę Ą Ś ń Ę Ą Ł ź ć Ś ć ć ć Ź Ł Ś ć ć ć ć ć Ł ć ć ź ń ń ń ń ń ń ń ź ź ć ń ć ć ć ź Ł ń Ę ÓŁ ń ź ź ź ń ć ć ć ń ń ń Ą ń ń ń ń ń Ś Ę

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

Współpraca przedsiębiorstwa z bankiem dr Robert Zajkowski Katedra Bankowości UMCS w Lublinie

Współpraca przedsiębiorstwa z bankiem dr Robert Zajkowski Katedra Bankowości UMCS w Lublinie Współpaca pzedsębostwa z bake d Robet Zajkowsk ateda Bakowośc UMC w Luble www.obet.zajkowsk.ucs.lubl.pl obet.zajkowsk@ucs.lubl.pl Gaść foacj [] osultacje: czwatek :00-4:0 pok. 707 Pzeoszee osoba za osobę

Bardziej szczegółowo

Podstawowe zasady udzielania i spłaty kredytów

Podstawowe zasady udzielania i spłaty kredytów Podstawowe zasady udzielaia i spłaty kedytów Klasyfikacja kedytów. Wg czasu: kótkoteiowe (do oku), śedioteiowe ( do 5 lat), długoteiowe (powyżej 5 lat).. Wg pzediotu kedytowaia: iwestycyje, obotowe. 3.

Bardziej szczegółowo

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE

WARTOŚĆ PIENIĄDZA W CZASIE WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość

Bardziej szczegółowo

Podstawy matematyki finansowej i ubezpieczeniowej

Podstawy matematyki finansowej i ubezpieczeniowej Podstawy matematy fasowej ubezpeczeowej oreślea, wzory, przyłady, zadaa z rozwązaam KIELCE 2 SPIS TREŚCI WSTEP... 7 STOPA ZWROTU...... 9 2 RACHUNEK CZASU W MATEMATYCE FINANSOWEJ. 0 2. DOKŁADNA LICZBA DNI

Bardziej szczegółowo

MATEMATYKA FINANSOWA. Zadanie 1 Od jakiej kwoty otrzymano 15 zł odsetek za okres 2 miesięcy przy stopie procentowej 18% w skali roku.

MATEMATYKA FINANSOWA. Zadanie 1 Od jakiej kwoty otrzymano 15 zł odsetek za okres 2 miesięcy przy stopie procentowej 18% w skali roku. MATEMATYA FIASWA Rachuek osetek postych Wykozystyway w okesie kótki o 1 oku Wzó oóly * * t Wzó pzy uwzlęieiu oiesieia czasoweo t * * t * T p. w pzypaku okesu zieeo t * * 360 Zaaie 1 jakiej kwoty otzyao

Bardziej szczegółowo

MATEMATYKA FINANSOWA - WZORY LOKATY

MATEMATYKA FINANSOWA - WZORY LOKATY Stoa ocetowa Z Dysoto ateatycze D M Dysoto halowe D H MAMAYA FINANSOA - ZORY LOAY stoa ysotowa atalzacja zgoa osta z ołu atał o oesach: P Oset: ( Z P Oblczae atału a ostawe P : P P P P atalzacja zgoa złożoa

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zagadnienia 1. Mateatyczne pdstawy etd hdwlanych 2. Watść cechy ilściwej i definicje paaetów genetycznych 3. Metdy szacwania paaetów genetycznych 4. Watść hdwlana cechy

Bardziej szczegółowo

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie ELEMENTY MATEMATYI FINANSOWEJ Wpowadzeie Pieiądz ma okeśloą watość, któa ulega zmiaie w zależości od czasu, w jakim zostaje o postawioy do aszej dyspozycji. Watość tej samej omialie kwoty będzie ia dziś

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś

Bardziej szczegółowo

ń Ę Ę Ę Ę ń ń Ś ź Ę ś ś Ę Ś Ą Ę Ę Ę Ę Ż Ę Ę ść Ą Ł Ę Ć ć Ś Ę Ę ś Ę Ż Ś Ę Ę ń Ż Ę Ć ź ć Ł ś Ę ś Ż ś Ś ś Ę ć Ł ś Ż ŚĆ Ę ń ŚĆ ść ś ś ń ś Ś ś ś Ęś Ę ć ś ść ń ń Ć ś Ą ń ć Ą Ś ń ś ś ć ć ś źć ć ź ś ń Ę ś Ę ć

Bardziej szczegółowo

Temat: Operacje elementarne na wierszach macierzy

Temat: Operacje elementarne na wierszach macierzy Temat: Operacje elementarne na erszach macerzy Anna Rajfura Anna Rajfura Operacje elementarne na erszach macerzy n j m n A Typy operacj elementarnych. Zamana mejscam erszy oraz j, ozn.: j. Mnożene ersza

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

PtOCKA MI^DZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA - klasa II szkofa podstawowa

PtOCKA MI^DZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA - klasa II szkofa podstawowa POCKA M^DZYSZKOLNA LGA PRZEDMOTOWA MATEMATYKA - klasa szkofa podsawowa KARTA PUNKTACJ ZADAN (wypefna komsa konkursowa): Numer zadana Zad. Zad. 2 Zad. 3 Poprawna odpowedz Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad.

Bardziej szczegółowo

Ó Ż ź Ó Ą Ż Ó ń ń ć ć ĘŚ Ś ŚĆ Ę ć ć ć ć Ś Ź ń ź ŚĆ ń Ś ź ć ć Ó ć ć ź ć ć ć ń ń Ł ć ź ć ń Ś ć ć ć Ł Ę Ś Ł Ę Ł ć ń ć Ś ź Ć Ś Ś ć ź Ó ź ć ć Ś ń ź Ś ź Ó Ś Ó Ś Ś ń Ś Ś ć ć ń ć ć Ż Ś ć ń ń Ł Ł ń ć ź ć ć Ó ć

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w

POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

Ś ś Ł ń ń ś ś Ś ś Ę ę ś ę ś ĘŚ ś Ęś ę ĘŚĆ ĘŚ Ęś ĘŚ ĘŚ ę ĘŚĆ ĘŚĆ ĘŚĆ ĘŚĆ Ęś ĘŚĆ ĘŚ ĘŚĆ ń ĘŚĆ ĘŚ ĘŚĆ ę ĘŚ ś Ęś ń ś ś ś ę ź ę ś ę ś Ź ń ę ń ś ń ń ę ń ń ń ń Ę ś ń ęś ń ń ń ę ń Ż ś ń ń ę ń ś ń ń ń ę ś ń ś Ż

Bardziej szczegółowo

Matematyka Finansowa. Wykład. Maciej Wolny

Matematyka Finansowa. Wykład. Maciej Wolny Matematyka Fasowa Wykład Macej Woly macej.woly@polsl.pl Ageda Ogazacja zajęć, wpowadzee, podstawowe pojęca. Teoa fukcj peądza w czase. Rozlczea zwązae ze spłatą długów. Ocea opłacalośc westycj. Lteatua.

Bardziej szczegółowo

Ą ć ę ż ż Ż ć ć Ż ć ń ę ę Ż ń ż ęż ę ę Ę ż ż ĘŚ ę Ż Ż Ż Ż Ż Ż Ż Ż ż ż ń ę ęż ęż Ó ęź Ą ń ę Ś Ż ć ę Ą ę ż ę ż ć ę ę Ż ę ż ż ę ń ń ę Ą ż ę Ł Ą ę ż ę Ą ę ę Ę Ą ę ę ęć ż Ę ęż ż ę Ą Ę ę ę Ą ę ę Ą Ą Ż ć ć Ń

Bardziej szczegółowo

ę Ę ę ę ó ó Ę ę ś ś Ę ę Ę ń Ę Ę ó Ę ó ę ę Ę ń ęś ś ę ść Ę ó Ą ś ę ę ęę ę ę ń ę ę Ę ś Ł ę ę ę ć ś ę ś Ę ę ś ś ś Ą ś ę ę ń ó ę ć ś ń ó ó Ą ę ń ęę ś ś ś Ę ś ś ę ś ś ę ń ń Ę ĄĄ Ł Śę ó ń ś ń Ę ó ś ś ę ś Ę ś

Bardziej szczegółowo

Ł Ą ąż ż Ł ś ś Ą Ń Ę ąż ć ę ą ą ą ę ó ś ą ń ę ę ó ę ą ę ś ó ę ó ż ś ę ś ó ś ą ę ą ą ą ń ą Ś ż ś ść ść ć ą ą ą ś ę ż ęć ó ć ą ę ź ż ą ę ś ę ż ę ó ż ś ó ś ś ó ó ę óź ó ą ś ć ż ę ó ą ę ż ą Ąą ść ó ć ó ó ć

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Arytmetyka finansowa Wykład 1 Dr Wioletta Nowak

Arytmetyka finansowa Wykład 1 Dr Wioletta Nowak Aytmetyka fiasowa Wykład D Wioletta Nowak Sylabus Watość ieiądza jako fukcja czasu. Oocetowaie lokaty. aitalizacja osta, złożoa z dołu i z góy, ciągła. aitalizacja zgoda i iezgoda. Rówoważość oocetowaia.

Bardziej szczegółowo

Ł Ż Ó Ź ĘŚ Ą Ń Ł Ą Ł ĘŚ Ę Ł Ż Ż Ż Ń Ł Ó Ą Ż Ś ć Ś ć ć Ź Ś ć ć Ó ż Ó Ó Ź Ó Ś ŚÓ ż Ś ć ć Ś Ś ż Ó Ć Ś Ś ŚÓ Ś ć ć Ś Ś Ś ć ć Ś Ę Ś Ó Ś Ó Ś Ż Ś Ść ź Ś ć Ó Ś Ć Ó Ś Ść Ó ć Ę ć Ś Ś Ę Ó Ó Ź Ź Ó ż ć ć ć ć ć ć ż ć

Bardziej szczegółowo

Rozważymy nieskończony strumień płatności i obliczymy jego wartość teraźniejszą.

Rozważymy nieskończony strumień płatności i obliczymy jego wartość teraźniejszą. Renty wieczyste Rozważyy nieskończony stuień płatności i obliczyy jego watość teaźniejszą Najpiew ozważy entę wieczystą polegającą na wypłacie jp co ok Jeśli piewsza płatność jest w chwili, to ówiy o encie

Bardziej szczegółowo

ż ń Ś Ó ó Ą Ą ó ż Ó ż ć Ś ż ć ó ó ó ń ń ń ó Ę Ś ó Ś Ś ń ó ĘŚ ż Ę Ś ó ż Ś ż ż ń ż ń ó ż ń Ń ń ń Ą ń ó ó ń ć Ń ć ó Ę ż ó ó ó ż ń Ą ó ó ż ń ń ó ż ó ż ó ó Ś ó ó ó ć ć ż Ę ń ó Ń Ń ń ż ż ĘŚ ń óź ż ż ń ó ń ó

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Ę Ś ę ł ł ęł ś ę ń ł ń ść ń ę ś ś ś ł ś ę ł ć ń ę ł ś ń ę ś ć ł ś ś ć ł ń ń Ę ł ę ł ę ś ę ś ł ść ś ł ł ę ę ć ś ć ł ł Ść ść ł ść Ę ę ć ł ć ł ś ł ł ć ł ł ś ł ść ł ś ń ń ń ń ę ę ś ć ł ś ę ń ę ś ś ę ł ł ś

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Ó ń ń ń ŚĆ ń Ą ń ź Ć ć ń ć ź ĘŚ Ó Ł Ą ń ŚĆ ź ć Ść ć Ś ć ź ź ń ź ŚĆ ń ź ć ć ć Ó ń Ę ń ć ń ć ć ń ń ń ń ć ć ń ź ć ć ń ń ć ń ń ć Ą ć ć ń ź ń ń ź Ź ć Ó Ł Ę Ł ć ń ń ć ć ć ń ć Ę ć ć ń ć Ć ć ć ć Ś ć ń ć ć ź ń

Bardziej szczegółowo

8 6 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu E L E K T R Y K K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś c i d l a p o t r z e b r y n k

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż

Bardziej szczegółowo

Źródła finansowania i ich koszt

Źródła finansowania i ich koszt Źódła fiasowaia i ich koszt Kapitalizacja i dyskoto: k K K0 (1 ) ; 1 ; k 0 k log k0 log 1 efektywa stopa pocetowa; 1 1 Stałe płatości (ety): ef m m ; K o K 1 (1 ) (pzy płatościach częstszych iż ocze) 1

Bardziej szczegółowo

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i.

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i. c 27 Rafał Kucharsk Rety Wartość beżącą cągu kaptałów: {R t R 2 t 2 R t } gdze R jest kwotą omalą płacoą w chwl t = oblczamy jako sumę zdyskotowaych płatośc: przy czym = + R j tj j= jest czykem dyskotującym

Bardziej szczegółowo

i i i = (ii) TAK sprawdzamy (i) (i) NIE

i i i = (ii) TAK sprawdzamy (i) (i) NIE Egzam uaruszy z aźdzera 009 r. Maemaya Fasowa Zadae ( ) a a& a ( Da) a&& ( Ia) a a&& D I a a&& a a ( ) && ( ) 0 a a a 0 ( ) a 4 0 ( ) a () K srawdzamy () ( ) a& a ( ) a ( ) a&& a&& ( ) a&& ( ) a&& () NIE

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

Ę Ę ĘŚ Ą Ł Ę ś ą ź ż ź ą ż ć ąż ą ś ą ń

Ę Ę ĘŚ Ą Ł Ę ś ą ź ż ź ą ż ć ąż ą ś ą ń ż ć Ę Ę ś ą ą ż ą ą ń ś ą ą Ą Ę Ą ą ą ą Ź ć ą ą ś ą ą ą Ą Ę Ą Ł ą ą ą ą Ę Ę ĘŚ Ą Ł Ę ś ą ź ż ź ą ż ć ąż ą ś ą ń Ą ą ż ż ą ą ż ś ż ź Ę ż ż ń Ę Ś Ę ś ż ą ą ą ż ś ś ś ż ż ą ą ż ą ż ś ą ą ż ś ś ą ą ś ż ś

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Ćwczene nr 1 Statystyczne metody wspomagana decyzj Teora decyzj statystycznych WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Problem decyzyjny decyzja pocągająca za sobą korzyść lub stratę. Proces decyzyjny

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

. Costa del SOL. WYLOT WARSZAWA CHOPINA WIOSNA 2015. Biuro Podróży Invitatio. Cena pakietu obejmuje:

. Costa del SOL. WYLOT WARSZAWA CHOPINA WIOSNA 2015. Biuro Podróży Invitatio. Cena pakietu obejmuje: 01.03.2015-08.03.2015 1-tydzień 1 190,00 PLN 01.03.2015-10.03.2015 9-noclegów 1 430,00 PLN 01.03.2015-12.03.2015 11-noclegów 1 680,00 PLN 01.03.2015-15.03.2015 2-tygodnie 1 930,00 PLN 03.03.2015-10.03.2015

Bardziej szczegółowo

Modele wartości pieniądza w czasie

Modele wartości pieniądza w czasie Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku

Bardziej szczegółowo

ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś

ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś ę ę Ą Ą ń Ó ś ś ś ń ń Ż ń Ą Ż śó ŚĆ ś ę ę ś ś ś Ż ś ść ń Ż Ś ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś ę ę ś ń Ż Ż Ż ę ś ć Ą Ż Ż ś Ś Ą Ż ś Ś Ą Ż ś ś ś Ę Ą ę ń ś ę ż Ż ć Ś ń ę

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

ZARZĄDZENIE NR $/2011 BURMISTRZA DRAWSKA POMORSKIEGO z dnia *fó marca 201 1 r.

ZARZĄDZENIE NR $/2011 BURMISTRZA DRAWSKA POMORSKIEGO z dnia *fó marca 201 1 r. B U R M I S T R Z Drawska Pomorskiego ul.gen.nm.sikorskiego 41 78-500 Drawsko Pomorskie ZARZĄDZENIE NR $/2011 BURMISTRZA DRAWSKA POMORSKIEGO z dnia *fó marca 201 1 r. w sprawie planu dofinansowania form

Bardziej szczegółowo