DRGANIA SWOBODNE KOLUMN O OPTYMALNYM KSZTAŁCIE ZE WZGLĘDU NA WARTOŚĆ OBCIĄŻENIA KRYTYCZNEGO PODDANYCH OBCIĄŻENIU EULEROWSKIEMU

Wielkość: px
Rozpocząć pokaz od strony:

Download "DRGANIA SWOBODNE KOLUMN O OPTYMALNYM KSZTAŁCIE ZE WZGLĘDU NA WARTOŚĆ OBCIĄŻENIA KRYTYCZNEGO PODDANYCH OBCIĄŻENIU EULEROWSKIEMU"

Transkrypt

1 MODELOANIE INŻYNIERSKIE ISSN X 8 s. 5- Gwce 9 DRGANIA SOBODNE KOLUMN O OPTYMALNYM KSZTAŁIE ZE ZGLĘDU NA ARTOŚĆ OBIĄŻENIA KRYTYZNEGO PODDANYH OBIĄŻENIU EULEROSKIEMU JANUSZ SZMIDLA ANNA ASZZAK Isyu Mechak Podsaw Kosrukc Maszy Poechka zęsochowska e-ma: szmda@mpkm.pcz.czes.p Isyu Iformayk Teoreycze Sosowae Poechka zęsochowska e-ma: a.wawszczak@gma.com Sreszczee. pracy prezeue sę badaa eoreycze umerycze doyczące drgań swobodych koum poddaych obcążeu euerowskemu. rozważaach uwzgęda sę zmeą szywość a zgae układów oraz sprężysość węzła kosrukcyego modeuącego sposób zamocowaa koum. Przeprowadza sę aazę eoreyczą doyczącą geomer układów oraz sformułowaa waruków brzegowych. Przebeg częsośc drgań własych wyzacza sę da rozkładu szywośc a zgae koum przy kórym uzyskue sę maksymae warośc obcążea kryyczego.. STĘP Smukłe układy sprężyse charakeryzue okreśoy przebeg krzywych częsośc drgań własych w fukc obcążea zewęrzego. zaeżośc od sposobu uray saeczośc oraz charakeru zma częsośc drgań własych wyróżć moża układy ypu dywergecyego faerowego oraz dywergecyego pseudofaerowego (por.[]). Iseą eszcze układy hybrydowe kóre łączą cechy układu ypu dywergecyego oraz faerowego. przypadku obcążea euerowskego (por. []) o sałym pukce zaczepea sałym keruku dzałaa krzywa częsośc drgań własych a płaszczyźe: obcążee - częsość drgań własych ma zawsze achyee ueme []. Aaze swobodych drgań poprzeczych beek Berouego - Euera charakeryzuących sę zmeym przekroem poprzeczym pośwęcoo szereg pubkac aukowych. yróżć moża prace w kórych rozparywae układy złożoe są z segmeów o skokowo zmeym pou przekrou poprzeczego (por.[4-9]) ub ake w kórych przekró zmeał w sposób cągły (por. [ - ]). modeach beek uwzgędoo dodakowo eemey dyskree w ym sprężyy rasacye roacye oraz masy skupoe. Dołączoe eemey dyskree mocowao a końcach układu (por. [5 ]) ub umeszczoo w mescach zmay przekrou poprzeczego bek (por. [4 6 9 ]). pracy [6] przedsawoo zagadee drgań poprzeczych dwusegmeowych beek kóre podzeoo a rzy zasadcze grupy w zaeżośc od kszału poa przekrou poprzeczego układów. yzaczoo warość rzech perwszych częsośc drgań własych przy różych warukach zamocowaa. Ideyczą aazę zma częsośc drgań własych

2 6 J. SZMIDLA A. ASZZAK przeprowadzoo w pubkac [7] w kóre wzęo pod uwagę układy złożoe z rzech węce segmeów. przypadku układu zbudowaego z dowoe skończoe czby segmeów z dołączoym eemeem dyskreym w posac masy skupoe ub sprężyy rasacye do wyzaczea zma warośc własych wykorzysao własośc fukc Greea [9]. pubkacach [ ] rozparywao układy beek o owo zmeym przekrou poprzeczym przy czym zmae podegał yko ede z główych wymarów przekrou. Zmaę przekrou poprzeczego oraz momeu bezwładośc przekrou okreśoo fukcą ową kwadraową. pracach [ ] modee układów rozbudowao o dodakowe eemey dyskree w posac spręży: rasacye roacye oraz masy skupoe [] ub dowoe czby mas skupoych []. esze pracy przedsawa sę wyk badań eoreyczych umeryczych doyczących drgań swobodych koum poddaych dzałau wybraych przypadków obcążea euerowskego. Borąc pod uwagę modee fzycze koum sposób podparca układów oraz rozwązaa kosrukcye głowc reazuących obcążee formułue sę całkową eergę mechaczą układów. Na podsawe rozwązaa zagadea brzegowego kóre uzyskue sę przy uwzgędeu keyczego kryerum saeczośc prezeue sę przebeg krzywych zma warośc własych a płaszczyźe: obcążee częsość drgań własych. Zakres zma częsośc drgań własych wyzacza sę przy wybraych szywoścach węzła kosrukcyego modeuącego sposób zamocowaa koum. Przyęy do obczeń umeryczych rozkład szywośc a zgae koum odpowada układom da kórych uzyskue sę maksymae warośc obcążea kryyczego przy przyęym waruku opymazacyym sałe obęośc srukury [4].. MODELE FIZYZNE KOLUMN Na rys. a-b przedsawoo modee fzycze koum reazuących rozważae przypadk obcążea euerowskego. Kouma es sprężyśce zamocowaa ( współczyk sprężysośc zamocowaa) z ede sroy ( ) oraz obcążoa a końcu układu ( ) słą skupoą P o sałym keruku dzałaa. Obcążee reazowae es poprzez srukurę obcążaącą składaącą sę z głowcy wywołuące przemuące obcążee (por. [6]). Głowca wywołuąca obcążee zbudowaa es dwóch eemeów owych (rys.a) ub z edego eemeu owego (rys.b). Głowcę przemuącą obcążee saow eeme kołowy (łożysko ocze). Eemey głowc reazuących omawae przypadk obcążea Euera są obekam rzeczywsym (por. [5]) sosowaym w badaach eksperymeaych układów smukłych (por. [6]). Kouma podzeoa es a segmey (rys. c) (deksy.. ) o przekrou kołowym szywośc a zgae ( ) gdze: J es momeem bezwładośc przekrou poprzeczego ego segmeu koumy wzgędem os oboęe zgaa. Segmey opsae są przez długość średcę d oraz przemeszczee poprzecze ( ). Przymue sę asępuące założea ozaczea sosowae w pracy: - sałą całkową długość koum L oraz sałą długość e segmeów (L ) - sałą warość modułu sprężysośc podłuże E oraz gęsośc maerału ρ wszyskch segmeów koumy - sałą sumaryczą obęość wszyskch segmeów opsuących kszał koumy. prowadza sę przykładowe ozaczea rozważaych w esze pracy koum:

3 DRGANIA SOBODNE KOLUMN O OPTZMALNYM KSZTAŁIE 7 Rys.. Modee fzycze koum przy obcążeu euerowskm - AO(c * ) BO(c * ) koumy opymazowae o skokowo zmee szywośc a zgae przy współczyku sprężysośc zamocowaa c * reazuące obcążee Euera. - AP(c * 5) BP(c * 5) koumy porówawcze o sałe szywośc a zgae (J es momeem bezwładośc przekrou poprzeczego koumy porówawcze wzgędem os oboęe zgaa) przy współczyku sprężysośc zamocowaa c * 5 reazuące obcążee Euera. Bezwymarowy współczyk sprężysośc zamocowaa c * wyos: L c * () Obęość koum AP(c * ) BP(c * ) es deycza ak sumarycza obęość wszyskch segmeów opsuących kszał układów AO(c * ) BO(c * ).. SFORMUŁOANIE I ROZIĄZANIE ZAGADNIENIA BRZEGOEGO Zagadee brzegowe formułue sę a podsawe zasady Hamoa kóra w przypadku układów koserwaywych przymue posać: ( T V ) δ d () Eerga keycza T prezeowaych w pracy koum zgode z eorą Berouego Euera es wyrażoa wzorem: T ( ρa) ( ) d ()

4 8 J. SZMIDLA A. ASZZAK ałkowa eerga poecaa V koum es sumą: eerg sprężyse zgaa eerg poecae obcążea zewęrzego oraz eerg sprężysośc zamocowaa: d P d V (4) zasadze Hamoa () wykorzysue sę przemeość operac całkowaa (wzgędem oraz ) obczaa warac. Po wykoau dzałaa warac eerg keycze () oraz warac poszczegóych człoów eerg poecae (4) orzymue sę: - rówaa ruchu rozważaych układów: A P ρ (5) - waruk brzegowe odośe do puku zamocowaa koum: c (6a-b) - waruk cągłośc: r r (7a-d) - waruk brzegowe a swobodym końcu koum ( ); układ AO(c * ))- wzory (8a-b)) ub układ BO(c * ) wzory (8c-d)): (8a-b) k (8c-d) gdze:..(-) r P k c / /. Rozwązae ogóe rówań (5) po uprzem wykoau operac rozdzeea zmeych fukc ( ) wzgędem czasu współrzędych w posac: y ω cos (9) moża zapsać asępuąco: y β α β α s sh cos cosh 4 () gdze m są sałym całkowaa (m..4) oraz:

5 α DRGANIA SOBODNE KOLUMN O OPTZMALNYM KSZTAŁIE 9.5k (.5k Ω ) β.5k (.5k Ω ) Ω ( ρa) ω P k ( ) ( ).5 (a-d) Podsawee rozwązań () do waruków brzegowych (6a-b) (7a-d) oraz (8a-b) ub (8c-d) (po uprzedm rozdzeeu zmeych wzgędem czasu współrzędych ) prowadz do rówaa przesępego a częsość drgań własych ω. 4. YNIKI OBLIZEŃ NUMERYZNYH. pubkac [4] wykoao sosowe obczea odośe do opymazac kszału koum AO(c * ) BO(c * ). Borąc pod uwagę saycze kryerum saeczośc oraz zmodyfkoway przez auorów agorym symuowaego wyżarzaa wyzaczoo warośc paramerów geomeryczych poszczegóych segmeów koum przy kórych uzyskue sę maksymae warośc obcążea kryyczego. Przykładowe kszały opymazowaych koum AO(c * ) BO(c * ) przy podzae a 8 segmeów oraz przy wybraych waroścach współczyka sprężysośc zamocowaa c * przedsawoo a rys.. Lam przerywaym zazaczoo kszał koum porówawczych AP(c * ) BP(c * ). Dodakowo podao warość parameru kryyczego obcążea λ c rozparywaych układów oraz proceowy wzros δ sły kryycze koum AO(c * ) BO(c * ) w odeseu do koum porówawczych. arość obcążea kryyczego odos sę do całkowe długośc koumy L oraz szywośc a zgae koumy porówawcze czy: Rys.. Kszał opymazowaych koum: a-d) kouma AO(c * ) e-h) kouma BO(c * ) [4]

6 J. SZMIDLA A. ASZZAK PL λ c () esze pracy wyzacza sę przebeg zma częsośc drgań własych ω koum AO(c * ) BO(c * ) w fukc obcążea zewęrzego przy uwzgędeu zmee szywośc a zgae koum (por. rys.). Ograczoo sę (rys. rys.4) do okreśea charakeru zma dwóch perwszych podsawowych częsośc drgań własych w forme bezwymarowe (Ω Ω ) w fukc bezwymarowego parameru obcążea λ przy wybraych waroścach parameru c * modeuącego sposób zamocowaa koum przy czym: 4 PL ( ρa) ω L λ Ω (a-b) Rys.. Krzywe a płaszczyźe paramer obcążea λ - paramer częsośc drgań własych Ω (układ AO(c*)) Rys.4. Krzywe a płaszczyźe paramer obcążea λ - paramer częsośc drgań własych Ω (układ BO(c*))

7 DRGANIA SOBODNE KOLUMN O OPTZMALNYM KSZTAŁIE Krzywe () (7) rys. oraz krzywe (6) rys.4 opsuą przebeg warośc własych da koum graczych odpowedo: koumy zamocowae przegubowo (c * ) koumy wsporkowe (/c * ). arość obcążea kryyczego orzymao przy paramerze Ω. Rys.5. Krzywe a płaszczyźe paramer obcążea λ - paramer podsawowe częsośc drgań własych Ω : a-b) koumy AO(c*) AP(c*); c-d) koumy BO(c*) BP(c*) Na rysukach 5a-d zaprezeowao zakres zma podsawowe częsośc drgań własych koum AO(c * ) BO(c * ) (e cągłe) oraz koum porówawczych AP(c * ) BP(c * ) (e przerywae) przy wybraych waroścach parameru c *. Przedsawoe przebeg zma warośc własych (por. rys. - 5) maą zawsze achyee ueme. haraker ch zma pozwaa zaczyć rozparywae układy do układów ypu dywergecyego. Orzymae wyk warośc obcążea kryyczego uzyskae a podsawe keyczego kryerum saeczośc są deycze ak przy zasosowau sayczego kryerum saeczośc [4]. Praca wykoaa w ramach badań własych B -//8/P oraz badań sauowych BS -//99/P. LITERATURA. Tomsk L.: Obcążea układów oraz układy swose. Rozdzał : Drgaa swobode saeczość obeków smukłych ako układów owych ub eowych. Praca zborowa wykoaa pod kerukem aukowym redakcą L. Tomskego. arszawa : 7 NT s Tmosheko S. P. Gere J. M.: Teora saeczośc sprężyse. arszawa : yd. Arkady 96.. Lephoz H.H.E.: O coservave easc sysems of he frs ad secod kd. Igeeur- Archve p De Rosa M. Bees N.. Maurz M.: Free vbraos of sepped beams wh ermedae easc suppors. Joura of Soud ad Vbrao p Maurz M. Bees P.: Naura frequeces of oe-spa beams wh sepwse varabe crossseco. Joura of Soud ad Vbrao p

8 J. SZMIDLA A. ASZZAK 6. Nagueswara S.: Naura frequeces sesvy ad mode shape deas of a Euer- Berou beam wh oe-sep chage cross-seco ad wh eds o cassca suppors. Joura of Soud ad Vbrao 5 p Nagueswara S.: Vbrao of a Euer-Berou beam o easc ed suppors ad wh up o hree sep chages cross-seco. Ieraoa Joura of Mechaca Sceces 44 p L Q.: Free oguda vbrao aayss of mu-sep o-uform bars based o pecewse aayca souos. Egeerg Srucures p Kuka S. Zamoska I.: Frequecy aayss of aay oaded sepped beams by Gree s fuco mehod. Joura of Soud ad Vbrao 7 p Nagueswara S.: ommes o "Vbrao of o-uform rods ad beams". Joura of Soud ad Vbrao p Abrae S.: Vbrao of o-uform rods ad beams. Joura of Soud ad Vbrao p Auceo N: Trasverse vbraos of a eary apered caever beam wh p mass of roaory era ad eccercy. Joura of Soud ad Vbrao p u J. he D.: Bedg vbraos of wedge beams wh ay umber of po masses. Joura of Soud ad Vbrao 6 p Szmda J. awszczak A.: Opymazaca kszału koum reazuących wybrae przypadk obcążea Euera za pomocą zmodyfkowaego agorymu symuowaego wyżarzaa. Zeszyy Naukowe Poechk Rzeszowske sera: Mechaka s.. 5. Kasprzyck A.: Ops echczy srukur obcążaących koumy. Rozdzał : Drgaa swobode saeczość obeków smukłych ako układów owych ub eowych. Praca zborowa wykoaa pod kerukem aukowym redakcą L. Tomskego. arszawa : NT 7 s Tomsk L. Szmda J.: Loca ad goba saby ad vbrao of overbraced Euer s coum. Joura of Theoreca ad Apped Mechacs 4 p FREE VIBRATIONS OF OLUMNS ITH OPTIMAL SHAPE ONNETED ITH RITIAL LOAD HEN EXPOSED TO EULER S LOAD Summary. I hs work heoreca ad umerca vesgaos cocerg free vbraos of coums uder Euer s oad are preseed. I cosderaos oe akes o accou varabe of he feura rgdy o he eghs of he sysem ad eascy of cosrucoa o modeg he mehod of moug he coum. Theoreca aayss cocerg geomery of he sysems ad formuao of he boudary codo has bee carred ou. The course of he aura frequecy curves has bee cacuaed for opma shape coums for whch mama crca oad has bee obaed.

STATECZNOŚĆ I DRGANIA SWOBODNE NIEPRYZMATYCZNEGO UKŁADU SMUKŁEGO PODDANEGO OBCIĄŻENIU EULEROWSKIEMU

STATECZNOŚĆ I DRGANIA SWOBODNE NIEPRYZMATYCZNEGO UKŁADU SMUKŁEGO PODDANEGO OBCIĄŻENIU EULEROWSKIEMU MODELOANIE INŻYNIERSKIE ISSN 896-77X 4 s. 385-394 Gwce STATECZNOŚĆ I DRGANIA SOBODNE NIEPRYZMATYCZNEGO UKŁADU SMUKŁEGO PODDANEGO OBCIĄŻENIU EULEROSKIEMU JANUSZ SZMIDLA MICHAŁ KLUBA Isyu Mechak Podsaw Kosrukcj

Bardziej szczegółowo

WPŁYW SZTYWNOŚCI SPRĘŻYNY ROTACYJNEJ NA CZĘSTOŚĆ DRGAŃ WŁASNYCH KOLUMNY GEOMETRYCZNIE NIELINIOWEJ OBCIĄŻONEJ SIŁĄ PODŚLEDZĄCĄ

WPŁYW SZTYWNOŚCI SPRĘŻYNY ROTACYJNEJ NA CZĘSTOŚĆ DRGAŃ WŁASNYCH KOLUMNY GEOMETRYCZNIE NIELINIOWEJ OBCIĄŻONEJ SIŁĄ PODŚLEDZĄCĄ MODLO ŻYRK 896-77X s. 77-8 Gwce PŁY ZTYOŚC PRĘŻYY ROTCY CZĘTOŚĆ DRGŃ ŁYCH KOLMY GOMTRYCZ LO OBCĄŻO ŁĄ PODŚLDZĄCĄ KRZYZTOF OKÓŁ syu Mechak Podsaw Kosrukcj Maszy Poechka Częsochowska e-ma: soko@mpkm.pcz.czes.p

Bardziej szczegółowo

J. Wyrwał, Wykłady z mechaniki materiałów METODA SIŁ Wprowadzenie

J. Wyrwał, Wykłady z mechaniki materiałów METODA SIŁ Wprowadzenie J. Wyrwał Wykłady z mechak materałów.. ETODA SIŁ... Wprowadzee etoda sł est prostą metodą rozwązywaa (obczaa reakc podporowych oraz wyzaczaa sł przekroowych) statycze ewyzaczaych (zewętrze wewętrze) układów

Bardziej szczegółowo

DRGANIA SWOBODNE TELESKOPOWEGO SIŁOWNIKA HYDRAULICZNEGO PODDANEGO OBCIĄŻENIU EULERA

DRGANIA SWOBODNE TELESKOPOWEGO SIŁOWNIKA HYDRAULICZNEGO PODDANEGO OBCIĄŻENIU EULERA MODELOWANIE INŻYNIERSKIE 07 r 64, ISSN 896-77X DRGANIA SWOBODNE TELESKOPOWEGO SIŁOWNIKA HYDRAULICZNEGO PODDANEGO OBCIĄŻENIU EULERA Sebasta Uzy a, Łukasz Kutrowsk b Istytut Mechak Podstaw Kostrukcj Maszy,

Bardziej szczegółowo

ANALIZA ASYMPTOTYCZNA WYKŁADNICZEJ SIECI ZAWODNYCH SYSTEMÓW KOLEJKOWYCH

ANALIZA ASYMPTOTYCZNA WYKŁADNICZEJ SIECI ZAWODNYCH SYSTEMÓW KOLEJKOWYCH STUDIA INFORMATICA 1 Volume 33 Number 3A (17) Mchał MATAŁYCKI Polechka Częsochowska, Isyu Maemayk Swaosław STATKIEWICZ Grodzeńsk Uwersye Pańswowy ANALIZA ASYMPTOTYCZNA WYKŁADNICZEJ SIECI ZAWODNYCH SYSTEMÓW

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

OBSZARY FLATTEROWEJ I DYWERGENCYJNEJ NIESTATECZNOŚCI RAMY TYPU Γ PRZY OBCIĄŻENIU UOGÓLNIONYM BECKA

OBSZARY FLATTEROWEJ I DYWERGENCYJNEJ NIESTATECZNOŚCI RAMY TYPU Γ PRZY OBCIĄŻENIU UOGÓLNIONYM BECKA MODELOANIE INŻYNIERSKIE ISSN 896-77X 4 s. 403-40 Gwce 0 OBSZARY FLATTERO I DYERGENCYJN NIESTATECZNOŚCI RAMY TYPU Γ PRZY OBCIĄŻENIU UOGÓLNIONYM BECKA LECH TOMSKI JANUSZ SZMIDLA Insyu Mechank Podsaw Konsrukcj

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

Mechanika Bryły y Sztywnej - Ruch Obrotowy. Bryła a Sztywna. Model górnej kończyny Model kręgosłupa

Mechanika Bryły y Sztywnej - Ruch Obrotowy. Bryła a Sztywna. Model górnej kończyny Model kręgosłupa WYKŁAD # Mechaka Bryły y Szywej - Ruch Obroowy Bryła a Szywa Model cała rzeczywsego, dla k puky (ależą podczas ruchu. a rzeczywsego, dla kórego dwa dowole wybrae żące do bryły) y) e zeają swojej odległośc

Bardziej szczegółowo

MODELE FUNKCJONALNE WYRÓWNANIA POMIARÓW OKRESOWYCH PRZY WYZNACZANIU PRZEMIESZCZEŃ POWIERZCHNI TERENU

MODELE FUNKCJONALNE WYRÓWNANIA POMIARÓW OKRESOWYCH PRZY WYZNACZANIU PRZEMIESZCZEŃ POWIERZCHNI TERENU NFRSRUKUR EKG ERENÓW WEJSKCH NFRSRUCURE ND ECGY F RUR RES Nr 6/, SK KDE NUK, ddzał w Kraowe, s. 77 86 Komsja echczej rasruury Ws odee ucjoae... adeusz Gargua DEE FUNKCJNNE WYRÓWNN RÓW KRESWYCH RZY WYZNCZNU

Bardziej szczegółowo

This copy is for personal use only - distribution prohibited.

This copy is for personal use only - distribution prohibited. ZESZYTY NAUKOWE WSOWL - Ths copy s for persoal se oly - dsrbo prohbed. - Ths copy s for persoal se oly - dsrbo prohbed. - Ths copy s for persoal se oly - dsrbo prohbed. - Ths copy s for persoal se oly

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Matematyka II. x 3 jest funkcja

Matematyka II. x 3 jest funkcja Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykła 0: Rówae Schrögera Dr ż. Zbgew Szklarsk Kaera lekrok paw. C- pok.3 szkla@agh.eu.pl hp://layer.uc.agh.eu.pl/z.szklarsk/ 0.06.07 Wyzał Iforayk lekrok Telekoukacj - Teleforayka Rówae Schrögera jeo z

Bardziej szczegółowo

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

Bardziej szczegółowo

ANALIZA WPŁYWU PARAMETRÓW WIERCENIA NA ZUŻYCIE UZBROJENIA ŚWIDRÓW GRYZOWYCH

ANALIZA WPŁYWU PARAMETRÓW WIERCENIA NA ZUŻYCIE UZBROJENIA ŚWIDRÓW GRYZOWYCH POSĘPY NAUKI I ECHNIKI NR 0, 0 Potr Jareek, Mro Czerec ANALIZA WPŁYWU PARAMERÓW WIERCENIA NA ZUŻYCIE UZBROJENIA ŚWIDRÓW GRYZOWYCH Streszczee: Przedstawoo wyk ocey wpływu prędkośc obrotowej wercea oraz

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM

SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM Arur MACIĄG Sreszczee: W pracy przedsawoo echk aalzy szeregów czasowych w zasosowau do plaowaa progozowaa produkcj w przewórswe spożywczym.

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

R n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 )

R n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 ) Maeayka fasowa ubezpeczeowa Ćwczea 4 IE, I rok SS Tea: achuek re oęce rey Warość począkowa końcowa rey ey o sałych raach ea o zeych raach ea uogóoa osawowe poęca rachuku re ea es o cąg płaośc okoywaych

Bardziej szczegółowo

CZYNNIKOWY MODEL ZARZĄDZANIA PORTFELEM OBLIGACJI

CZYNNIKOWY MODEL ZARZĄDZANIA PORTFELEM OBLIGACJI Zeszyy Naukowe Wydzału Iorayczych echk Zarządzaa Wyższej Szkoły Iorayk Sosowaej Zarządzaa Współczese robley Zarządzaa Nr /0 CZYNNIKOWY MOE ZARZĄZANIA OREEM OBIGACJI Adrzej Jakubowsk Isyu Badań Syseowych

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE

PROBLEM ODWROTNY DLA RÓWNANIA PARABOLICZNEGO W PRZESTRZENI NIESKOŃCZENIE WYMIAROWEJ THE INVERSE PARABOLIC PROBLEM IN THE INFINITE DIMENSIONAL SPACE JAN KOOŃSKI POBLEM ODWOTNY DLA ÓWNANIA PAABOLICZNEGO W PZESTZENI NIESKOŃCZENIE WYMIAOWEJ THE INVESE PAABOLIC POBLEM IN THE INFINITE DIMENSIONAL SPACE S r e s z c z e n e A b s r a c W arykule skonsruowano

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

Projekt 2 2. Wielomiany interpolujące

Projekt 2 2. Wielomiany interpolujące Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

NOWE MOTODY MODELOWANIA SAMOPODOBNEGO RUCHU W SIECIACH W OPARCIU O PROCESY POISSONA Z MARKOWSKĄ MODULACJĄ 1

NOWE MOTODY MODELOWANIA SAMOPODOBNEGO RUCHU W SIECIACH W OPARCIU O PROCESY POISSONA Z MARKOWSKĄ MODULACJĄ 1 STUDIA INFORMATICA 005 Voume 6 Number (63) Rober WÓJCICKI Poecha Śąsa, Isyu Iformay NOWE MOTODY MODELOWANIA SAMOPODOBNEGO RUCHU W SIECIACH W OPARCIU O PROCESY POISSONA Z MARKOWSKĄ MODULACJĄ Sreszczee.

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

Reprezentacja krzywych...

Reprezentacja krzywych... Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Niezawodność i diagnostyka Kierunek AiR, sem. V, rok. ak. 2010/11 STRUKTURY I MIARY PROBABILISTYCZNE SYSTEMÓW METODA DRZEWA (STANÓW) NIEZDATNOŚCI

Niezawodność i diagnostyka Kierunek AiR, sem. V, rok. ak. 2010/11 STRUKTURY I MIARY PROBABILISTYCZNE SYSTEMÓW METODA DRZEWA (STANÓW) NIEZDATNOŚCI Nezawodość dagosyka Keruek, sem. V, rok. ak. 00/ STUKTUY I MIY POILISTYCZNE SYSTEMÓW METOD DZEW STNÓW NIEZDTNOŚCI. Srukury obeków złożoych ch rerezeace Wsółczese obeky sysemy echcze, a szczególe wększe

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

1. WSTĘP. METODA EULERA 1 1. WSTĘP. METODA EULERA

1. WSTĘP. METODA EULERA 1 1. WSTĘP. METODA EULERA . WSTĘP. MTODA ULRA. WSTĘP. MTODA ULRA Wprowadzee Mowacja pozawaa meod umerczc:. Rozwązwae bardzo dużc kosrukcj o złożoej geomer welu sopac swobod powżej mloa prz różorodm zacowau maerałów.. Śwadome wkorzswae

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO

PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem

Bardziej szczegółowo

Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE TECHNOLOGII WYTWARZANIA ODLEWÓW

KOMPUTEROWE WSPOMAGANIE TECHNOLOGII WYTWARZANIA ODLEWÓW KOMPUEROWE WSPOMAGANIE ECHNOLOGII WYWARZANIA ODLEWÓW Jausz LELIO Mchał SZUCKI Paweł ŻAK Faculy of Foudry Egeerg Deparme of Foudry Processes Egeerg AGH Uversy of Scece ad echology Krakow I KLIEN CAD CAE

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Kazimierz Myślecki. Metoda elementów brzegowych w statyce dźwigarów powierzchniowych

Kazimierz Myślecki. Metoda elementów brzegowych w statyce dźwigarów powierzchniowych Kazmerz Myśleck Metoda elemetów brzegowych w statyce dźwgarów powerzchowych Ofcya Wydawcza Poltechk Wrocławskej Wrocław 4 Recezec Potr KONDERLA Ryszard SYGULSKI Opracowae redakcyje Aleksadra WAWRZYNKOWSKA

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

SYMULACJA NUMERYCZNA OPŁYWU MODELI BUDYNKÓW METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI

SYMULACJA NUMERYCZNA OPŁYWU MODELI BUDYNKÓW METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI MODELOWANIE INŻYNIERSKIE ISSN 896-77X 4, s. 8-86, Glwce 20 SYMULACJA NUMERYCZNA OPŁYWU MODELI BUDYNKÓW METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI ZBIGNIEW KOSMA, PRZEMYSŁAW MOTYL Istytut Mechak Stosowae Eergetyk,

Bardziej szczegółowo

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme

Bardziej szczegółowo

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH

BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTOICZYCH ISTYTUT SYSTEMÓW ELEKTOICZYCH WYDZIAŁ ELEKTOIKI WOJSKOWA AKADEMIA TECHICZA ---------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84 Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

FINANSOWE SZEREGI CZASOWE WYKŁAD 3

FINANSOWE SZEREGI CZASOWE WYKŁAD 3 FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).

Bardziej szczegółowo

Wybór najlepszych prognostycznych modeli zmienności finansowych szeregów czasowych za pomocą testów statystycznych

Wybór najlepszych prognostycznych modeli zmienności finansowych szeregów czasowych za pomocą testów statystycznych UNIWERSYTET EKONOMICZNY W POZNANIU WYDZIAŁ INFORMATYKI I GOSPODARKI ELEKTRONICZNEJ Wybór ajlepszych progosyczych model zmeośc fasowych szeregów czasowych za pomocą esów saysyczych Elza Buszkowska Promoor:

Bardziej szczegółowo

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji

Bardziej szczegółowo

Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem Kostrukcje budowle zeme OBLICZENIA WSPÓŁCZYNNIKA STATECZNOŚCI SKAPY ODWODNEJ METODĄ FELLENIUSA DLA ZAPOY ZIEMNEJ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DENAŻEM Zapora zema posadowoa a podłożu przepuszczalym

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego

Bardziej szczegółowo

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem

Bardziej szczegółowo

VII. ZAGADNIENIA DYNAMIKI

VII. ZAGADNIENIA DYNAMIKI Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz

Bardziej szczegółowo

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 64 Transpor 28 Tomasz AMBROZIAK, Konrad LEWCZUK Wydzał Transporu Polechnk Warszawske Zakład Logsyk Sysemów Transporowych ul. Koszykowa 75, -662 Warszawa am@.pw.edu.pl;

Bardziej szczegółowo

ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI

ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI ĆWICZENIE 0 OPTYMALIZACJA STUKTUY CZUJKI TEMPEATUY W ASPEKCIE NIEZWODNOŚCI Cel ćwczea: zapozae z metodam optymalzac wewętrze struktury mozakowe czuk temperatury stosowae w systemach sygalzac pożaru; wyzaczee

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

Badania Operacyjne (dualnośc w programowaniu liniowym)

Badania Operacyjne (dualnośc w programowaniu liniowym) Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)

Bardziej szczegółowo

Rozruch silnika prądu stałego

Rozruch silnika prądu stałego Rozruch silnika prądu sałego 1. Model silnika prądu sałego (SPS) 1.1 Układ równań modelu SPS Układ równań modelu silnika prądu sałego d ua = Ra ia + La ia + ea d równanie obwodu wornika d uf = Rf if +

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 8. CAŁKI NIEOZNACZONE. ( x) 2 cos2x Wykład z Podsaw maemayk dla sudenów Inżyner Środowska Wykład 8. CŁKI NIEOZNCZONE Defnca (funkca perwona) Nech F es funkcą perwoną funkc f na przedzale I, eżel F '( ) f ( ) dla każdego I. Udowodnć, że funkce

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

II. PODSTAWOWE RÓWNANIA MECHANIKI W UJĘCIU NIELINIOWYM

II. PODSTAWOWE RÓWNANIA MECHANIKI W UJĘCIU NIELINIOWYM Kr a Sach Dooracch Poech Wrocławe wera: y 7 II. PODSTAWOWE RÓWNANIA MECHANIKI W UJĘCIU NIELINIOWYM W roae amecoe ą poawowe rówaa eowe mecha cała oałcaego be wyprowaeń ora omeary. Załaa ę że cye acył r

Bardziej szczegółowo

INŻYNIERIA RZECZNA Konspekt wykładu

INŻYNIERIA RZECZNA Konspekt wykładu INŻYNIERIA RZECZNA Kospekt wykładu Wykład 4 Charakterystyka przepływu wody w korytach rzeczych Klasyfkacja ruchu wody. Ruch eustaloy zmey przepływ a długośc rzek w czase: ruch fal wezbraowych ruch wody

Bardziej szczegółowo

Wpływ redukcji poziomu szumu losowego metodą najbliższych sąsiadów 161

Wpływ redukcji poziomu szumu losowego metodą najbliższych sąsiadów 161 Kaarzya Zeug-Żebro WPŁYW REDUKCJI POZIOMU SZUMU LOSOWEGO MEODĄ NAJBLIŻSZYCH SĄSIADÓW NA WAROŚĆ NAJWIĘKSZEGO WYKŁADNIKA LAPUNOWA Wprowazee W aalze szeregów czasowych zakłaa sę, że w aych moża wyorębć skłak

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION JEMIELITA Grzegorz 1 KOZYRA Zofia drgaia, belka, odłoŝe sręŝyste DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM Praca dotyczy wyzaczaia drgań belki a dwuarametrowym odłoŝu sręŝystym obciąŝoej symetryczie

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

1. Wstęp DETEKCJA ZMIANY DRYFU W MODELOWANIU NATĘŻENIA ŚMIERTELNOŚCI 1. Michał Krawiec. Zbigniew Palmowski

1. Wstęp DETEKCJA ZMIANY DRYFU W MODELOWANIU NATĘŻENIA ŚMIERTELNOŚCI 1. Michał Krawiec. Zbigniew Palmowski DETEKCJA ZMIANY DRYFU W MODELOWANIU NATĘŻENIA ŚMIERTELNOŚCI 1 Mchał Krawec Uwersye Wrocławsk Zbgew Palmowsk Polechka Wrocławska e-mals: mchalkrzyszofkrawec@gmalcom; zbgewpalmowsk@gmalcom ISSN 1644-6739

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

FUNKCJE ZMIENNYCH LOSOWYCH. Uwagi o rozkładzie funkcji zmiennej losowej jednowymiarowej.

FUNKCJE ZMIENNYCH LOSOWYCH. Uwagi o rozkładzie funkcji zmiennej losowej jednowymiarowej. L.Kowals Fucje zmeych losowych FUNKCJE ZMIENNYCH LOSOWYCH Uwag o rozładze fucj zmeej losowej jedowymarowej. Jeśl - soowa, o fucj prawdopodobeńswa P( x ) p, g - dowola o fucja prawdopodobeńswa zmeej losowej

Bardziej szczegółowo

WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI

WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH

Bardziej szczegółowo