Podstawy układów mikroelektronicznych
|
|
- Krystyna Morawska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Podstay układó mikroelektronicznych ykład dla kierunku Technologie Kosmiczne i Satelitarne Część 4. Wstępne przetarzanie obrazu. dr inż. Waldemar Jendernalik Katedra Systemó Mikroelektronicznych, WETI, Politechnika Gdańska Budynek WETI pokój 39, aldi@eti.pg.edu.pl
2 Sygnał jednoymiaroy () Sygnał sinusoidalny/kosinusoidalny. Drgania typu sinusoidalnego są poszechne przyrodzie, np. śiatło lub fala na odzie. Za pomocą sumy sygnałó sinusoidalnych o różnych częstotliościach i amplitudach można przedstaić inne sygnały okresoy i praie-okresoych. u(t) T U ϕ t ( ω t + ϕ ); ω f; f u(t) Usin π /T Część 4: Early vision processing PUM dla TKIS Slajd
3 Sygnał jednoymiaroy () Widmo sygnału sinusoidalnego. u(t) T U ϕ t A ϕ ω, f U f Widmo amplitudoe ω, ϕ Widmo fazoe f f Część 4: Early vision processing PUM dla TKIS Slajd 3
4 Część 4: Early vision processing PUM dla TKIS Slajd 4 Szereg Fouriera Każdy sygnały okresoy i praie-okresoy można yrazić za pomocą sumy sygnałó sinusoidalnych o różnych A i ω. + k k k k k k A B arctg, B A C ϕ ( ) ( ) ( ) T k T k T sinkω tdt t u T B coskω tdt, t u T A dt, t u T C T π ω,,3,... k ) sin(kω t C C u(t) k k k + + ϕ
5 Sygnał jednoymiaroy (3) Ciąg impulsó prostokątnych (fala prostokątna, sygnał prostokątny). sin(kαπ ) kαπ ( t) U + αu α cos(kω t) α u k U k α/4 ω ω ω 3ω 4ω 5ω 6ω 7ω 8ω 9ω ω Część 4: Early vision processing PUM dla TKIS Slajd 5
6 Sygnał jednoymiaroy (4) Da przebiegi sinusoidalne, o pulsacji ω i pulsacji ω 3 3ω. u(t) Amplituda U U 3 ω ω ω 3 ω 4 ω 5 ω 6 ω ; ω 3 3ω ; ω t Część 4: Early vision processing PUM dla TKIS Slajd 6
7 Transformata Fouriera Sygnał nieokresoy może być traktoany jako okresoy o T. u F F π π jωt jωt jωt ( t) u( t) e dt e dω F( jω) e dω ( jω) u( t) e jωt ( ) ( ) jϕ ( ω) jω F jω e dt całka Fouriera Widmo amplitudoe Widmo fazoe Część 4: Early vision processing PUM dla TKIS Slajd 7
8 Część 4: Early vision processing PUM dla TKIS Slajd 8 Sygnał jednoymiaroy (5) Pojedynczy impuls prostokątny o czasie trania τ. ( ) ω j e ω ω sin U jω F τ τ τ τ t u(t) τ U
9 Sygnał jednoymiaroy (6) Widmo sygnału moy. Wyraz szczęście. Przebieg czasie Widmo Źródło: L. Grad Obrazoa reprezentacja sygnału moy Biuletyn Instytutu Automatyki i Robotyki WAT NR8, 997. Część 4: Early vision processing PUM dla TKIS Slajd 9
10 Sygnał jednoymiaroy (7) Sygnał teleizji analogoej. Obraz kontrolny Widmo Część 4: Early vision processing PUM dla TKIS Slajd
11 Przetarzanie () Filtracja linioa (dolno przepustoa, górno przepustoa, środkoo przepustoa, środkoo zaporoa) Filtracja nielinioa np. medianoa Przesuanie, odracanie, normalizacja idma Odejmoanie/sumoanie idm Inne modyfikacje np. zamiana głosu męskiego na żeński Część 4: Early vision processing PUM dla TKIS Slajd
12 Przetarzanie () Operacja nielinioa - przesuanie idma na osi częstotliości cos + ( ω t) cos( ω t) cos( ω ω ) t + cos( ω ω )t Część 4: Early vision processing PUM dla TKIS Slajd
13 Filtracja linioa idmo u(t) idmo u (t) idmo u (t) Przetarzanie (3) ω d ω g ω ω ω Część 4: Early vision processing PUM dla TKIS Slajd 3 t f u(t) u (t) u (t) t r t f, t r ~ z ω g ; t t t z ~ ω d
14 Splot Filtracja linioa jest to splot sygnału z odpoiedzią impulsoą filtru. Filtr linioy z czasem ciągłym Filtr linioy z czasem dyskretnym S in (t) h(t) S out (t) S in (n) h(n) S out (n) S out (t') + ( S h)( t' ) S ( t' t) h( t) dt in in S out (n') + ( S h)( n' ) S ( n' n) h( n) in n in + ( δ h)( t' ) δ( t' t) h( t) dt h( t' ) Część 4: Early vision processing PUM dla TKIS Slajd 4
15 Obraz - sygnał duymiaroy W komputeroej analizie, obraz jest funkcją duymiaroą dyskretną. Odzoroanie spółrzędnych piksela na jasność piksela (m,n) L(m,n) gdzie L - luminancja Taka reprezentacja ułatia realizację przetarzania. Obraz Lena 4x4 pikseli. Źródło: R. Tadeusieicz, P. Korohoda Komputeroa analiza i przetarzanie sygnało Wydanicto Fundacji Postępu Telekomunikacji, Krakó 997. Część 4: Early vision processing PUM dla TKIS Slajd 5
16 Widmo obrazu () Sygnał jednoymiaroy dyskretny: ciąg próbek kolejnych chilach czasu t n. Sygnał duymiaroy dyskretny L(m,n): ciąg próbek o kolejnych numerach duymiaroych (m,n). Za pomocą dyskretnej transformacji Fouriera (DFT) można uzyskać duymiaroe idmo obrazu. Źródło: R. Tadeusieicz, P. Korohoda Komputeroa analiza i przetarzanie sygnało Wydanicto Fundacji Postępu Telekomunikacji, Krakó 997. Część 4: Early vision processing PUM dla TKIS Slajd 6
17 Widmo obrazu () Za pomocą odrotnej DFT można odtorzyć obraz. Przetarzanie obrazu oparte o bezpośrednią modyfikację idma całego obrazu ymaga relatynie dużych mocy obliczenioych. Znacznie mniej ymagające jest przetarzanie tz. kontekstoe. Część 4: Early vision processing PUM dla TKIS Slajd 7
18 Przetarzanie kontekstoe () Wartość piksela jest obliczana na podstaie otoczenia. Otoczenie nazyane jest też oknem. Okna mogą mieć różne rozmiary np. 3x3, 5x5 pikseli. Część 4: Early vision processing PUM dla TKIS Slajd 8
19 Przetarzanie kontekstoe () Usuanie szumu salt-and-pepper. Piksele zaszumione Piksele obliczone Część 4: Early vision processing PUM dla TKIS Slajd 9
20 Część 4: Early vision processing PUM dla TKIS Slajd Filtracja duymiaroa () Usuanie szumu salt-and-pepper. Filtracja nielinioa, mediana. Piksele zaszumione Otoczenie {,,,,,,,,} med{,,,,,,,,}
21 Filtracja duymiaroa () Splot dla sygnału jedno i duymiaroego. Filtracja linioa. Filtr linioy z czasem dyskretnym Filtr linioy z czasem dyskretnym S in (n) h(n) S out (n) L in (m,n) Convolution indo L out (m,n) S out (n') + ( S h)( n' ) S ( n' n) h( n) in n in + i,j K ( L )( m,n) L ( m i n j) ( i, j) L (m,n), out in in Część 4: Early vision processing PUM dla TKIS Slajd
22 Część 4: Early vision processing PUM dla TKIS Slajd Filtracja duymiaroa (3) Splot obrazu z maską postać ogólna. ( )( ) ( ) ( ) + K i,j in in out j i, j n i m L m,n L (m,n) L, L L L L L L L L L L in L out [5] L in L +L +L 3 3 +L 4 4 +L 5 5 +L 6 6 +L 7 7 +L 8 8 +L 9 9 Przykład splotu obrazu oknach 3x3 z maską.
23 Część 4: Early vision processing PUM dla TKIS Slajd 3 Filtracja duymiaroa (4) Filtr splotoy dolnoprzepustoy. 9 Piksele zaszumione Otoczenie {,,,,,,,,} otoczenie /9 /9 Maska (jądro) splotu Usuanie szumu salt-and-pepper.
24 Część 4: Early vision processing PUM dla TKIS Slajd 4 Exercises () Maski Preitt a dla ykryania kraędzi poziomych i pionoych x y
25 Część 4: Early vision processing PUM dla TKIS Slajd 5 Exercises () Maski Sobel a dla ykryania kraędzi poziomych i pionoych x y
26 Część 4: Early vision processing PUM dla TKIS Slajd 6 Exercises (3) Maski Laplace a filtry górnoprzepustoe (ykryanie szystkich kraędzi)
27 Exercises (4) albo Część 4: Early vision processing PUM dla TKIS Slajd 7
28 Część 4: Early vision processing PUM dla TKIS Slajd 8 Exercises (5) albo
TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych
ELEKTRONIKA. dla Mechaników
ELEKTRONIKA dla Mechaników dr inż. Waldemar Jendernalik Politechnika Gdańska Wydział ETI Katedra Systemów Mikroelektronicznych p. 309, waldi@ue.eti.pg.gda.pl www.ue.eti.pg.gda.pl/~waldi Po co to Wam? Elektronika
Wybrane wiadomości o sygnałach. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
Wybrane wiadomości o sygnałach Przebieg i widmo Zniekszałcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Przebieg i widmo analogowego. Sygnał sinsoidalny A ϕ sygnał okresowego
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
Przetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e
Nośna: MODULACJE ANALOGOWE c(t) = Y 0 cos(ωt + ϕ 0 ) Sygnał analityczny sygnału zmodulowanego y(t): z y (t) = m(t)z c (t), z c (t) = Y 0 e jωt Funkcja modulująca zależna od sygnału modulującego: j arg
Właściwości sygnałów i splot. Krzysztof Patan
Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Analiza czas - częstotliwość analiza częstotliwościowa: problem dla sygnału niestacjonarnego zwykła transformata
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie
Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Temat ćwiczenia. Analiza częstotliwościowa
POLIECHNIKA ŚLĄSKA W YDZIAŁ RANSPORU emat ćwiczenia Analiza częstotliwościowa Analiza częstotliwościowa sygnałów. Wprowadzenie Analizę częstotliwościową stosuje się powszechnie w wielu dziedzinach techniki.
1. Modulacja analogowa, 2. Modulacja cyfrowa
MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna
Przetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Transformata Fouriera. Krzysztof Patan
Transformata Fouriera Krzysztof Patan Aproksymacja sygnałów Aproksymacja sygnału x(t) za pomocą rozwinięcia o skończonej długości polega na znalezieniu funkcji ˆx n (t) = c 1 x 1 (t) + + c k x k (t) +
Inżynieria Systemów Dynamicznych (3)
Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8
Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;
(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.
MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.
Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha
AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego
1 T. Sygnały. Sygnał okresowy f(t) Wartość średnia sygnału okresowego f(t) Sygnały f(t) Stałe. Zmienne f(t) const. Pulsujące Inne.
Sygnały Sygnały f(t) Stałe Zmienne f(t) const Pulsujące nne Zmieniające znak Zachowujące znak Oksowe Nieoksowe Odkształcone SNSODALNE nne Sygnał oksowy f(t) > t f ( t) f ( t + ) Wartość śdnia sygnału oksowego
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008
Analiza obrazu komputerowego wykład 5 Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad
TEORIA STEROWANIA I, w 5. dr inż. Adam Woźniak ZTMiR MEiL PW
TEORIA STEROWANIA I, w 5 dr inż. Adam Woźniak ZTMiR MEiL PW Układy LTI- SISO Stacjonarne, przyczynowe liniowe układy z jednym wyjściem i jednym wejściem najczęściej modeluje się przy pomocy właściwej transmitancji
Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści
LOKALNA ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW. Deinicja. Okna 3. ransormacja Gabora Spis reści Analiza czasoo-częsoliościoa sygnału moy Ampliuda.. andrzej 35_m.av -. 3 4 5 6 7 8 9 D 4. 3.5 D 3. DW D3 D4.5..5
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 4 Filtracja 2D Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
Przetwarzanie sygnałów biomedycznych
Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 7 Filtracja 2D Opracowali: dr inż. Krzysztof Mikołajczyk dr inż. Beata Leśniak-Plewińska Zakład Inżynierii Biomedycznej Instytut Metrologii
MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk
Wyższa Szkoła Informatyki Stosowanej i Zarządzania MODULACJA Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji dr inż. Janusz Dudczyk Cel wykładu Przedstawienie podstawowych
Automatyka i robotyka
Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający
Obwody prądu zmiennego
Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania
GENERACJA PRZEBIEGU SINUSOIDALNEGO.
GENERACJA PRZEBIEGU SINUSOIDALNEGO. Podstawą generacji sygnału sinusoidalnego jest równanie różnicowe wyprowadzone w sposób następujący. Transmitancja układu generującego jest równa: Na wyjściu spodziewany
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami
Wykład 2: Szeregi Fouriera
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1. Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami
Analiza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 6 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej
Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej Rozwiązane zadania należy dostarczyć do prowadzącego w formie wydruku lub w formie odręcznego
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM
ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 21 lutego 2011 Eksperyment fizyczny, Czwórniki,
Projekt 2: Filtracja w domenie przestrzeni
Projekt 2: Filtracja w domenie przestrzeni 1. 2. Wstęp teoretyczny a. Filtracja w domenie przestrzeni b. Krótko o szumie c. Filtracja d. Usuwanie szumu typu Salt and Pepper filtrem medianowym e. Wnioski
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Filtracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZEIE 6 Dyskretne przekształcenie Fouriera DFT 1. Cel ćwiczenia Dyskretne przekształcenie Fouriera ( w skrócie oznaczane jako DFT z ang. Discrete Fourier
METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH
INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH Methods of analyzing vibro-acoustics signal Zakres ćwiczenia: 1. Rodzaje sygnałów. 2. Metody analizy sygnałów w dziedzinie
PRZETWARZANIE SYGNAŁÓW
PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania
Sygnały cyfrowe naturalne i zmodulowane
Sygnały cyfrowe naturalne i zmodulowane Krzysztof Włostowski e-mail: chrisk@tele.pw.edu.pl pok. 467 tel. 234 7896 1 Sygnały cyfrowe Sygnały naturalne (baseband) Sygnały zmodulowane 1 0 0 1 0 0 1 1 przepływność
Przetwarzanie sygnałów biomedycznych
Przetwarzanie sgnałów biomedcznch Człowiek- najlepsza inwestcja Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Wkład XIII Dstrbucje czasowo częstotliwościowe
Ćwiczenie - 7. Filtry
LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Propagacja w przestrzeni swobodnej (dyfrakcja)
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja
Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne
Przeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
u(t)=u R (t)+u L (t)+u C (t)
Szeregowy obwód Źródło napięciowe u( o zmiennej sile elektromotorycznej E(e [u(] Z drugiego prawa Kirchhoffa: u(u (u (u ( ównanie ruchu ładunku elektrycznego: Prąd płynący w obwodzie: di( i t dt u t i
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
Materiały pomocnicze do wykładu
do wykładu 1 1. Tomasz P. Zieliński - Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań, WKŁ, 2009, 2. Richard G. Lyons, Wprowadzenie do cyfrowego przetwarzania sygnałów, WKŁ, 2010 (wyd. 2 rozszerzone),
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Wstęp do ćwiczeń na pracowni elektronicznej
Wstęp do ćwiczeń na pracowni elektronicznej Katarzyna Grzelak listopad 2011 K.Grzelak (IFD UW) listopad 2011 1 / 25 Zajęcia na pracowni elektronicznej Na kolejnych zajęciach spotykamy się na pracowni elektronicznej
Transformata Fouriera i analiza spektralna
Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady
Przetwarzanie sygnałów dyskretnych
Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n
) (2) 1. A i. t+β i. sin(ω i
Ćwiczenie 8 AALIZA HARMOICZA PRZEBIEGÓW DRGAŃ 1. Cel ćwiczenia Analiza przebiegów drgań maszyny i wyznaczenie składowych harmonicznych tych przebiegów,. Wprowadzenie.1. Sygnały pomiarowe W celu przeprowadzenia
Systemy liniowe i stacjonarne
Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane
Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II
Wykład 7 Transformata aplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Prowadzący: dr inż. Tomasz Sikorski Instytut Podstaw lektrotechniki i lektrotechnologii
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości
Szeregowy obwód RLC. u(t)=u R (t)+u L (t)+u C (t) U L = R U U L C U C DOBROĆ OBWODU. Obwód rezonansowy szeregowy - częstość rezonansowa = 1.
Szerego obwód Źródło napięcio o zmiennej sile elektromotorycznej E(e [] drugiego prawa Kirchhoffa: ównanie ruchu ładunku elektrycznego: jeśli Prąd płynący w obwodzie: e jωt u (u (u ( d i t dt u t i t (
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Przekształcenie Z. Krzysztof Patan
Przekształcenie Z Krzysztof Patan Wprowadzenie Przekształcenie Laplace a można stosować do sygnałów i systemów czasu ciągłego W przypadku sygnałów czy systemów czasu dyskretnego do wyznaczenia transmitancji
Podstawy układów mikroelektronicznych
Podstawy układów mikroelektronicznych wykład dla kierunku Technologie Kosmiczne i Satelitarne Część 2. Podstawy działania układów cyfrowych. dr inż. Waldemar Jendernalik Katedra Systemów Mikroelektronicznych,
EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Pomiar parametrów sygnałów sieci elektroenergetycznej dr inż.
PRZEMYSŁOWE UKŁADY STEROWANIA PID. Wykład 5 i 6. Michał Grochowski, dr inż. Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki PRZEMYSŁOWE UKŁADY STEROWANIA PID Wykład 5 i 6 Michał Grochowski, dr inż. Studia I stopnia inżynierskie, Semestr IV Charakterystyki częstotliwościowe
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Obraz cyfrowy Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz Funkcja dwuwymiarowa. Wartością tej funkcji w dowolnym punkcie jest kolor (jasność). Obraz
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Elektronika i techniki mikroprocesorowe
Elektronika i techniki mikroprocesorowe Elektronika Wybrane układy elektroniczne Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 1. Generatory sinusoidalne:.
Różne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS